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Preface

There are very few general results in statistical physicglvare valid for systems far
from equilibrium. Among these are the non-equilibrium fladion theorems which put
conditions on the probability distribution of entropy pumtion in non-equilibrium systems.
Another is the Jarzynski equality, which relates the noaHgaium work done on a system
to equilibrium free energy dierences. Unlike linear response theory, these relatioms ar
valid for systems arbitrarily far away from equilibrium. @se relations are exact no matter
how far the system is driven out of equilibrium and are inchejsant of the rate and strength
of perturbation. In the first part of the thesis we look at s@wamples of non-equilibrium
processes in the context of these new results.

A class of far from equilibrium systems are the so calledhettenodels and microscopic
models of pumps and engines. These models exhibit net edecnsport of particles in
the system in the presence of noise and driving and in thenabs# any applied external
bias. The first such construct of a miniature molecular emgias by Feynman. This is the
Feynman ratchet and pawl engine, ( discussdeeymman lectures on Physigswhich was
first proposed as a microscopic mechanical model to exphamptoblem in constructing a
Maxwell's demon. Similar models, based on the same priacipave recently been stud-
ied to understand the working of molecular motors and pumysalogical systems. These
molecular motors ( e.g. kinesin ) move uni-directionallytba microtubules inside biologi-
cal cells. Also, molecular pumps, like sodium or potassiwmps, maintain active transport
across membranes against a concentration gradient. Treteesrand pumps are in a very
noise environment but still they exhibit net uni-direc@bmotion. The second part of the
thesis includes studies on some new models of/padicle pumps and engines.

In chapter 2 of the thesis we look at the validity offdrent fluctuation theorems for a
simple system of a single Ising spin in contact with a heal laaid driven by an external
time dependent magnetic field. We explicitly compute théritstion of the work done in
driving the spin over a fixed time interval. The time evolatiaf the spin is modelled using

Glauber dynamics. Monte-Carlo simulations are performefing the work distributions

Vil



at different driving rates. We find that in general the work-disttitns are broad with a
significant probability for processes with negative diasgal work. The special cases of
slow and fast driving rates are studied analytically.

In chapter 3 we look at some simple models of heat pumps. lsletivby recent studies on
models of quantum particle and heat pumps, we study sinldasical models and examine
the possibility of heat pumping. Unlike many of the usuath&t models of molecular
engines, the models we study here do not have particle ansye consider a two-spin
system and a coupled oscillator system which exchange hdanwltiple heat reservoirs
and which are acted upon by periodic forces. The simplidityusr models allows accurate
numerical and exact solutions and unambiguous interjpoetaf results. We demonstrate
that while both our models seem to be built on similar pritespone is able to function as a
heat pump ( and also as an engine ) while the other is not.

In chapter 4 we look at a model of a particle pump. We study ansgtrnc exclusion
process in which the hopping rates at two ( or more) choses sdry periodically in time
and have arelative phasdtérence. This mimics a colloidal suspension subjected treat
space and time dependent modulation of tlfiudion constant. The two special sites act as a
classical pump by generating an oscillatory current witbrzeroDC value whose direction
depends on the applied phaséelience. We analyze various features of this model through
simulations and obtain an expression for € current via a novel perturbative treatment.

This work is done in collaboration with my thesis superviBoof. Abhishek Dhar and
with Prof. Arun Jayannvar, Institute of Physics, BhubaneshWwr. Kavita Jain, INCASR,

Bangalore and Dr. Abhishek Chaudhury, Raman Research InstXaigalore.
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1 Introduction.

Any system in equilibrium can be fully described by the Bolt&am-Gibb’s theory of en-
sembles. For a system in contact with a heat bath, the pipase-probability distribution
is given by the canonical distribution. This expressionasngeneral and can be applied to
any given equilibrium system. One can then calculate thitjparfunction and from this the
free energy of the system. From this all equilibrium projgsrof a system can, in principle,
be calculated. In practice of course this can gdlilt and an explicit calculation of specific
properties may not always be possible.

