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By observing mergers of compact objects, future gravity wave experiments would measure the

luminosity distance to a large number of sources to a high precision but not their redshifts. Given the

directional sensitivity of an experiment, a fraction of such sources (gold plated) can be identified optically

as single objects in the direction of the source. We show that if an approximate distance-redshift relation is

known then it is possible to statistically resolve those sources that have multiple galaxies in the beam. We

study the feasibility of using gold plated sources to iteratively resolve the unresolved sources, obtain the

self-calibrated best possible distance-redshift relation and provide an analytical expression for the

accuracy achievable. We derive the lower limit on the total number of sources that is needed to achieve

this accuracy through self-calibration. We show that this limit depends exponentially on the beam width

and give estimates for various experimental parameters representative of future gravitational wave

experiments DECIGO and BBO.
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Establishing the nature of dark energy is a paramount
objective of modern cosmology. A precise knowledge of
cosmic distance to sources at moderate redshifts (z & few)
is essential for success in this endeavor [1]. It has been
suggested that gravitational radiation from merging bi-
naries [neutron star (NS)-NS, NS-black hole (BH), and
BH-BH] could be a ‘‘standard siren’’ and a complementary
means (to standard candles and rulers) for probing cosmic
expansion [2–6]. Indeed, a knowledge of the underlying
physics of gravitational radiation from binaries could help
establish the luminosity distance to a NS-NS binary to a
precision of 2% (ignoring, for the time being, the redshift-
dependent error from gravitational lensing). In order to
serve as a cosmological probe however, the luminosity
distance should be known as a function of redshift.
Therefore, unlike other probes of distance, the main sys-
tematic uncertainty in this case is the identification (and
redshift determination) of galaxies hosting the binaries (see
e.g. [4–6]).

The space-borne gravitational wave observatory LISA
[7] is expected to achieve an angular resolution of about 10
(for a detailed discussion see [4]). The volume bounded by

this angle (inclusive of the redshift uncertainty from lumi-
nosity distance errors) is expected to contain roughly 30
objects at z ’ 1. The directional sensitivity of next genera-
tion gravitational wave (GW) observatories such as
DECIGO [3], the Big Bang Observer (BBO) [8], and
ASTROD [9] is likely to be even better (� few arc sec-
onds), in which case, in only a small fraction of cases
would more than a single galaxy lie within the observatio-
nal beam [10].
The main source of uncertainty in using standard sirens

to probe cosmic expansion comes from misidentifying
galaxies hosting the standard sirens. Clearly, the larger
the number of galaxies within the observational beam,
the greater the chances for this to happen. Given the
enormous potential of using gravity wave standard sirens
to determine the nature of dark energy, it would clearly be
desirable to minimize this source of systematics. One
possible approach rests in determining an association be-
tween merging binaries and the gas in the surrounding
medium. Unique signatures of an ‘‘afterglow’’ from such
an event in the electromagnetic spectrum could help in
identifying the source galaxy (e.g. [11]). Statistical deter-
mination of redshift using clustering properties of galaxies
constitute another possible approach [12].
In this paper, we present a statistical iterative method to

isolate the source of the GW signal. This formulation
assumes no prior knowledge of the relation between the
luminosity distance and redshift (DZ relation). The method
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we propose can iteratively improve upon the errors on DZ
relation. Our method is briefly summarized as follows:
Beams containing a single galaxy with redshift consistent
with the expected distance-redshift relation would accu-
rately and reliably portray the DZ relationship. We shall
call such sources ‘‘gold plated’’ (GP) following [10]. The
expected number of such sources depends crucially on
directional sensitivity. If more than one galaxy falls within
the beam we propose to rule out nonsources through an
iteratively improved DZ relation. In our proposal we do not
use other means of constraining the DZ relation such as
supernova type Ia, since supernova type Ia systematics is
likely to be far more complex than previously thought [13].
Instead, we shall use GP sources to provide an independent
approximate starting DZ relation, which we iterate upon.
To what precision this can be achieved depends upon the
details of cosmology as well the experimental parameters.
In this paper we investigate the efficacy as well as limita-
tions of this iterative self-calibration.

