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Absence of Local Thermal Equilibrium in Two Models of Heat Conduction
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A crucial assumption in the conventional description of thermal conduction is the existence of loca
thermal equilibrium. We test this assumption in two simple models of heat conduction: a linear chai
of planar spins with nearest neighbor couplings and a Lorentz gas. We look at the steady state of t
system when the two ends are connected to heat baths at temperaturesT1 and T2. If T1 ­ T2, the
system reaches thermal equilibrium. IfT1 fi T2, there is a heat current through the system, but there is
no local thermal equilibrium, even in the limit of large system size, when the heat current goes to zer
We argue that this is due to the existence of an infinity of local conservation laws in their dynamics
[S0031-9007(98)08254-4]
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Heat conduction provides a rather elementary exam
of nonequilibrium steady states (NSS). Here the drivin
force on the system is an externally applied temperatu
gradient. Our present understanding of this in terms
nonequilibrium statistical mechanics is not entirely sa
isfactory. In the traditional treatment of heat condu
tion, a very important assumption is of a rather quic
(in atomic time scales) establishment of local thermod
namical equilibrium (LTE) [1]. This allows one to define
thermodynamical quantities such as temperature, press
etc. locally. One then writes evolution equations for th
slow change in time in these quantities in terms of the
small spatial gradients. Thus, in heat conduction, LTE im
plies that we can define a temperature fieldT sxd that varies
slowly in space. In linear response theory, the local he
current densitȳJsxd is given byJ̄ ­ 2KsT d=̄T (Fourier’s
law). The well-known Kubo formula determines the the
mal conductivity coefficientKsT d in terms of the time-
dependentequilibriumcorrelations of the system [2].

However, the question of the necessary (or sufficien
conditions for the fast establishment or nonestablishme
of LTE has not been investigated much so far. This
what we study in this paper, in two simple models. Th
first is a one-dimensional spin model evolving with
Markovian stochastic dynamics. The second model is th
of a d-dimensional (d . 1) Lorentz gas of noninteracting
particles scattering elastically with a set of random
placed obstacles (e.g., spheres) of finite density. In bo
these models, we find the unexpected result that
NSS does not show LTE, even in the limit of ver
small thermal gradients. Thus, one cannot define a lo
temperature, and the conventional linear response the
does not work. We argue that a sufficient condition fo
LTE not to occur is the existence of an infinity of locally
conserved quantities in the dynamics.

It is obvious that existence of extra conservatio
laws in an isolated classical mechanical system impli
breakdown of ergodicity and, hence, failure to reac
thermodynamical equilibrium. Our results are nontrivia
0031-9007y99y82(3)y480(4)$15.00
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in that we show that this occurseven in the presence o
coupling to heat bathswhich leads to breakdown of th
conservation laws at the boundaries of the system. A
the role of conservation laws in a stochastically evolvi
system is somewhat different from that in determinis
evolution [3], and not so well studied.

Several microscopic models of heat conduction ha
been studied in the past. The simple model of a harmo
lattice, evolving with classical mechanical equations
motion and coupled to two heat baths at different tempe
turesT1 and T2 at opposite ends of the lattice, is know
to show anomalous conduction [4]. It is found that t
heat currentJ across the sample remains finite as the s
of the systemL goes to infinity, for a fixedT1 and T2.
Simulations of harmonic chains with disorder show thaJ
decreases to zero for largeL, but only asL21y2 [5]. Sev-
eral models with nonlinear couplings have been stud
numerically: the Fermi-Pasta-Ulam chain with quartic p
tential [6], the Toda lattice [7], the so-called “ding-a-ling
model [8], the Frenkel-Kontorova model [9], etc. Most
these models are one dimensional, and all do not s
the expectedJ , sT1 2 T2dyL behavior. The unique-
ness of the steady state has been proved only for s
special models of heat baths and only if the tempera
difference is sufficiently small [10]. In this respect mo
els with stochastic dynamics have been more succes
These typically work with local energy-conserving mov
and often involve introduction of additional degrees
freedom. Creutz has used an algorithm with Maxw
demons to simulate heat conduction in the Ising mo
[11]. Lebowitz and Spohn studied heat conduction in
Lorentz model and showed that in the Boltzmann-G
limit of a large number of scatterers of very small siz
one recovers the Fourier law [J , sT1 2 T2dyL] [12].