There is a large class of phenomena which cannot be desdrjbie Boltzmann-Gibb’s
ensemble theory. These include non-equilibrium phenonermgassy systems, granular
material, electrical and thermal transport. The reasaatshie equilibrium description breaks
down in these systems can be various: for example there may Hamiltonian description;
or the Hamiltonian is time-dependent; or relaxation timesextremely slow, etc.

There are few theories, such as those of non-equilibriutmtbdynamics and theory of
linear response, to describe some of these non-equilipphenomena. However, they work
only in the linear regime where the perturbed system is 8}ighut of equilibrium. These
theories thus have a very limited range of applicability.efiénis no general framework to
treat non-equilibrium phenomena which is valid for systdarsfrom equilibrium. In the
absence of a general theory for such systems, one approtxtaigee simple but nontrivial
model systems and understand their behaviour from firstiples.

In the last decade the situation has changed somewhat. ICgetaeral relations have been
discovered which are valid independent of how far a systedrii&en out of equilibrium.

These results include (1) the Jarzynski equality-[8] and (2) the fluctuation theorems



[7 — 17]. These results are now being extended and shown to i fealmany diterent
systems, dynamics ( deterministic as well as stochastia )emsembles. They have been
verified for a variety of systems theoretically [+80] as well as experimentally [21 24].
After the work by Crooks [10] and Seifert [11], it is now undexsd that many of these
relations are closely related and are the manifestatiores igle theorem, the theorem
which connects the path probability of a thermostattedesygb its time reversed trajectory.
In Sec. (1.1) we will briefly describe these results on noaHdaium fluctuations and state
the new results obtained by us.

Another class of problems in non-equilibrium physics, vitheannot be treated by con-
ventional theories, is that of ratchet systems and of méde@umps and engines. These are
systems which are driven out of equilibrium by some extegpashmeter and exhibit many in-
teresting phenomenas like uni-directional current, rasoes etc. Among their applications
it has been proposed to model the behaviour of molecular nii@ied pumps in biological
systems. There have also been many studies on the quantsiorvet such particle and heat
pumps. So it is interesting to look at whether the quanturareatf a system is an essential
requirement. In Sec. (1.2) we will briefly describe some knoasults on these systems and

discuss our contribution.

1.1 The Jarzynski equality and the fluctuation theorems

Consider a system in contact with a heat reservoir. Let somenper,4, for example
the external field on a magnet or the volume of a gas etc. bed/aritime from an initial
point 1, to a final pointig ( in general there can be many time-dependent paramkters
{11, A2, ......, An} In the system ). With this parameter variation, work is dondhe system.
Then, conventional thermodynamics tells us that the worled, on the system is always

greater than or equal to the free energy ( Helmholtz freegseifference. Thus:

W > AF, (1.1)



X(t)

Figure 1.1: A polymer being stretched by an optical trap pioaée

where,AF = F(4g) — F(44). This result basically follows from the second law. The &gy
holds for a quasi-static, reversible process. For exampiesider a system as shown in
Fig. (1.1). This is an example of a polymer placed in a batemiperaturd and stretched
by an external time-dependent for€@) ( thusA(t) = f(t) in this case ) by means of, for
example, an optical trap. The process is done in the follgwiay. At timet = 0 the system
is in equilibrium at a temperature. Then the force is applied from timte= O tot = 7.
This stretching process is done for large number of timesryetime starting the system
in equilibrium and with the force following the same protbddt). If such a process is
done at a finite rate, then since we start witlietient initial equilibrium conditions and also
because of the stochastic dynamics, we will géiedent amount of work done in fiierent
realizations. Hence we can find the distribution of w&®V). Though the average work
(W) is always greater thanF for all rates, the distribution may have a large negative. par
This negative part implies that for some realizations ofekgeriment, system is doing work
on the external agent while extracting heat from the reservbis contribution can be large
if the system is non-thermodynamic, and can be viewed asigatviolation of the second
law. This observation of apparent violation of second lagoaitartled early observers of
Brownian motion. In his book [2], Perrin discusses this poidere we give a paragraph
from the same book:

It is clear that this agitation ( of a Brownian particle ) is nobntradictory to the principle



of conservation of energy. It is gigient that every increase in the speed of a granule is
accompanied by a cooling of the liquid in its immediate nbmlrhood, and like wise every
decrease of speed by a local heating, without loss or gain eifggn

Perrin also stresses the following point that the Browniariono( or motion at small
scales) is not reconcilable with rigid enunciations togjérently given to Carnot’s principle,
because in a given realization a particle can spontanealasiyork at the expense of the
surrounding medium ( heat bath ).

