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Abstract. A model detector for Dirac quanta based on a simple four-field interaction is 
analysed, following Unruh’s analogous investigation of scalar particle detection in curved 
space-time. The Dirac 6 scheme in Rindler space is constructed and used to show that an 
accelerated detector sees an ordinary vacuum as a bath of Dirac quanta with appropriate 
statistics at a temperature g/2rr. A co-rotating detector constrained near the horizon of the 
Kerr black hole is similarly shown to detect in the 6 vacuum a fermion bath with temperature 
proportional to the acceleration. The results provide a physical justification for the 6 
quantisation scheme for spin-; fields developed and employed in our earlier work. 

1. Introduction 

The 5 quantisation scheme in a static black-hole space-time refers to a certain definition 
of positive-frequency modes on the past horizon of the black hole and to a particular 
choice of the vacuum state of the fields (see § §  2 and 3).  Unruh (1976) showed that the 
time-dependent collapse problem can be equivalently handled using this scheme 
leading to an alternative derivation of the well-known Hawking radiation of scalar 
quanta with a thermal spectrum. 

A number of technical arguments, such as the regularity of the derivatives of the 
Feynman propagator on the future horizon, etc, have been advanced in favour of the 5 
scheme over the more conventional 77 scheme wherein the definition of positive 
frequency for modes on the horizon is the same as for modes at infinity (Unruh 1976, 
Fulling 1977). Yet the most pertinent question is whether the 6 definition of a particle 
at the horizon corresponds at all to a physical particle state. A direct way to settle this 
question is to investigate the behaviour of model particle detectors in curved space- 
time (Candelas and Sciama 1977, Hajicek 1977, Meyer 1978, DeWitt 1979), and this 
analysis for the scalar case (Unruh 1975, 1976) has given a reasonably plausible 
demonstration that the 6 modes indeed describe physical scalar particles near the 
horizon of a black hole. 

The 77 and 5 schemes for the Dirac field in a Kerr metric were recently developed by 
us, using Chandrasekhar’s (1976) separable representation, and the 5 scheme was 
applied to arrive at the Hawking flux of Dirac quanta with appropriate statistics (Iyer 
and Kumar 1978, 1979a, b). It is therefore natural to pursue the analysis of particle 
detection for the spin-? case also, and investigate the response of a model Dirac detector 
to different modes of the Dirac field. 

In § 2 we first construct the Dirac 6 modes in Rindler space, and then show that an 
accelerated detector (based on a simple four-field interaction) in a Minkowski vacuum 

0305-4470/80/020469 + 10$01.00 @ 1980 The Institute of Physics 469 



470 B R Iyer and Arvind Kumar 

sees a bath of Dirac quanta at a temperature equal to g / 2 n  (g  is the acceleration). In § 3 
a co-rotating detector constrained near the horizon of a Kerr black hole (r,  6' fixed) is 
similarly shown to detect in a 6 vacuum a fermion bath at a temperature proportional to 
its acceleration. The results provide a physical basis for the 5 definition of Dirac quanta 
in a black-hole space-time. 

2. Detection of Dirac quanta in Rindler space 

2.1. Dirac 5 scheme in Rindler space-time 

The Rindler line element is given by 

dS2=l2dT2-dl2-dX2-dy2;  l E [0, a), T E (-CO, 00). (1) 
The maximal extension of this space is the usual Minkowski space-time, and 

contains, besides the above exterior region (labelled (+) here), a time-reversed exterior 
region (-) in addition to the 'interior' future and past regions. Kruskal-like coordinates 
for the (k) regions are 

V,=r texpr i r (~+ln l ) ,  ( 2 a )  

U* = FexpT(7-ln f ) ,  ( 2 b )  

(3) 

in terms of which the metric is 

ds2 = d V  d U  - ( d X 2  +dy2)  

in all the regions. Note that U 5 0 in (k). 
The behaviour of the solution of the Dirac equation in the extended Rindler 

space-time at the horizon and in the asymptotic limit was obtained in an earlier work 
(Tyer and Kumar 1977). The normal modes, well-behaved as l-, 00, are given by 

$ u k l k z ( X )  = (277-3'2 exp[i(klx + k2Y -wT)l($wklk,(l)/Ji), (4) 

where 

where 

q = ( k :  + k: + , u ~ ) ~ ' ~ ,  ,U =mass of the Dirac particle. 