We start with a precise definition of our first mode
We consider a linear chain ofL planar spins. The spin
at site i (1 # i # L) of the lattice is specified by the
angle ui, 0 # u # 2p. The spins interact with neares
neighbors by ferromagnetic couplingK. The Hamiltonian
© 1999 The American Physical Society
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of the system is given by

H ­ 2K
X
ki,jl

cossui 2 ujd , (1)

where the sum is over all nearest neighbors.
The dynamics is the following: Suppose the instant

neous local field at a sitei due to coupling of the neigh-
bors is in the directionfi and the spin at the site is
ui ­ fi 1 dui. Then the transitiondui ! 2dui does
not change the energy of the system. We assume t
such spin flips occur at all sites stochastically with a co
stant rate (which may be chosen to be 1). The boun
ary spinsi ­ 1, L are connected to heat baths. For thes
spins, the flip rates are the following: A boundary spi
ui can change to any valueu0

i with a ratea if the energy
changeDE # 0, and with a rateae2DEyT , if DE . 0,
whereT is the temperature of the heat bath.

Note that in this model energy is conserved exact
away from the boundaries of the lattice. In the absence
any coupling to heat baths, this dynamics has been stud
by one of us earlier [13]. It was found that, in genera
the dynamics is not ergodic, and the phase space break
into disconnected sectors. We now show that the coupli
to heat bath allows transitions between these sectors a
makes the system fully ergodic.

Since the rate matrix in our problem satisfies the d
tailed balance condition, it is sufficient to show that a
configurations can be reached from any initial configur
tion. Consider first the case when a single spin on t
lattice, sayu0, is coupled to a heat bath at temperatur
T . Then, u0 can be made to take any value, since
can exchange energy with the bath, keeping other sp
unchanged. Next consider any spinu1 that is nearest
neighbor tou0. Then it is easy to see that flippingu1,
then changingu0 by a small amountdu0, then flipping
u1 again, then changingu0 back again to its initial value
keeps all spins unchanged, except foru1 which changes
by an amount proportional todu0.

We can use a similar argument to change a neighb
of u1, and so on. Thus, there exists an allowed sequen
of spin flips by which we can rotate any single spin b
an infinitesimal amount. By making many such rotation
we can reach any spin configuration. This completes t
proof of ergodicity. Note that the proof is valid in all
dimensionsd and also if more than one spin is in contac
with the same heat bath (sameT ).

In one dimension the equilibrium properties of theXY
model are easily determined. We defineDui ­ ui11 2 ui.
Then clearly theDui are independent random variables
For a mesoscopic description, we define coarse-grain
densities by averaging the corresponding microscop
quantity over length scales,, with 1 ø , ø L. Let
usndsxd be the coarse-grained density corresponding
cosnsDuid for i lying in a neighborhood of pointx.
In equilibrium, at inverse temperatureb, there is no
dependence onx, and one gets
a-
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cosnsDudebK cossDuddsDudR

ebK cossDuddsDud
. (2)

EliminatingbK from these equations we can expressusnd,
for n $ 2, as explicit nonlinear functions ofus1d, i.e.,
usnd ­ Fsndsus1dd.

We consider now the case when the two ends a
connected to different heat baths, at temperaturesT1 and
T2. We show that, in the NSS, LTE is not achieved.

In this dynamics, whenever a spin flip occurs, th
values ofDu on the two adjacent bonds get interchange
This means that the densitiesusnd are locally conserved
for all positive integersn. For each of these quantities
one can write a corresponding current. The current fro
the (x 2 1)th bond to thexth bond is given by

Jsndsxd ­ s2kcosnsDux21dl 1 kcosnsDuxdld ,

­ 2=usndsxd . (3)

In the steady state, in one dimension,J sndsxd must be
independent ofx, and henceusnd vary linearly across the
chain for alln. Their value at the two ends is determine
by the temperatures at the ends. Then, eliminating t
coordinatex, usndsxd is expressible as a linear function o
us1dsxd, for all n. But, as shown above,in equilibrium,
usnd, for n $ 2 are nonlinear functions ofus1d. Thus, we
have constructed a simple model in which heat current
the steady state is locally proportional to the gradient
energy density, but there is no LTE (Fig. 1). This resu
is true even in the limit of system sizeL ! `, when the
heat current through the lattice becomes infinitesimal.