So it must not any longer be said that perpetual motion of de®id sort is impossible,
but one must say: “ On the scale of size ( macroscopic ) whickrests us practically,
perpetual motion of the second sort is in general so insicguifi that it would be absurd to
take into account”

But at the microscopic scales this fluctuations about the progtable behaviour are im-
portant and their study might provide us with a better undeding of the second law.

Let us now go back to our discussion of the Jarzynski equallfg consider a general
Hamiltonian of a system given by, (X, p), wherex = {Xq, X, ....Xa} andp = {ps, P2, ... Pn}
are usual phase-space variables aimlthe parameter which is varied in time frotp to Ag
in time 7 following a fixed protocoli(t). Then Jarzynski considers the following definition

of work done on the system:

(T oHuX, p) ., [T OHa(X, p) da
W [ D) [T MR 8L w2)

We take an ensemble of such processes, with initial comditior the system generated
from a canonical distribution at temperatdreThen the work don&V; can be calculated for
every trajectory in the phase-space given x{§)( p(t)). This work is a fluctuating quantity

because of two reasons:

1. The initial conditions are generated from a canonicdtibistion, hence we get ffer-

ent work for diferent initial conditions.

2. The heat bath generates stochastic forces, which cagseaflions in the phase-space



paths taken by the system.

It was proved by Jarzynski, that the distributiB(\;) satisfies the following equality:

(eXp—BW)) = f AW expl—BW; | P(Ws) = expl—BAF ), (1.3)

wheres = 1/kgT. We now give a proof that of the Jarzynski equality, for theecarhere the
system is in contact with a heat bath at time 0 and in equilibrium, but the heat bath is then
removed during the driving process. Then the evolution efdisstem is deterministic and
described by the phase-space trajecta(t)( p(t)) which evolves according td,(x(t), p(t)),

with A taken froma, to Ag in time 7. Let the ensemble of such trajectories be described by

the initial phase-space density given by:

pax(x(0). p(0)) = % expl—BH..(x(0), p(0))}, (1.4)

whereZ, = fexn—,BHA} dx dp. For a particular phase-space trajectory starting from
(x(0), p(0)) at timet = 0, the work done in time is given by Eq. (1.2). The probabil-

ity of the initial state is,,(x(0), p(0)). Hence we get the following average:

(expl—pW;}) = f P (X(0), p(0)) exp—BW,} dx(0) dp(0). (1.5)

Since the system is isolated, we can widid/ot = dH/dt, and hence the work done,
Eq. (1.2) on the system is nothing but the change in the totatgy of the system, i.e.,
W; = H,,(X(7), p(r)) — H,,(X(0), p(0)). This gives us:

(exp{—BW;})
= % . exp{—BH ., (x(0), p(0))} expl—=B[ His(X(7), p(7)) — Ha,(x(0), p(0)) ]} dx(0) dp(0).

(1.6)

Using Liouville’s theorem, giving conservation of phagmse volume we getx(0) dp(0) =

dx(7) dp(r) and the above equation then gives:

Z
(XP—W,) = Zi f eXp-BH(X(7). P} o) dp(r) = 7 (1.7)



