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Abstract. Pierre Auger experiment has detected at least a couple of cosmic ray events above
energy 60 EeV from the direction of the radio-galaxy Centaurus A. Assuming those events
are from Centaurus A, we have calculated the numbers of neutral cosmic ray events from
this source for small values of the degree of violation in Lorentz invariance. Our results show
that a comparison of our calculated numbers of events with the observed number of events
at EeV energy from the direction of the source can probe extremely low value of the degree
of this violation.
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1 Introduction

The cosmic ray data from Akeno Giant Air Shower Array (AGASA) [1], Fly’s Eye [2],
HiRes [3] and Pierre Auger [4] are helping us to understand the physics of the energetic
cosmic ray particles coming from the outer space. The important questions to be addressed
are, what are their origin, mechanisms of production, composition and how they propagate
through the interstellar medium. Due to the low flux of cosmic rays at ultrahigh energies
(> 1017)eV large scale detectors have to operate for many years to collect significant amount
of signals from the ultrahigh energy universe. The composition of the ultrahigh energy cos-
mic rays is quite unknown. So far it has been determined using the hadronic interaction
models and extrapolating the values of the particle interaction cross sections measured at
low energies to ultrahigh energies. Novel methods of determining the composition of ultra
high energy cosmic rays is a topic active research [5]. The highest energy cosmic ray event
of energy 3.2 × 1020eV was detected by Fly’s Eye experiment [6]. HiRes experiment, the
upgraded version of Fly’s Eye experiment, studied the highest energy cosmic rays in the en-
ergy range of 2× 1017eV to over 1020eV using the atmospheric fluorescence technique. They
reported the presence of GZK (Greisen-Zatsepin-Kuzmin) [7] suppression in the spectrum
which is due to the interaction of very high energy cosmic ray protons and nucleons with
cosmic microwave background (CMB) photons.

The Pierre Auger Observatory (PAO) is designed to study cosmic rays with energies
more than 1EeV. With its two sites in the two hemispheres this observatory is going to
cover the entire sky. The northern site is going to be built in south east Colorado, USA.
The southern site located in Mendoza, Argentina has 1600 water Cherenkov surface detector
stations covering 3000 km2 and 24 fluorescence telescopes to record air shower cascades
produced by cosmic rays. Recently they have published results based on data taken between
1 January 2004 to 31 August 2007 [8]. Cosmic ray protons of energy more than 57EeV
are expected to be deflected by only a few degrees due to the Galactic and intergalactic
magnetic fields during their propagation. 27 events have been detected with energies more
than 57EeV [9]. Out of these events 20 correlate with at least one of the 442 AGN (Active
Galactic Nuclei) at distances less than 75Mpc. Their results are consistent with a GZK
suppression in the cosmic ray spectrum. Their correlation studies with extragalactic sources
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imply that the cosmic ray flux is not isotropic. Either the AGN or other astrophysical objects
with similar spatial distribution are generating the extreme energy cosmic rays. Two events
correlate with radio galaxy Cen A within less than 3◦ and several lie in the vicinity of its radio
lobe near the super galactic plane. 15 events can be correlated with Seyfert galaxies among
the closest AGN. More observational and theoretical investigations are necessary to confirm
the sites of extreme energy cosmic ray production. At lower energy the deflection of cosmic
ray protons are expected to be much more. As a result it is difficult to trace their origin.

Inside the cosmic accelerators both protons and neutrons are expected to be present, as
the shock accelerated relativistic protons will produce neutrons in various interactions like pp
and pγ. Neutrons have a short lifetime and are not expected to reach the earth from distances
of the order of 1 Mpc. However, a small violation in the Lorentz invariance (LI) can lead
to the stability of neutrons above a certain energy [10, 11]. Also, protons become unstable
and may decay to neutrons above a certain energy in this case. The prospect of exploring
the possible minute violation in LI with energetic gamma ray and cosmic ray data has been
studied in great detail by many physicists earlier [12–25]. Even extremely tiny violations
in LI can change the physics of cosmic rays drastically [26]. In the present work we have
calculated the expected number of neutron events from the closest radio-galaxy Centaurus A
(Cen A) in the EeV energy range for different degrees of violation in the LI. It is shown that
by comparing the observed event rate with our results it is possible to probe an extremely
small value of this violation.

