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Absence of Local Thermal Equilibrium in Two Models of Heat Conduction
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A crucial assumption in the conventional description of thermal conduction is the existence of local
thermal equilibrium. We test this assumption in two simple models of heat conduction: a linear chain
of planar spins with nearest neighbor couplings and a Lorentz gas. We look at the steady state of the
system when the two ends are connected to heat baths at tempef&tuaad 7,. If T, = T,, the
system reaches thermal equilibrium. 7if # T, there is a heat current through the system, but there is
no local thermal equilibrium, even in the limit of large system size, when the heat current goes to zero.
We argue that this is due to the existence of an infinity of local conservation laws in their dynamics.
[S0031-9007(98)08254-4]

PACS numbers: 05.70.Ln, 05.20.-y, 44.10.+i, 75.10.Hk

Heat conduction provides a rather elementary exampla that we show that this occueven in the presence of
of nonequilibrium steady states (NSS). Here the drivingcoupling to heat bathsvhich leads to breakdown of the
force on the system is an externally applied temperatureonservation laws at the boundaries of the system. Also,
gradient. Our present understanding of this in terms ofhe role of conservation laws in a stochastically evolving
nonequilibrium statistical mechanics is not entirely sat-system is somewhat different from that in deterministic
isfactory. In the traditional treatment of heat conduc-evolution [3], and not so well studied.
tion, a very important assumption is of a rather quick Several microscopic models of heat conduction have
(in atomic time scales) establishment of local thermody-been studied in the past. The simple model of a harmonic
namical equilibrium (LTE) [1]. This allows one to define lattice, evolving with classical mechanical equations of
thermodynamical quantities such as temperature, pressumption and coupled to two heat baths at different tempera-
etc. locally. One then writes evolution equations for theturesT, and T, at opposite ends of the lattice, is known
slow change in time in these quantities in terms of theito show anomalous conduction [4]. It is found that the
small spatial gradients. Thus, in heat conduction, LTE im-heat current/ across the sample remains finite as the size
plies that we can define a temperature fiE(d) that varies  of the systemL goes to infinity, for a fixedl'; and 7.
slowly in space. In linear response theory, the local heaSimulations of harmonic chains with disorder show that
current density (x) is given byJ = —K(T)VT (Fourier's  decreases to zero for larde but only asL.~!/2 [5]. Sev-
law). The well-known Kubo formula determines the ther-eral models with nonlinear couplings have been studied
mal conductivity coefficientk (T') in terms of the time- numerically: the Fermi-Pasta-Ulam chain with quartic po-
dependenequilibrium correlations of the system [2]. tential [6], the Toda lattice [7], the so-called “ding-a-ling”

However, the question of the necessary (or sufficientinodel [8], the Frenkel-Kontorova model [9], etc. Most of
conditions for the fast establishment or nonestablishmerthese models are one dimensional, and all do not show
of LTE has not been investigated much so far. This ighe expected/ ~ (T; — T,)/L behavior. The unigque-
what we study in this paper, in two simple models. Theness of the steady state has been proved only for some
first is a one-dimensional spin model evolving with aspecial models of heat baths and only if the temperature
Markovian stochastic dynamics. The second model is thaifference is sufficiently small [10]. In this respect mod-
of ad-dimensional { > 1) Lorentz gas of noninteracting els with stochastic dynamics have been more successful.
particles scattering elastically with a set of randomlyThese typically work with local energy-conserving moves
placed obstacles (e.g., spheres) of finite density. In botand often involve introduction of additional degrees of
these models, we find the unexpected result that th&teedom. Creutz has used an algorithm with Maxwell
NSS does not show LTE, even in the limit of very demons to simulate heat conduction in the Ising model
small thermal gradients. Thus, one cannot define a locdlL1]. Lebowitz and Spohn studied heat conduction in the
temperature, and the conventional linear response theobyprentz model and showed that in the Boltzmann-Grad
does not work. We argue that a sufficient condition forlimit of a large number of scatterers of very small size,
LTE not to occur is the existence of an infinity of locally one recovers the Fourier law [~ (T, — T,)/L] [12].
conserved quantities in the dynamics. We start with a precise definition of our first model.