SinceF, = —kgT In(Z,), we then get the Jarzynski equality, given by Eq. (1.3)sHugjuality
can also be proved for the situation where system remairanitact with the heat bath during
the driving process. In this case, the system and the resaneconsidered to be a larger
isolated system, with Hamiltonian given b, = H, + Hg + h;, whereH, is the system
Hamiltonian,Hg is the reservoir Hamiltonian ard is the coupling between the system and
the reservoir. The result in Eq. (1.3) was proved for weakpting between the system and
reservoir in [3] then for the general case in [6]. This relatcan also be proved for discrete
Markovian process [10], with heat bath dynamics and for lesmmgdynamics [15] ( we will
outline this proof later in this section ). It is remarkabtat the result in Eq. (1.3) is valid
independent of the rate at which the external parameterisdzal he only requirement is that
the system should be in the equilibrium when the driving psscstarts. Unlike Eq. (1.1),
this is anequalitywhich relates a non-equilibrium quantity to an equilibridiree energy
difference.

We will now give a simple example of a driven system with Larigelynamics, where
one can explicitly calculate the work distribution functiand verify the Jarzynski equality.
Consider a Brownian particle in a harmonic trap, which is movéd a constant velocity.

The Hamiltonian of the system is given by:

2
H= %n - % k(x - a(t))%, (1.8)

wherea(t) = utis now the external control parameter. We consider the daerped limit in

which case the inertial term drops out and the Langevin éguaf motion is given by:

yXx = —k[x=a(t)] +n(t), (1.9)

wheren(t) is a Gaussian white noise, satisfyifg(t)) = 0 and{n(t)n(t")) = 2kgTys(t — t).

Using the Jarzynski definition of work, Eq. (1.2), we get foe ivork done in time:

fﬁddt:—kfd[x—a(t)]dt
0o Oa 0

5 a0 -0 -k [ axa (110

W;



The general solution of Eq. (1.9) is given by:
1 (1 :
X(t) = e @Mty + = f e W D [ ka(t') + p(t')] dt. (1.11)
Y Jo

We choose = x(t = 0) from the initial equilibrium distributiodP(X,) = exp{—BHq(0)}/Za(0)-
It can be seen from Eqg. (1.10) thag is linear inx, while x itself is linear in bothx, and
n(t) which are Gaussian variables. Hence it follows that th&itigion of W; will also be

Gaussian. We thus just need to find the first and second moroktits distribution. We

have:
W; — (W;))?
P(W;) = exp| - (32—2”) | (1.12)
271'0'\2/\/J O-WJ

Using Egs. (1.10) and (1.11), itis straightforward to cltesW;) ando, = (W;—(W5))?),

where we note that..) denotes an average over initial conditions as well as ovisendVe

find:
(Wy) = yur[l+ % (eWnr _1y],
o2, = 2k T yiPr[1+ % (€ 7 _ 1) = 2ksT(W). (1.13)

For this particular Hamiltonian given by Eq. (1.8), it is gds show that the free energy is

independent o and hence\F = 0. Using Egs. (1.12, 1.13), we immediately get:
(exp—BW;}) = 1 = exp—BAF}. (1.14)

Thus we have verified that the Jarzynski equality Eq. (1.3aissfied.

Now we will discuss the fluctuation theorems which are sonawiore general than the
Jarzynski equality and give information about the fluctuadi of the entropy production in
a non-equilibrium system. In fact we will see that the Jaskyrequality can be derived
from one of the fluctuation theorems. There are various @ass0f the fluctuation theorems.
All of them start with some definition of the entropy produc®dh a particular realization

of a non-equilibrium process in time As discussed earlier ( for the work dow¢), we



expect this entropys to be also a fluctuating quantity with a distribution, 8§5). The
transient fluctuation theorem (TFT),[B2 — 15], states that for a system initially in thermal

equilibrium, P(S) satisfies the following equation:

PO) _ sk
PS) - evke, (1.15)

This result is valid for any time interval Another version of TFT, due to Crooks [10] gives:

Pe(S) sk
—PR(—S) =e"e, (1.16)

wherePg(S) andPg(S) are the probabilities in forward and time reversed proegssspec-
tively. This theorem is also true for all times The steady state fluctuation theorem (SSFT)
looks at the case where the initial state is chosen from aeqpiilibrium steady state, rather
from an equilibrium state as in TFT. In this case, the statérokthe theorem as obtained by

Cohen and Gallavotti [9] is

Plo) .~
o) =€ (1.17)

whereo = S/(kg7) is rate of entropy production and one looks at the limib co.