With respect to the positive-definite inner product 

(6) 

the modes are orthonormal: 

( $ u k l k Z Y  $ w ' k i k i )  = 8 (U ( k l -  k'l)a (k2  - k ; )  (7) 
(the spin labels in $ have been suppressed). Similar modes can be defined in the other 
exterior region. Following the technique employed by Iyer and Kumar (1979a, b), we 
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define a generalised positive-definite inner product in the complete Rindler manifold by 

(8) 

where the are the restriction of to (*) regions. The introduction of the 
generalised inner product makes the treatment of the 6 scheme elegant. 

($1, *z) = (*1+, *z+) + (*I-, (CIZ-), 

In terms of these modes an arbitrary field may be expanded as 

dkl l W  dk2 loe dw ( a ~ k l k z + $ w k l k ~ +  + b : k l k 2 + $ - w k t k z +  q =  
--CO -W 

+ a w k l k z - $ - w k l k z -  + b ~ k l k z - $ u k l k z -  ). (9) 
Using the canonical field anticommutation relations, we obtain from equation (9) 

( loa) 
t 

{ a w k l k 2 + ,  a w ’ k j k j i  1 = S(w - w’)S(kl- k; )S(k2 - k i ) ,  

{ b w k l k 2 * ,  b b , , k i k i * } =  6(w  -w’)S(ki - k;)S(kz- k i ) ,  o > o .  ( l o b )  

a w k l k 2 i  10)~ = b w k l k 2 *  10)~ = 0, w > o .  (1 1) 

w > o ,  

All other anticommutators = 0. The Fulling-Rindler vacuum is given by 

The positive-frequency definiton for the modes employed above is clearly via the 
Killing vector q = 8/87 (i.e. exp(-iwT), w > 0, is a positive frequency mode). This 
Fulling-Rindler scheme is the customary q scheme of quantisation. The alternative 6 
quantisation scheme differs from the above in that here positive frequency is defined via 
the null Killing vector 5 8/8U. The 6 definition of positive frequency can be shown to 
reduce to the standard definition of positive frequency in Minkowski coordinates. As 
usual, this definition may be equivalently characterised by the analytic behaviour of the 
mode in the complex U plane. Consider a mode in the extended manifold given by 

$ : i l k 2  = R ( w ) $ w k l k 2 + >  U<O, 

ER ( - ~ ) ~ w k l k Z - ~  u>o, (12) 
where 

R ( w )  = enw”//(2 cosh ~ w ) ~ ’ ’ .  

Using the behaviour of t j w k l k 2 *  near the past horizon (equation 5) it is seen that 
t j ! L l k 2  is the restriction near real U in the lower half U plane of an analytic and 
bounded function with a cut along the negative real U axis. Thus t j c i 1 k z  is a 
positive-frequency 6 mode for all values of w. Similarly, the mode 

d l f i , k ,  ‘ R ( @ ) $ - w k l k z t ,  U < 0,  

E - R ( - w ) $ - u k , k z - ,  u>o, (13) 
can be shown to be a negative-frequency 5 mode for all w .  With respect to the 
generalised inner product (equation (8)), it is readily established that the 6 modes 
constructed above are orthonormal: 

($Suak)lkz, & f ? k i k i ) = S ( w  -w’)S(kl- k;)S(kz- kh)Sab (a, b = 1,2). (14) 
The 5 expansion of the field is 
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All other anticommutators vanish. 
The Dirac 5 vacuum in Rindler space (Minkowski vacuum) is given by 

a ^ w k l k z  lo), = 6 w k l k 2  lo)< = 0, w E (-CO, CO). (18) 