Redshift Error-box—The directional accuracy of a GW
signal is determined by the experimental beam width ��,
giving rise to the possibility that several sources might lie
within the beam. To single out an object as the unique
source of the GW signal we either require a smoking gun
signal or a criterion by which other objects in the beam can
be ruled out as possible sources. In the presence of statis-
tical uncertainty in DZ it is impossible to establish pre-
cisely the redshift z for a source of gravitational radiation.
One must settle instead for an uncertainty z� �za where

�za ’ �mðzÞ�ðzÞ
DL

¼ �m�ðzÞ; (1)

�ðzÞ ¼ ðd logDL=dzÞ�1, and �mðzÞ is the redshift-
dependent standard deviation in the luminosity distance
to a single source. The dimensionless standard deviation
�mðzÞ ¼ �mðzÞ=DL is partly due to instrumental noise and
partly due to weak lensing. The dominant uncertainty is
due to lensing and although lensing produces an asymmet-
ric distribution of magnifications, for our purposes we shall
assume that the distribution is described by a Gaussian
with a dimensionless standard deviation �wlðzÞ ¼ 0:042z,
derived from the results of [14]. In this paper, we also add
in quadrature a fixed value of instrumental noise �inst ¼
0:02 to the lensing standard deviation to obtain �2

m ¼
�2
wl þ �2

inst. �za also contains an important cosmology-

dependent contribution, so that the redshift error box is
finally given by (see Appendix)

�za ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

mðzÞ þ �2
cðzÞ

p
DL

�ðzÞ

¼ �mðzÞ�ðzÞ
�
1þ �2

cðzÞ
�2
mðzÞ

�
1=2

; (2)

where �cðzÞ is the standard deviation in DZ reflecting

uncertainty in our knowledge of the expansion history
and �c ¼ �c=DL.
Though multiple objects might lie within the beam, it

may still be possible, with a small enough value of �za, to
single out a source purely on statistical grounds. However,
since measurement errors on a single source are fixed, the
only way to lower the redshift error box given by Eq. (2), is
by reducing the second term in that equation.
Occupation Number—The redshift range �za together

with the beam width, ��, determine the expected number
of galaxies lying within the beam that are statistically
consistent both with the approximate DZ relation as well
as the measurement uncertainty. In order to calculate the
occupation number �n, defined as the mean number of
galaxies that satisfy this criterion, we have adopted the
number density of sources from [10,15,16]. The mean
number of galaxies in the redshift range 2�za turns out
to be

�nðzÞ ’ 8N�

hðzÞ ffiffiffiffi
�

p rðzÞ exp½�r4ðzÞ����za; (3)

where we have assumed a small �za so the linear approxi-
mation suffices. Here rðzÞ ¼ R

z
0 dz=hðzÞ is the c=H0 nor-

malized coordinate distance, hðzÞ ¼ HðzÞ=H0 and
N� ¼ 1000 arcmin�2 is the projected number density of
galaxies consistent with the Hubble ultra deep field [17].
Substituting �za from Eq. (2) we obtain

�n ¼ �ðzÞ
�
1þ �2

c

�2
m

�
1=2

; (4)

where we have defined the minimum occupation number
�ðzÞ as the value of �n when �c ¼ 0, namely,

�ðzÞ ¼ 8�ðzÞN�

hðzÞ ffiffiffiffi
�

p rðzÞ exp½�r4ðzÞ��m��: (5)

We shall assume that galaxies falling within the beam are
distributed uniformly randomly, however, at the end of this
paper we briefly discuss how the clustering of galaxies
affects our analysis. Knowing the occupation number �n,
the probability that there are k galaxies, apart from the
source galaxy, within the beam is given by PrðkÞ ¼
�nk expð� �nÞ=k!. If there is only a single object in the
redshift error box then we shall assume that it is the source
of the signal. The probability for such instances is given by
Prð0Þ ¼ expð� �nÞ. Clearly the limiting fraction of sources
that cannot be resolved statistically is 1� expð��ðzÞÞ,
which for �ðzÞ � 1 is approximately given by �ðzÞ.
Method—A GP source would measure the DZ relation

with an accuracy �m at a redshift z. Let us consider a
redshift bin, �zbin, centered at the redshift z. The total
number of sources in this bin is given by �NðzÞ ¼
N0fðzÞ�zbin, where N0 is the total number of GW sources
at all redshifts and fðzÞ�zbin is the fraction occurring in the
bin �zbin. The value of N0 (NS-NS binaries) for GW space
missions is expected to range from N0 � 103 (LISA) to
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N0 � 106 (BBO). Let us assume that there are �NGPðzÞ
gold plated sources in the bin. These sources furnish a first
estimate of the DZ relation. Since each source has a
measurement error given by �m then clearly the zeroth

error on cosmology is given by �c0 ¼ �m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�NGPðzÞ

p
.