Here we will give a proof of Crooks’ fluctuation theorem for agle particle following
Langevin dynamics. Then we will also show how to obtain theylaski equality from this
theorem. Consider a Brownian particle in the presence of arrmadtpotentialJ(x). The

Hamiltonian of the system is given by:

p2
H =S +U(X). (1.18)

This particle is driven by an external time-dependent fdrige doing work on the particle.
We also assume that the system is in contact with a heat b&maeraturd and it's time

evolution is described by Langevin dynamics. The Langeguegion of motion is thus given



by:

ou

OH;
—& + f(t) —yx+n(t) = —6——7X+n(t)

— f(t)x, (1.19)

mx

with H;

wheren(t) is a Gaussian noise satisfyikg(t)) = and{n(t)n(t')) = 2kgTyé(t — t’). For such
stochastic systems the proof of Crooks’ fluctuation theorachthe Jarzynski equality can
be shown to follow from the principle of microscopic revéibiy. For discrete systems,
evolving for example through Monte Carlo dynamics, this @pie has been proved by
Crooks. Here we give a proof for Langevin dynamics [15].

We first state the principle of microscopic reversibility. rGaler the evolution of the
system from time = O tot = 7, through a path in phase-space given{kft), p(t), f(t)}.
This path will correspond to a particular realization of tfwser(t). The probability of this

path is then given by:

1 P ,
Ty fo n? dty = N exp{ - 4kBT7 f ( i+ 2 f(t) +yx)? dt},

(1.20)

P, = N exp-

where N is a normalization factor. Now consider the time reversegettory given by

{(X(@®), p'(t), f'(t)} = {X(r = 1), —p(r = t), f(r — t)}. The probability of this path is:

P. = N exp{—4ij anf dt} = N exp 4kBTy f( mx’ +—U - f'(t) + yX )Zdt}
= N exp|{- 4kBTy f(mx+ — - f(t)—yx)?dt}. (1.21)

We then get after some simplification:
% = exp f (—yx+mn) x dt} =exp —BQ}, (1.22)

whereQ = fOT(—yX+77) x dt, is the amount of heat transferred from the heat bath to tstesy
in time 7. The identification ofQ as heat transferred follows from the fact thaik + n) is

the force from the heat bath on the patrticle.



Eq. (1.22) is the principle of microscopic reversibilityhi principle is similar to that of
detailed balance principle. The principle of microscomearsibility relates the probability
of a specified path in phase-space to the probability of the tieversed path. The detailed
balance condition refers to the probability of transiti@tvieen two points in phase-space
sayC andC’ and states tha®(C — C’) = P(C’ — C) e#[E€)-EC@I and does not make
reference to any specific path in phase-space.

Now we proceed to prove Crooks’ fluctuation theorem. Follgv@rooks we will first
motivate the definition of the entropy producél, for a given trajectory. This entrop$
consists of two parts: a contribution from change in entropthe bath which is-3Q and
another contribution coming from the change in entropy efdiistem. The entropy change
of the system is found in the following way. Let some paramé{#), be switched from
an initial valuefy = f(0) to a final valuefg = f(r). Let the equilibrium distributions
corresponding to the parametdgsand fg beps, andp¢, respectively, wherp; = e#H1/z;.

Then the equilibrium entropy of the ensembile is given by:

S = ks f pi(% p)Inpi(x p) dx dp (1.23)

One can think of-kg In p¢(x, p) as the entropy of a micro-state and the change in entropy of
the system is given bykg Inpt, + KgInps,. Thus for a given path, Crooks’ definition of the

total entropy generated is:

S/kB = lnpfA - Inpr _ﬁQ (124)

Then Pe(S), the probability of entropys generated in time, in time forward process is

given as:

P:(S)

f D[, p] dX(0) dp(0) dx(r) dp(r) p, P+ 5(Sk — S)

fD[X, pl dx(0) dp(0) dx(r) dp(x) py, P- €¥?5(Sk - S),  (1.25)

whereSk is the entropy generated for a given forward trajectory Bfxd p] denotes a sum

over all pathgx(t), p(t)} between{x(0), p(0)} and{x(r), p(r)}. Also from Eq. (1.24) we can

10



write pg, €79 = e5F/ke p, . Note that under time revers@lchanges sign hence we can write

Sr = —Sg. Substituting these relations in Eq. (1.25), we get:

Pe(S) = f DIx, p] dX(0)dp(0) dX(7)dp() pr, P- &5/ §(Sg + S) = €% Pg(-S),

(1.26)

thus proving Eq. (1.16).

Now we show how the Jarzynski equality can be derived fromGhmoks’ fluctuation
theorem. To do this we note that, = exp(—BH:,}/Z:, andps, = exp—BH1,}/Zs, , Where
Hi(x, p) = p?/2m+ U(X) — f(t)x. This implies, using Eq. (1.24):

S/ks

IBHfB + InZ(fB) - ﬁHfA - lnz(fA) - BQ

_ﬁ (FfB - Ff/.\) + ﬁ (HfB - HfA) - ﬁ Q9 (127)

where,H¢, andHy, are initial and final Hamiltoniang;;, andF+, are initial and final free

energies. Using the equation of motion Eq. (1.19) and theidiefn of H¢ (X, p), it is easily

seen that:
dHi(x,p)  dHi(X%,p) = dQ
a0 = p + it (1.28)
Which then giveds, — H;, = W; + Q. Hence from Eq. (1.27) we get:
S/kB = —ﬁ AF + ﬁWJ = ﬁWd, (129)

where we have definatly = W;—AF as the dissipated work. Thus from the Crooks’ identity

we have:
Pr (Wd) egwd
— = : 1.30
Pr(—Wa) (1.30)
This is the Crooks’ fluctuation theorem for work distributiand from this we get:
f Pe(Wy) e dwy = f Pr(-Wy) dW; = 1. (1.31)
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Thus

(exp—-BWy}) = (exp(—B(W; — AF)}) = 1, (1.32)

which is the Jarzynski equality in Eq. (1.3).

Let us see the validity of this Crooks’ fluctuation theorem tloe example we consid-
ered previously, namely a Brownian particle in a moving harmdrap. In this example
we proved that the distribution of woM/; is Gaussian. For Gaussian distribution it can
be shown that [15] the distribution for forward trajectd®y(W,) is same as that for time
reversed trajectoryPr(W;) and therefore the Crooks’ fluctuation theorem also imples t
transient fluctuation theorem. Sing& = 0 for this system, dissipated wo¥k; is nothing
but the Jarzynski workV;. Hence from the distribution given in Egs. (1.12) and (1,13
get:

P(W;) 2 (W) W,
pwy

W;

| =™, (1.33)

which is the transient fluctuation theorem.

Contribution of thisthesis: The fluctuation theorems have been proved for a large class
of systems. However, their general validity has not beeabdished and is still an open
guestion. Here we look at the validity of these relationsnely the Jarzynski equality and
the fluctuation theorems, for a single classical spin in tlies@nce of a time-dependent mag-
netic field and where the dynamics of the spin is modeled bylég#adynamics. Also, we
note that the Jarzynski equality and the fluctuation thesram general relations satisfied by
the probability distribution function of some non-equiliom quantity like work, and do not
make any reference to the actual form of these distributidhere have been very few earlier
studies which have explicitly looked at the form of the disition functions, except in linear
systems where the distributions are Gaussian. We haverperibMonte-Carlo simulations
to obtain the distributions for fferent driving protocols such as ramped magnetic field and
periodically varied fields which can be symmetric or asynrioetn general we find that the

distributions are broad and have non-trivial forms. In s@pecial limits, namely fast and
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slow driving rates we show that the work distributions carabalytically calculated. We
verify that Crooks’ fluctuation theorem is always satisfiedleithe usual TFT and a steady

state version is not.