2.2. A model detector for Dirac quanta 

Our model detector is a box containing a Schrodinger particle localised entirely within 
the box and admitting of excited energy states. The detection of Dirac quanta is made 
possible via the simplest four-field interaction with coupling constant E .  In the space of 
the Dirac particle states we write the interaction as 

Rinint(x) = ~ g ~ d f * + i ,  (19) 

where & amd 4i are the Schrodinger wavefunctions of the detector particle and q, 9 
are the Dirac field operators. For a uniformly accelerated detector at a fixed [ = lo and 
x = y = 0, the Schrodinger equation for a particle in the box is given by (see e.g. Unruh 
1975) 

where 7’ is the proper time of the detector: 7’ = 107 .  Note that lo = l / g  where g is the 
acceleration of the detector. The detector particle wavefunction may be written as 

4, = h,(x, Y ,  I) exp(-iE,.r‘), (21) 

where h, are the eigenfunctions of the time-independent Schrodinger equation 
obtained from equation (20). 

The first-order transition probability per unit proper time for excitation from dl to 
4f is given by 

where In) are the possible final states of the Dirac field. Notice that we have chosen the 
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initial state of the field to be a vacuum. Let us suppose this vacuum to be the 
Fulling-Rindler vacuum defined by equation (11). Using the 77 expansion of \I' and 
(equation (9)), and integrating out the time dependence, one obtains for the detector in 
the exterior region (+) 

Since E f >  Ei, the S function vanishes in the given range of w, w '  and 

dPldr'1, = 0. (24) 

Thus the accelerated detector undergoes no transitions in the Fulling-Rindler vacuum. 
On the other hand, if the initial state is the Minkowski or 8 vacuum, the response of 

the detector is different. Using the 77 expansion of the field again we obtain 

In equations (23) and (25) and below we have converted the integrals into discrete sums 
for convenience, with appropriate factors of (Aw AklAk2)1'2 etc absorbed in a W k , k z  and 
$ w k x k z .  Inverting equation (16) and substituting for a and b in terms of the 8-operators 
a* and i, the non-vanishing matrix elements in equation (25) are obtained in a 
straightforward manner. A little manipulation then yields 

It should be noted that due to the dilation factor lo, $ b o w , k l k 2  above actually cor- 
responds to a Rindler particle of energy w with respect to the detector's proper time. 
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To appreciate the difference in the description of the detection process with respect 
to the Rindler and Minkowski observers, it is useful to obtain equation (26) alter- 
natively by expanding the field in terms of the ( modes. This gives 

. .  
k i k i  w,w' 

T 2 11" dTf 6,. (-g) 1 / 2  d 3 x ~ ~ ~ i ~ w ' k ; k ; I L w k , k , ( n l d ~ ' k ; k l b ^ & k l k , / 0 ) 6 j  ^(2j 
^ ( 1 j  

* (27)  

Using equations (12) and (13), and performing the T '  integration, we obtain equation 
(26) again. 

From equation ( 2 7 ) ,  the possible final state of the field In) is a particle-antiparticle 
pair in the .$ sense. (Note that a*', KT are creation operators of a positive-energy particle 
and antiparticle for all w E (-a, a), in contrast to the 7 operators a', bt .)  Thus the 
Minkowski observer sees the detection as a transition from the ground to the excited 
state of the detector accompanied by an emission rather than absorption of a .$ 
particle-antiparticle pair. There is nothing paradoxical about this since the extra 
energy for such a process can come from the acceleration mechanism of the detector. 
For a more general and critical discussion of this point see Davies and Fulling (1977). 

On the other hand, equation (25) provides us with the Rindler observer's viewpoint 
for the same result. According to him, the detector goes to the excited state with either 
an absorption of a Rindler particle-antiparticle pair (second term of equation (25)) or 
else by an inelastic scattering of a particle or antiparticle (first and third terms of 
equation (25)). In either case here, there is a net absorption of energy equal to the 
transition energy. 