2 Violation in Lorentz Invariance (VLI)

We briefly mention about the formalism of VLI used in the present work. The details are
discussed in the original paper [10]. The authors of this paper assumed different maximum
attainable velocities (MAVs) ca for different particles. The dispersion relation of the form
E2 = c2

ap
2 +m2

ac
4
a describes a particle of type a moving freely in the preferred frame. For the

neutron decay (n → p + e− + ν̄e) scenario the different MAVs for neutron, proton, electron
and neutrino are cn, cp, ce, cν respectively. Considering cp = ce = cν = c < cn (c is the speed
of light) and using relativistic kinematics it is shown in [10] that neutron decay is forbidden
above energy E1, whose expression is given by

E1 =

√

mn
2 − (mp + me)

2

c2
p − c2

n

≃ 2.7 × 1019

[

10−24

δ

]
1

2

ev (2.1)

Similarly protons become unstable (p → n + e+ + νe) above energy E2

E2 ≃

√

mn
2 − (mp − me)

2

c2
p − c2

n

≃ 4.1 × 1019

[

10−24

δ

]

1

2

ev (2.2)

In the above expressions δ = cp − cn denotes the extent of VLI. A small VLI can give rise
to stable neutron events as neutrons do not decay and protons may decay to stable neutrons
above energies E1 and E2 respectively.

3 Cosmic ray source and spectrum

Cen A (NGC 5128) is the most promising source for UHECRs detected by PAO. High
flux of γ-rays with energy > 100 GeV have been detected from Cen A [27–30]. Previously
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H.E.S.S [31] experiment detected gamma rays above 190 GeV from this source. The flux had
an upper limit of 5.5× 10−12cm−2s−1. This source was also observed earlier by EGRET [32]
above 100MeV. Extrapolating the spectrum measured by EGRET with spectral index 2.4
above 190GeV one obtains photon flux comparable to that measured by H.E.S.S. experiment.
More observations have been carried out on Cen A in the recent past. H.E.S.S experiment
has collected γ-ray data from Cen A above ∼ 250 GeV [33]. The data can be fitted with
photon index 2.7±0.5stat±0.2sys. Fermi Gamma Ray Space Telescope has measured the flux
F ≃ 2.3 × 10−7 ph cm−2 s−1 from this source above 100MeV. It is twice the flux measured
by EGRET [32]. In the past few years the high energy particle emission from Cen A has
been investigated in various papers [35–38]. Here we have explored the possibility of probing
VLI of the order of 10−24 at EeV energy with Cen A as a source of cosmic rays. Protons are
expected to be shcok accelerated to very high energy inside this radio galaxy. Neutrons can
be produced inside the source in proton proton or proton photon interactions. These parti-
cles decay in a short time. However, a small VLI can stop the neutrons from decaying. The
stable neutrons would be detectable by PAO or other large scale cosmic ray detectors. The
neutron flux (number of neutrons per m2 sec eV ) can be expressed as a power law in energy

dNn(En)

dEn

= An ǫnEn
−αn (3.1)

We have assumed a fraction ǫn of the total proton flux is converted to neutron flux inside
the source. These neutrons have energy more than E1 which is determined by the degree
of violation δ in LI. The shock accelerated protons may become unstable above a energy E2

due to VLI and give rise to neutrons. The neutron flux produced in this way is

dNn(En)

dEn

= An (1 − ǫn)En
−αn (3.2)