1.2 Ratchets, heat engines and molecular motors

Ratchet models have been studied for a long time to examineditested motion occurs
in non-equilibrium systems even in the absence of any neteak bias. Among its appli-
cations it has been proposed that Brownian ratchets coulddera possible mechanism of
transport of motors in biological cells. An example of a noollar motors is kinesin which
moves uni-directionally on microtubules inside the cells@molecular pumps, like sodium
or potassium pumps maintain active transport across merabragainst a concentration
gradient. Note that these motors and pumps work in a verymrigironment and still they
exhibit directed motion. It is thus of interest to understaime functioning of these highly
complex systems by studying simple microscopic models.his ¢ontext several ratchet
models like flashing ratchets, rocking ratchets, corretatatchets, frictional ratchets etc.
have been proposed [75]. In all these models one tries tomet motion, by combining the
effects of thermal ( or a-thermal ) fluctuations, spatial or terapanisotropy and external
non-directed driving. In some cases, the system is in comidls several thermal baths (
thermal ratchets ) at filerent temperatures. One of the first example of a ratchetfecin
Feynman'’s ratchet and pawl machine [49], where the mackifkept in contact with two
baths at dferent temperatures, and is able to extract work from the tnaasferred. In
many of these models, one is interested in the dependenbe pftticle current on system
parameters like temperatureffdsion constant, amplitude of external driving etc. Also one
is interested in finding out thdfeciency of these motors, a question which is of obvious prac-
tical interest. Many studies have been done to understarse thspects [64 66, 79]. The
efficiency has mainly been studied as a function of temperandexternal load in rocking,
frictional ratchets. There have been lot of studies on imipigpthe dficiency of such ratchet

models. It turns out that thidfeciency is small due to the non-equilibrium and irreversible
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nature of the system. Questions like whether irreversjbdian be suppressed, and whether
a system can be made to achieve Carfiaitiency, have also been studied [69, 74]. To study
efficiency of such ratchets models one usually uses the methstdiastic energetics de-
veloped by Sekimoto [64]. In this framework all the quaestiike work done, input energy,
output energy etc. can be understood and computed by theelzargguation approach.

In the following sections we discuss a few ratchet modelsbéggn with the well known
Feynman'’s ratchet and pawl model and then we look at some otbdels of externally

driven ratchets, namely flashing, rocking and inhomogeseaichets.

1.2.1 Feynman’s ratchet and pawl model

In this section we will look at a model discussedHeynman lectures on Physics, Vol. 1
This model was devised to understand, from a molecular atikipoint of view, how much
maximum amount of work could be extracted from a heat engisewe know from ther-
modynamics, there is a maximum limit to thiffieiency, given by the Carnotffeciency.
Feynman was trying to understand this through a microsamgichanical model and using
statistical mechanics. Feynman'’s ratchet and pawl desis@own in Fig. (1.2). This con-
sists of two compartments containing gases at temperaityraad T,. The compartment
(1), at temperaturd@,, contains vanes which are able to rotate freely in both toes. The
compartmentl(), at temperaturd,, contains a ratchet and a pawl as shown. This ratchet
with the pawl ( with a spring ) pressing on its teeth isemymmetricobject. With the pawl
pressing on it, the ratchet can move only in one directiore fEtchet and the vanes are con-
nected by a rigid rod. Let us consider a situation where dugliémperatures are same, i.e.,
T, =T, = T. In compartmentl(), gas molecules bombard on the vanes and make it rotate
randomly. When the vanes try to move in one direction it isvedid but the other direction
appears to be forbidden due to the presence of ratchet and@avhich it is connected.
Thus we should see the vanes moving only in one directionfatbad moves up. It appar-
ently looks like we get a directed motion out of random motiothermal equilibrium. The

flaw in above argument lies in the fact that, in our analysisiasen’t considered the motion
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(1) Axle and wheel

/

Load \.fa'ne

Figure 1.2: Feynman’s ratchet and pawl! engine.

of the pawl at all. Just as the vanes are getting kicks frongésemolecules, the pawl in the
other compartment is also getting bombarded by the gas meem its compartment. Due
to these kicks the pawl could be pressing against the ratotuieit can also get lifted above
the ratchet once in a while. At this particular instant wheapawl is lifted, if vanes get the
kick in other direction ( so calletbrbidden then the ratchet is free to rotate. Thus we can
see that in fact there can be motion in both the directionsiceléf we look at the load tied
to the rigid rod, we will see it moving up and down at varioustances, but on an average
there will be no net motion.