The absorption probability per unit proper time corresponding to a given pair of 7 
modes wklkZ, w'kik; is given directly by equation (28): 

(28) 
Similarly, the inelastic transition probability for a particle (antiparticle) is also given by 
equation (28) for w > 0 (w < 0) ,  w' < 0 (U '>  0). Equation ( 2 6 )  may then be expressed as 

The appearance of the product of two statistical distribution factors in the above 
equation, and the competing process of inelastic scattering in addition to pair absorp- 
tion are features characteristic of the detection of spin-: quanta. The reason for this 
difference from the scalar case is obvious: a scalar quantum can be singly absorbed (of 
course its inelastic scattering may occur in higher orders), whereas a spin-; detector, 
even in the lowest order, must either inelastically scatter an electron or else absorb an 
electron-positron pair. Equation (29) thus clearly establishes the result that the model 
detector accelerated in Minkowski vacuum 'sees' a thermal bath of Rindler spin-4 
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particles and antiparticles with an appropriate statistical distribution corresponding to a 
temperature equal to (2.rri0)-’ = g/27r. Stated differently, the ‘vacuum’ state for the 
detector (77 vacuum) does not correspond to the physical 6 vacuum of the Minkowski 
space-time. 

3. Detector for Dirac quanta in Kerr space-time 

The question that we ask here is: what is the physical vacuum of a Dirac field in a 
black-hole space-time? Phrased differently, what is the definition of a positive- 
frequency mode (particle)? In the asymptotically flat region far away from the horizon 
this definition must obviously coincide with the usual Minkowski definition. There is 
therefore no ambiguity and here the 77 and 6 schemes agree. At the horizon, however, 
the q and 6 definitions of positive frequency differ: the former is defined in terms of 
77 = a/& and the latter in terms of 6 = a/aU, where U is the Kruskal-like coordinate for 
the Kerr metric. 

Our analysis here shows that the Dirac 5 vacuum, and not the 7 vacuum in the Kerr 
metric, is a proper candidate for the physical vacuum state at the past horizon. This 
conclusion follows naturally since it turns out that to this 6 vacuum an accelerated 
co-rotating detector at the past horizon responds in the same manner as a Rindler detector 
(§ 2 )  responds to the physical Minkowski vacuum. 

Consider a detector at fixed ( r ,  0) near the horizon of a Kerr black hole, r = r+, and 
co-rotating with it. By making the transformation 

the Kerr metric in the standard Boyer-Lindquist coordinates ( t ,  r, 0, 4 )  can be brought 
to the form 

ds2 = A[r’ + a 2  + (2Mra2 sin’ e/iii2)]-1 dt’ - (lfI2/A) dr’ - / [ I 2  de’ 

-sin’ t l[r2+a2+(2Mra2 sin’ t?/[il’)] d4”,  (3 1) 
I l l 2  = r 2  + a‘ cos2 e, A = r ’ + a - 2Mr. 

Near the horizon 

R + R h = a / ( r 2 ,  + a 2 ) ;  (32 )  

f l h  is the frequency of drag of inertial frames at the horizon. Introduce a coordinate z 
defined by 

dz/dr = ( ~ ~ ~ ’ / A ) l ’ ’ ,  r+r+ z+0. (33) 

The metric in a small neighbourhood of the horizon ( 2  = 0) reduces to the Rindler-like 
form 

d s 2 = ( 1 + 2 g 2  + O ( ~ ~ ) ) d t ’ ~ - d ~ ~ - l [ l ’  de’ 

-sin’ 8[r2 + a2 + (2Mra’ sin’ 13/1[)’)] d4I2, (34) 
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where g, the acceleration required to keep the detector fixed at ( r ,  e ) ,  is given by 

g = ( r  -M)(AlC12)-’/2, (35) 

and t’ is related to the coordinate time t by 

t’ = A1/’[r2 + a 2  + (2Mra2 sin2 e/1112)]-”2t. ( 3 6 a )  

Near the horizon, the proper time for the co-rotating observer becomes 

f ’  = K+f/g,  (36b) 

where K +  is the surface gravity of the Kerr black hole: 