We note that if there happen to be no GP sources in the
redshift bin�zbin then �c0 can be obtained by fitting a dark
energy model to the GP sources at other redshifts.
However, with no a priori reason to assume a given be-
havior for dark energy, we advocate this self-consistently
obtained DZ relation where each redshift is dealt with
independently.

Since we now have the zeroth order information about
cosmology we can use �c0 to calculate the occupation

number �n0 ¼ �ðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

c0=�
2
m

q
. The zeroth knowledge

of the DZ relationship resolves some sources to give the
new value of resolved sources (GP sample and statistically

resolved sources) as �Nð1Þ
resolved ¼ Prð0Þ�NðzÞ ¼ �NðzÞ�

expð� �n0Þ, and thus provides us with a first improved

estimate �c1 ¼ �m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�NðzÞ expð� �n0Þ

p
. With this refine-

ment in �c we can recalculate the occupation number at
the first iteration as

�n 1 ¼ �ðzÞ
�
1þ 1

�NðzÞ expð� �n0Þ
�
1=2

: (6)

It is clear that iterating further we shall obtain the recur-
rence relation

�n iþ1 ¼ �ðzÞ
�
1þ 1

�NðzÞ expð� �niÞ
�
1=2

: (7)

The iteration terminates when �niþ1 ¼ �ni, and therefore the
saturation cosmological uncertainty, which is the second
term inside parenthesis in the previous expression, is given
by �

�c

�m

�
s
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N0fðzÞ�zbin expð� �nsÞ
p ; (8)

where we substituted for �NðzÞ to explicitly show the
dependence of the saturation occupation number on the
bin size and the subscript s denotes saturation value.

The uncertainty decreases as �zbin increases. However,
since the bin size cannot be arbitrarily large, this ratio has a
lower bound, which we parametrize as �min

c =�m �
minð�c=�mÞs ¼ �ðzÞ, where the minimum value is
obtained by choosing the largest allowed bin size. The

occupation number in this case is given by �ns ¼ �ðzÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2ðzÞp

, and using Eq. (8) it follows that the bin size
required to achieve this accuracy is given by

�zbin ¼ exp½�ðzÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2ðzÞp �

N0fðzÞ�2ðzÞ
: (9)

Averaging sources in the bin �zbin introduces a system-
atic bias �sys

c in the DZ relation. If the bin size is small we

can assume that the sources are distributed uniformly in the
bin. By Taylor expanding the luminosity distance DL, and
taking its average over the bin we can easily obtain

�
sys
c ¼ hDLðz0Þi �DLðz0Þ

DL

’ 1

24

D00
L

DL

�z2bin; (10)

which is correct up to third order in �zbin, and hi denotes
averaging over the bin. If we demand �min

c ¼ �ðzÞ�m >
�sys
c then we obtain

�ðzÞ exp
�
� 2

5
�ðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2ðzÞ

q �

� 1

241=5N2=5
0 fðzÞ2=5�1=5

m

�
D00

L

DL

�
1=5

; (11)

where we have substituted�zbin from Eq. (9). This formula
encapsulates our main result and determines the limit of
self-calibration.
In Fig. 1 we plot �DL=DL ¼ �ðzÞ�m for BBO, assuming

an equality in the above expression, i.e. assuming that the
systematic term is equal to the random error. We have
taken a flat �CDM model with �m ¼ 0:3 for this figure.
For this plot we have taken N0, fðzÞ, and ��BBOðzÞ from
[10]. The same figure shows the accuracy obtainable for a
degraded beam by applying a constant multiplying factor
to the BBO beam value.

FIG. 1. The maximum achievable accuracy on the DZ relation
as a function of redshift using self-calibration for the BBO case.
The solid line corresponds to perfect pointing and the dashed
curve is for the BBO pointing accuracy where ��BBO is taken
from [10]. The other curves correspond to degrading the pointing
accuracy to 10��BBO, 50��BBO, 100��BBO, corresponding to
curves with increasing values of �DL=DL. The last two curves
have a region in the middle where self-calibration does not work
since the required number of sources from Eq. (12) is larger than
3� 105. The BBO accuracy is almost as good as the case for
perfect pointing, with small departures at intermediate redshifts.
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Necessary condition for self-calibration—The left-hand
side of Eq. (11) has a redshift-dependent upper bound that
we denote as bðzÞ. Self-calibration would work only if the
left-hand side is larger than the right -hand side, leading to

N0 >
1

241=2b5=2ðzÞfðzÞ�1=2
m

�
D00

L

DL

�
1=2

: (12)

If this condition is not satisfied then the bin size required is
too large and the systematic term would dominate the
random error. Therefore, in an experiment the total number
of sourcesN0 should satisfy this inequality to self-calibrate
at a given redshift. In Fig. 2 we plot this for a few redshifts
as a function of ��.