For a simple extension of the above result, conside
linear chain in which there is one bond with a differen
bond strengthK 0. Then the quantitiesusnd (n $ 2) are not

0.25 0.3 0.35 0.4

0.52

0.53

0.54

0.55
nonequilibrium dimerized

equilibrium

nonequilibrium ordered

(1)

FIG. 1. Plot of us2dsxd versusus1dsxd in the steady state of
the linear chain (K ­ 1). The results for the dimerized chain
(K 0 ­ 2) agree with the equilibrium curve.
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conserved at this “bad” bond. In this case, the curren
take different valuesJ

snd
1 and J

snd
2 to the left and right

of the bond, respectively (forn $ 2). In this case, there
are no strict conservation laws, butusnd are still linear
functions ofus1d in each (left or right) half of the chain,
and LTE is still not obtained. This conclusion has als
been checked in simulations (Fig. 2).

In higher dimensions, there are no known local
conserved quantities, other than energy, in the spin mod
Hence, we expect LTE to be attained. Indeed, a numeri
simulation of a 40 3 40 lattice with T1 ­ 1.4 K, and
T2 ­ 0.4 K agrees fully with this conclusion. In this
case, we checked that the observed value ofkus2dsxdl at
any pointx in the NSS agrees very well with the value o
us2d in the homogeneous equilibrium statehaving energy
density us1dsxd. Similarly, if we consider a dimerized
chain with alternating coupling constantsK andK 0, then
there are no conserved quantities other than the ene
density. In this case, the results of our simulations (al
shown in Fig. 1) confirm that the NSS does show LT
even in one dimension ifK fi K 0.

Our second example of absence of LTE in heat co
duction is provided by the model of thed-dimensional
Lorentz gas studied earlier by Lebowitz and Spohn [12
The model describes a gas of noninteracting point partic
moving in a box, undergoing elastic scattering by a rando
assembly of fixed obstacles of arbitrary shape (Fig. 3).
this model, all collisions with the obstacles are elastic, a
energy is conserved. But collisions between the partic
and the two walls (atx ­ 0 andx ­ L) are inelastic and
lead to the energy after collision being thermalized corr
sponding to the temperature of the wall.

0.25 0.3 0.35 0.4

0.52

0.53

0.54

0.55
nonequilibrium with bad bond

equilibrium

nonequilibrium ordered

(1)

FIG. 2. Plot of us2d versusus1d when the middle bond has
a different strengthK 0 ­ 0.5 showing the different linear
dependences in the left and right halves of the chain. F
comparison, the caseK 0 ­ 1 and the equilibrium curve are also
shown.
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Let rsE, xddE be the average density of particles ha
ing energy betweenE and E 1 dE in a small vol-
ume centered at pointx. Then all momentsmsndsxd ­R

EnrsE, xd dE of this distribution function are locally
conserved.

Now consider the effect of coupling it to two differen
reservoirs at temperaturesT1 and T2. Let psxd be the
probability that a randomly chosen particle in the sm
volume chosen nearx was introduced at the left end
Then as collisions with scatterers do not change
energies, clearlyrsE, xd is given by

rsE, xd ­ psxdrsE, x ­ 0d 1 f1 2 psxdgrsE, x ­ Ld .

(4)
The x dependence ofrsE, xd comes only from the

spatial dependence ofpsxd. As the linear combination of
two Maxwellians is not a Maxwellian, and the distributio
must be a Maxwellianin thermal equilibrium,it follows
that there is no thermal equilibrium in the Lorentz mod
[14]. Also we expect the heat flow to be diffusive (J ,
1yL) in the limit L ¿ ,, where, is the mean free path
of the Lorentz particles. Note that an equation similar
Eq. (4) can be written down for the first model also.

If we allow inelastic scattering with local energ
conservation (each scatterer can store a small amo
of energy, which can be exchanged with the scatte
particles), the infinity of conservation laws goes awa
and we expect that then the model would show LTE a
normal conduction.

To summarize, in this Letter we studied two simp
models of heat conduction and showed that local th
mal equilibrium is not reached as both the models have
infinity of locally conserved quantities. These countere
amples should help one understand better the mechan
of local thermal equilibration in nonequilibrium system
in general.

We thank Mohit Randeria and Jean-Pierre Eckmann
critically reading the manuscript.

T1 T2

FIG. 3. A schematic representation of the Lorentz mod
Particles move ballistically and are scattered elastically, but i
random direction on collision with an obstacle. At the left an
right boundaries, they are reflected and are given a new ene
randomly from a distribution corresponding to two differen
temperaturesT1 andT2.
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