It is obvious that existence of extra conservationWe consider a linear chain df planar spins. The spin
laws in an isolated classical mechanical system implieat sitei (1 =i = L) of the lattice is specified by the
breakdown of ergodicity and, hence, failure to reachangled;, 0 = 6 = 27. The spins interact with nearest
thermodynamical equilibrium. Our results are nontrivial neighbors by ferromagnetic couplidy The Hamiltonian
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of the system is given by [ cog (Af)ePK oA g(AQ)

ugn) _ [ ePReoian g(2g) . (2
H = —K D cod6; — 0)), (1) €
@) Eliminating 8K from these equations we can expre&s,
where the sum is over all nearest neighbors. for n = 2, as explicit nonlinear functions of", i.e.,

The dynamics is the following: Suppose the instanta«™ = F™(u").
neous local field at a sitedue to coupling of the neigh- ~ We consider now the case when the two ends are
bors is in the directiong; and the spin at the site is connected to different heat baths, at temperat@ifeand
0; = ¢; + 86;. Then the transitior89; — —86; does T>. We show that, in the NSS, LTE is not achieved.
not change the energy of the system. We assume that In this dynamics, whenever a spin flip occurs, the
such spin flips occur at all sites stochastically with a convalues ofA# on the two adjacent bonds get interchanged.
stant rate (which may be chosen to be 1). The boundThis means that the densitie§” are locally conserved
ary spinsi = 1, L are connected to heat baths. For thesdor all positive integers:. For each of these quantities
spins, the flip rates are the following: A boundary spinone can write a corresponding current. The current from
6; can change to any valu# with a ratea if the energy the (¢ — 1)th bond to thexth bond is given by

changeAE = 0, and with a rateae “2E/7 if AE > 0, (N N .
whereT is the temperature of the heat bath. JP) = (={eos(Ab:-1)) + (cos(A6.))),
Note that in this model energy is conserved exactly = —Vu"(x). 3)

away from the boundaries of the lattice. In the absence of
any coupling to heat baths, this dynamics has been studiqﬂ

by one of us _earlier [13]'. It was found that, in general’chain for alln. Their value at the two ends is determined
the dynamics is not ergodic, and the phase space breaks H9 the temperatures at the ends. Then, eliminating the

into disconnected sectors. We now show that the coupling ) jinater u™(x) is expressible as a linear function of
to heat bath allows transitions between these sectors an D(x), for é" n. But, as shown aboven equilibrium
mask_es tht?] systtem fultly ergodic. bl tisfies the d u™ for n = 2 are nonlinear functions af(). Thus, we

~>lnce e rate matrix in our probiem SaliSNes e A€y, q constructed a simple model in which heat current in
tailed balance condition, it is sufficient to show that all

p i b hed f itial p the steady state is locally proportional to the gradient of
configurations can be reached from any initial con Igura'energy density, but there is no LTE (Fig. 1). This result
tion. Consider first the case when a single spin on th

latii P led t heat bath at t ¢ fs true even in the limit of system siZe — o, when the
attice, sayty, IS coupled 1o a heat bath at temperaturé,q 54 ¢y rent through the lattice becomes infinitesimal.

T. Then, 6, can be made to take any value, since it For a simple extension of the above result, consider a

ﬁﬁghz)::;hea(ljngeN(;?(terggn\;viiégrthaenyaggénk;egnig (r)]tehaerre;pi%wear chain in which there is one bond with a different
. [ / itieg(®) >
neighbor tof,. Then it is easy to see that flippint bond strengttk’. Then the quantities" (n = 2) are not

then changingd, by a small amoun®6,, then flipping
#, again, then changing, back again to its initial value T
keeps all spins unchanged, except égrwhich changes Lo equilibrium
by an amount proportional t86,. 055 - © nonequilibrium ordered o
We can use a similar argument to change a neighbor [ e dmerzed 5
of 8, and so on. Thus, there exists an allowed sequence L e
of spin flips by which we can rotate any single spin by i i
an infinitesimal amount. By making many such rotations 5 ©°5 ey
we can reach any spin configuration. This completes the = I v
proof of ergodicity. Note that the proof is valid in all L §°
dimensions? and also if more than one spin is in contact I ey
with the same heat bath (sarfig. | e

In one dimension the equilibrium properties of thi& L o &
model are easily determined. We defike;, = 0;+, — 6;. r ey
Then clearly theAd; are independent random variables. o [ o
For a mesoscopic description, we define coarse-grained L . sl |
densities by averaging the corresponding microscopic P A N T
quantity over length scale$, with 1 < { < L. Let 0.25 03 0.35 0.4
u™(x) be the coarse-grained density corresponding to o’

cos'(A6;) for i lying in a neighborhood of point. £ 1 piot of u@(x) versusuV(x) in the steady state of

In equilibrium, at inverse temperaturg, there is No the linear chain K = 1). The results for the dimerized chain
dependence om, and one gets (K’ = 2) agree with the equilibrium curve.