Gain factor—We now give a rough estimate of the
number of sources resolved through this method. At a
given redshift z a single source measures the luminosity
distance at a fractional accuracy �m, which we can take as
the cosmological accuracy �c, leading to the occupation

number at the beginning to be �n0 ¼ �ðzÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

c=�
2
m

p ¼ffiffiffi
2

p
�ðzÞ. To obtain the resolved fraction at the end of

iteration we shall consider the extreme case when N0 	
1, which along with Eq. (8) gives �s ’ 0, therefore the
saturation occupation number is �ns ’ 0:41�ðzÞ. Since for a
given occupation number �n, the fraction of total resolved
sources is given by expð� �nÞ, it is clear that the ratio of
resolved sources at the end to that at the beginning (of

iteration) is given by exp½0:414�ðzÞ�. Since �ðzÞ is propor-
tional to the pointing accuracy, the gain is an exponential
function of the beam size. As an example, at z ’ 1:75, for
BBO the minimum occupation number � ¼ 0:63 [18],
giving a maximum gain factor of �1:3, while for
DECIGO, assuming a beam linear size about a factor three
worse, the gain factor is about �11, showing the extreme
sensitivity of gain to the directional sensitivity.
Effect of clustering—In the discussion so far we have

neglected the impact of galaxy clustering. The effect of the
galaxy clustering can be taken into account by replacing �n
with

�n

�
1þ 1

�V

Z
�dV

�
: (13)

Here �V is the volume bounding the redshift and angular
error box (�z and ��) in the determination of the source.
� is the two-point correlation function of galaxy clustering
and the integral extends over �V.
Here we give estimates of the impact of clustering

[second term of Eq. (13)] for BBO and DECIGO configu-
rations at z ’ 2. In the approximation, valid for these cases,
in which the (comoving) linear size corresponding to an-
gular resolution l? is much smaller than the distance
corresponding to the radial distance lk of the (minimum,

i.e. when �c ! 0) redshift error, one can readily show that

��n

�n
¼ 1

�V

Z
�dV ’

�
l?

0:2 Mpc

��0:8
�

lk
300 Mpc

��1
: (14)

��n= �n ’ f1; 0:45g for the BBO and the DECIGO at z ’ 2.
Equation (14) shows that this term scales inversely with lk,
and therefore the effect of clustering would be less impor-
tant in the beginning of the iteration process when�c could
be appreciable but would be increasingly important as the
maximum achievable precision is approached.
We have shown that by iterating over a self-consistently

obtained DZ relation from resolved gravity wave sources it
is possible to improve the DZ relation and therefore isolate
those sources that initially are unidentifiable (owing to
multiple objects in the pointing beam).
However, due to the fact that in this process only the

cosmological errors are reduced, the limiting resolved set
crucially depends on the pointing accuracy at a given
redshift. We have derived analytical expressions for the
final accuracy reached on the DZ relationship as well as the
condition for successful self-calibration [Eq. (12) and
Fig. 2]. Our formulation will help future GW probes
grapple with the issue of redshift measurement uncertainty
due to the presence of multiple objects within their beam
(Fig. 1). A comprehensive analysis using simulated data to
estimate cosmological constraints arising from future GW
experiments will be presented in a companion paper.

FIG. 2. The minimum number of sources N0 required to self-
calibrate the DZ relation at a given redshift [see Eq. (12)] is
shown as a function of the pointing accuracy ��. The curves
(right to left) correspond to z ¼ 0:5, 1, 2. The value of N0 rises
steeply with the beam width since an increasing bin size, �zbin,
necessary to suppress cosmology errors, conflicts with the re-
quirement of unbiased calibration. (The latter cannot be satisfied
if most GW sources are associated with multiple optical counter-
parts in the pointing beam.)
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APPENDIX

We now derive the probability distribution function
(PDF) for the source redshift given a cosmological model
and a distance measurement to a GW source. We first
derive the general formula and then specialize to the local
approximation used in this paper.