To calculate the probability of excitation of the detector, we need the 77 and 5 
expansions of the Dirac field in the Kerr metric. This is given in Iyer and Kumar (1978, 
1979a, b) and we omit the details. Using the notation employed therein, we write the 77 
expansion of the field as 

Y = 1 dw(a+(wmhE)$+(wmhe; x) + b: (wmhe)$+(-w - mAE; x) 

+ a-(wmhc)$-(-w - mhe; x)+ b y  (wmhE)$-(wmhE; x)), 
mhs K=+I  

(38) 

where the $*(i.w, i m h e ;  x) are an orthonormal set of positive frequency 77 modes, and 

+1 if E = I, w >,U, 

E = 11, LJ >o ,  /wI > p ,  
K =  

-1 if ~ = I , w < - k . ,  (39) 

E = 11,; < o ,  I w I > , U ,  
G = w - m a h .  

If the Dirac field is initially in the q vacuum state, employing the above expansion in 
equation (22), the first-order excitation probability per unit proper time for a corotating 
detector near the past horizon is given by 

K = + 1  ti’=+l 

2 i Ib*, (-g)’/ ’ dr  dB d 4 ‘  hShi5,,m,,,~~(n)$-w-,,, ,~(~)i , (40) 

which vanishes because, for type I1 modes, 6,G’ > 0 in the given range. Thus 

dP/dt’l, = 0. (41) 

This proves that the co-rotating, accelerated observer sees no ‘particles’ in the 77 
vacuum. Let us next study how the detector responds to the Dirac 5 vacuum at the past 
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horizon. The 5 expansion of the Dirac field in the Kerr metric is 

? = 1 dw (a+(wmA I)$+(omh I ;  x )  + b:(wmh I)$+(-w - mh I ;  x )  

+a-(wmAI)$-(-w -mhI;  x)+bY(wmhI)$-(wmhI; x) 

+ 1 

mh ~ = + 1  

d o  (a*(wmhII)$(l,(wmhII; x )  +~t(wmAII)$(2~(wmhII;  x)), 
mh ~ = f l  

(42) 

which differs from the 7 expansion in the modes localised on the past horizon (type 11). 
Using equation (42) and the relation between 5 modes $(lj,  $(2) and the type I1 7-modes 
in the usual exterior region (+), the transition probability per unit proper time in the 5 
vacuum can be obtained. The result after a straightforward calculation is 

-1 -1 $ 1  =2.lrleI2 wmh w m h  ,[exp(:(3)+1] [exp(:(3')+1] 8[Ef-Ei-(;+;')] 
5 

Notice that only the type I1 modes contribute at the past horizon since the type I modes 
are localised at past infinity. It is important to note that $ ( K + w l g ) ( K + m ~ g j h I I  represents a 
particle of energy (3 with respect to the co-rotating detector's proper time. Next the 
absorption (or inelastic scattering) probability per unit proper time for a given pair of 
type I1 7-modes can be obtained directly from equation (22): 

so that equation (43) can be rewritten as 

Equation (45) gives the important result that the co-rotating accelerated detector near 
the past horizon of a Kerr black hole sees the 5 vacuum state as a fermion bath of 7 
particles and antiparticles at temperature g/27r. This is exactly analogous to the 
situation of an accelerated detector in the physical vacuum of the flat space-time 
discussed in li 2. The 5 vacuum is therefore a natural candidate for the physical vacuum 
near the past horizon of a black hole. In other words, the definition of the '5 particle' at 
the past horizon corresponds most plausibly to a physical particle state. 



478 B R Iyer and Arvind Kumar 

4. Conclusion 

Drawing upon the analogy with the accelerated detectors in flat space-time we have 
given a plausible physical justification for the 5 definition of positive frequency for a 
Dirac field near the past horizon of a Kerr black hole. This strengthens the physical 
basis of the Unruh-Starobinsky and Hawking effect for Dirac quanta in Kerr space- 
time derived in the framework of the ( scheme in our earlier work. 
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