In the steady state, in one dimensioi”(x) must be
dependent of, and hence:/™ vary linearly across the
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conserved at this “bad” bond. In this case, the currents Let p(E, x)dE be the average density of particles hav-
take different valueg/\"” and /3" to the left and right ing energy betweerE and E + dE in a small vol-
of the bond, respectively (for = 2). In this case, there ume centered at point. Then all momentsu™(x) =
are no strict conservation laws, but? are still linear [ E"p(E,x)dE of this distribution function are locally
functions ofu') in each (left or right) half of the chain, conserved.
and LTE is still not obtained. This conclusion has also Now consider the effect of coupling it to two different
been checked in simulations (Fig. 2). reservoirs at temperaturég and 7,. Let p(x) be the
In higher dimensions, there are no known locallyprobability that a randomly chosen particle in the small
conserved quantities, other than energy, in the spin modetolume chosen near was introduced at the left end.
Hence, we expect LTE to be attained. Indeed, a numericdlhen as collisions with scatterers do not change the
simulation of a40 X 40 lattice with 7, = 1.4 K, and  energies, clearly (E, x) is given by
T, = 0.4 K agrees fully with this conclusion. In this - = — =
case, we checked that the observed valuéutf(x)) at pE.x) = plp(E.x =0) + [1 = pllp(E.x = 1).
any pointx in the NSS agrees very well with the value of (4)
1 in the homogeneous equilibrium stataving energy ~ The x dependence op(E,x) comes only from the
density «V(x). Similarly, if we consider a dimerized SPatial dependence gfix). As the linear combination of
chain with alternating coupling constanksand k', then ~ two Maxwellians is not a Maxwellian, and the distribution
there are no conserved quantities other than the enerdfust be a Maxwelliann thermal equilibrium,it follows
density. In this case, the results of our simulations (alsdhat there is no thermal equilibrium in the Lorentz model
shown in Fig. 1) confirm that the NSS does show LTE[14]. Also we expect the heat flow to be diffusive ¢
even in one dimension K # K. 1/L) in the limit L > ¢, where{ is the mean free path
Our second examp|e of absence of LTE in heat Con.Of the Lorentz particles. Note that an equation similar to
duction is provided by the model of thé-dimensional ~Ed- (4) can be written down for the first model also.
Lorentz gas studied earlier by Lebowitz and Spohn [12]. If we allow inelastic scattering with local energy
The model describes a gas of noninteracting point particle§onservation (each scatterer can store a small amount
moving in a box, undergoing elastic scattering by a randon®f energy, which can be exchanged with the scattered
assembly of fixed obstacles of arbitrary shape (Fig. 3). IParticles), the infinity of conservation laws goes away,
this model, all collisions with the obstacles are elastic, andnd we expect that then the model would show LTE and
energy is conserved. But collisions between the particlegormal conduction. _ _
and the two walls (at = 0 andx = L) are inelastic and To summarize, in this Letter we studied two simple

lead to the energy after collision being thermalized corremodels of heat conduction and showed that local ther-
sponding to the temperature of the wall. mal equilibrium is not reached as both the models have an

infinity of locally conserved quantities. These counterex-
amples should help one understand better the mechanism
of local thermal equilibration in nonequilibrium systems,
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FIG. 3. A schematic representation of the Lorentz model.
FIG. 2. Plot of u® versusu'® when the middle bond has Particles move ballistically and are scattered elastically, but in a
a different strengthK’ = 0.5 showing the different linear random direction on collision with an obstacle. At the left and
dependences in the left and right halves of the chain. Foright boundaries, they are reflected and are given a new energy
comparison, the cas€’ = 1 and the equilibrium curve are also randomly from a distribution corresponding to two different
shown. temperature§’; and7,.
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