Let the measured distance be given by dm. To quantify
cosmology errors we employ a linear model for the DZ
relation,

DLðz;hÞ ¼
XN
i

hifiðzÞ ¼ hTf; (A1)

where h are the N parameters of the model, fi are N
arbitrary functions of redshift, and we have defined f ¼
½f1ðzÞ; f2ðzÞ; . . . ; fNðzÞ�. The unknown redshift is to be
treated as a parameter of the model. The simplest choice
is fi ¼ zi�1, leading to a polynomial form for DLðzÞ. The
parameters h are not known precisely and are described by
the Gaussian distribution

PðhÞ ¼ 1

ð2�ÞN=2
ffiffiffiffiffiffiffiffiffiffi
detC

p exp

�
� 1

2
ðhT � hT

0 ÞC�1ðh� h0Þ
�
;

(A2)

where C is the covariance matrix, obtained by fitting the
model to the resolved sources (or to other data sets), and h0

are the best fit parameters. We employ bold lower case
letters to denote column matrices and bold capital letters to
denote second rank matrices. Employing the Bayes theo-
rem we can write down the posterior probability for the
parameters of the model as

Pðz;hjdmÞ / Pðdmjz;hÞPðhÞPðzÞ; (A3)

where PðhÞ is the prior PDF for the parameters h given by
Eq. (A2), the prior PðzÞ is assumed to be flat, and

Pðdmjz;hÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
�m

exp

�
�ðdm � hTfÞ2

2�2
m

�
: (A4)

The PDF in Eq. (A3) is a function of redshift z and h,
therefore the posterior PDF for the source redshift can be
obtained by integrating over h

PðzjdmÞ /
Z

Pðdmjz;hÞPðhÞdNh; (A5)

which can be expressed through variables g ¼ h� h0 and
� ¼ dm � hT

0f as

PðzjdmÞ /
Z
exp

�
��2�2�gTfþgTfg

2�2
m

�1

2
gTC�1g

�
dNg;

(A6)

where the coefficients that do not contain z and g have been

dropped, and we have defined a second rank matrix f ¼
f 
 f. If we define a matrix S ¼ C�1 þ f=�2

m then this
equation takes the form

PðzjdmÞ /
Z

exp

�
��2 � 2�gTf

2�2
m

� 1

2
gTSg

�
dNg: (A7)

Translating the coordinate system in the parameter space
g ¼ uþ u0, where u0 is such that Su0 ¼ �f=�2

m, we
finally obtain

PðzjdmÞ /
Z

exp

�
1

2

�
� �2

�2
m

þ �

�2
m

uT
0f� uTSu

��
dNu:

(A8)

Carrying out the integration and dropping all terms that do
not depend on the redshift we obtain

PðzjdmÞ / detðSÞ exp
�
� �2

2�2
m

�
1� fTS�1f

�2
m

��
: (A9)

Recalling that � ¼ dm � hT
0f, we find that the redshift

probability distribution is centered at the redshift predicted
for the distance dm by the best fit model dðz;h0Þ. Since the
functions f are redshift dependent, the precise behavior of
this function is complicated. PðzjdmÞ can be normalized in
the range z ¼ 0 to z ¼ zmax, and would, in general, pro-
duce an asymmetric distribution, due to the manner in
which the cosmological errors scale with redshift.
Local approximation—Since the PDF peaks at � ¼ 0,

we can define a redshift z0 through dm ¼ hT
0fðz0Þ. If the

cosmology is determined precisely then we can assume the
redshift PDF to decline rapidly away from z0, and therefore
we can replace hT

0fðzÞ ¼ hT
0fðz0Þ þ hT

0f
0ðz0Þðz� z0Þ, im-

plying � ¼ �hT
0f

0ðz0Þðz� z0Þ. Then, at the same level of

accuracy we can replace f � f0 ¼ fðz0Þ in fTS�1f. To
evaluate fT0S0

�1f0, we need an expression for S0
�1.

Noting that F0 is a rank one matrix, we have [19]

S 0
�1 ¼ C� 1

1þ g

CF0C

�2
m

; (A10)

where g ¼ trF0C=�2
m. Noting that �2

c ¼ trF0C, it can be
readily shown that

f 0S0
�1f0 ¼ �2

m�
2
c

�2
m þ �2

c

: (A11)

The redshift probability distribution function can be now
written explicitly as

PðzjdmÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
�2

z

exp

�
�ðz� z0Þ2

2�2
z

�
; (A12)

where �z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2

m þ �2
cÞ

p
=D0

Lðz0Þ.
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