We have used the total integrated exposure [36] to calculate the number of neutron
events expected in PA detector. The integrated exposure of PAO is Ξ = 9000 km2 yr sr
during 1st Jan 2004 to 31st Aug 2007. For a point source exposure per steradian (Ξ/Ω60)
has been used where Ω60 = π sr. The relative exposure due to the angle of declination −47◦

is ωs ≃ 0.64 for Cen A. PAO has detected 2 events above 60 EeV from the direction of Cen
A. We have normalised the cosmic ray flux from the source using these two events. With
different values of cosmic ray spectral index αn and neutron production efficiency ǫn the
expected numbers of neutron events above the threshold energy E1 have been calculated.
The cosmic ray flux is not significantly attenuated during propagation due to interactions
of neutrons with the photon background as Cen A is only 3.8 Mpc away. Charged cosmic
ray particles will be deflected in all directions by the Galactic and extragalactic magnetic
fields. These magnetic fields are not known to us very well. One may try to estimate the
deflections of cosmic rays assuming the field remains unchanged over a certain length. The
angle of deflection in the Galactic magnetic field of strength of the order of a few µG with a
coherence length of order ∼ 1 kpc may be expressed as

θ1 ≃ 2.7◦
60 EeV

E

∣

∣

∣

∣

∣

∣

D
∫

0

(

dx

kpc
×

B

3 µG

)

∣

∣

∣

∣

∣

∣

(3.3)

where the total distance traversed D is about 20kpc [39]. We have assumed B = 0.36µG
in drawing figure 1. The root-mean-square deviation θ2 due to intergalactic magnetic field
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Figure 1. Deflection angles of protons in Galactic and extragalactic magnetic fields denoted by θ1

and θ2

(Brms ∼ 1nG), coherence length Lc ∼ 1Mpc travelling a distance D = 3.8Mpc is shown in
figure 1. using the expression given below.

θ2 ≈ 4◦
60 EeV

E

Brms

10−9G

√

D

100 Mpc

√

Lc

1 Mpc
(3.4)

At EeV energy the protons will be deflected by large angles as one can see from figure 1.
As a result the proton background (from all sources including Cen A) to the neutron events
from Cen A at this energy is expected to be isotropic. The number of neutrons expected in
PAO from the direction of Cen A above energy E1 is

N1 = Anǫn

Ξ ωs

Ω60

∫ ∞

E1

E−αn

n dEn (3.5)

Above energy E2 the number of neutrons from decaying protons is expected to be

N2 = An(1 − ǫn)
Ξ ωs

Ω60

∫ ∞

E2

E−αn

n dEn (3.6)

The total numbers of neutron events (N1 + N2) from Cen A expected in PAO during 1
January 2004 to 31 August 2007 have been plotted in figure 2. A variation in δ leads to
variations in E1 and E2. Figure 3 shows the variation in δ with E1.

4 Detectability of neutron events

Figure 2 shows the number of neutron events expected above energy E1 in PAO from Cen
A for the integrated exposure (9000/π)km2yr. Above 25EeV energy a few neutron events
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Figure 3. Figure shows variation in δ with E1

are expected from this source. E1 = 25EeV corresponds to δ = 10−24. More neutron events
can be collected for longer duration of observation. Hence, it is possible to probe very small
values of δ. In figure 4 the background cosmic ray flux from the direction of the source within
an area of 3◦×3◦ has been compared with the neutron flux from the source. The neutron flux
is higher than the background above 5EeV, hence it is easy to detect whether there is any
excess of events from the direction of Cen A. Here it is important to discuss about the various
possibilities. The two events correlated within 3◦ of Cen A may have a different origin. Our
analysis does not depend on the type of the source. If the Galactic magnetic field in the
vicinity of the sun is less than 0.24µgauss [40] such correlation of events is possible even with
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Figure 4. The cosmic ray flux from PAO [41] within 3◦ × 3◦ of Cen A (denoted by square points)
has been compared with neutron flux (different line styles used for different spectral indices) from
this source

protons. The positional accuracy of PAO for UHECR events is less than 0.6◦. The observed
neutron events should be coming from within this angle from their origin. The anisotropy
observed in the direction of Cen A extends to 20◦. Detection of a large number of neutron
events within 1◦ of Cen A can confirm whether there is a small VLI at EeV energy.

5 Conclusion

We have discussed about a possibility of probing small values of VLI at EeV energy using
large scale cosmic ray detectors. The two events detected within 3◦ of Cen A have been used
to normalise the cosmic ray flux from the direction of Cen A. In future if more cosmic ray
sources are identified close to us then they can be used to probe VLI in the same way. A large
number of neutron events within 1◦ of the source would be a signature of VLI at EeV energy.
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