Now let us see what happens when the temperaturesféeectit. LetfT, > T,, that is the
pawl is colder than the vanes. In this case, Feynman showditieated motion is possible.
Roughly the argument is as follows. The probability of a famvenotion, by one tooth of
the ratchet is~</%T:, wheree is the energy required to lift the pawl. On the other hand the

probability of a reverse motion is</*¢T2, Hence, as the rate of these jumps are no longer
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equal, whenT, > T,, there can be a net forward motion of the ratchet. This carskd to
do work, thus working as an engine.

Feynman then argues that in the reversible mode of operaliemfticiency of this model
reaches a Carnotieciency. In this analysis there are some flaws, which weretgdiout by
Parrondo [50] and Magnasco [51]. The point of their criticizas that, this system unlike
other usual heat engines, is in contact with two heat bathwatdifferent temperatures
simultaneouslythus it can never work in a reversible way.

Actual analysis, of the Feynman’s ratchet and pawl systenstaut to be quite dicult,
so diferent models have been proposed to model this engine Bf. A simple way of
modeling is that given by Magnasco [51]. Consider a systerh twib degrees of freedom,
x andy, wherex is a cyclic coordinate representing the ratchet motion yargpresenting
the pawl. These two coordinates are in contact with heatsbatdiferent temperaturel,
andT, respectively, corresponding to the two compartments waihig Feynman’s model,
and modelled by Langevin equation. An asymmetric periodieptial U(X,y) is included
to represent the asymmetry and periodicity of ratchet t@with the interaction of ratchet
and pawl degree of freedom. When the pawl is pressing aga@satchet, this potential is
infinite. For a particular choice df(x,y) considered by Magnasco [51], the system works
as an engine depending on the two temperatures, similanyjionfraan’s model. Also it was
shown that the ficiency of this model is quite low, and it doesn’t reach Carrificiency.

In such devices it is important to note the following poinss difference between such
microscopic engines and thermodynamic engines like Camgihes is that herefiects of
thermal fluctuations are important. The second importafiiem@ince is that the system is
simultaneously in contact with two (or more) heat baths fiedent temperatures and hence

is essentially always a non-equilibrium system.

1.2.2 Other ratchet models

In the last section we discussed the ratchet and pawl modehwsan example of an engine

driven by temperature flerences, with no external driving. Work is extracted sdiedyn the
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heat baths at efierent temperatures. There are other class of ratchets wherdernal time-
dependent driving drives the system into a non-equilibrateady state, and useful work is
done. These models usually look at particle transport. &l snodels the general situation
is as follows. Consider a Brownian particle placed in an asymmgeriodic potential such
as shown in Fig. (1.3). Then, even if the potential is asymicighe system equilibrates at
the temperature of the bath and reaches Boltzmann distibut this equilibrium situation
there will be no net particle current. Thus we need to makeyiseem non-equilibrium, and
this can be done by various means and below we will discusg #sxamples.

I. Flashing ratchet: Suppose now that the asymmetric potential is made time e
[55]. This will drive the system into a non-equilibrium stand in such a situation we can
have a uni-directional current in the system. In generah susystem can be described by a

Langevin equation as follows:

mi= -20%0 i, (1.34)

where,m is the mass of the particle, is the dissipation in the bati)(x, t) is the external
asymmetric time-dependent periodic potential. For flaghaitchets one taked(x,t) =
U(X)f(t). Also n(t) is the noise due to the heat bath. This noise is usually takdre
a Gaussian white noise satisfyidg(t)) = 0 and{n(t)n(t')) = 2kgTydé(t — t’). A simple
example of a time-dependent potential is one shown in Fi8).(1n this case this potential
is switched on ( for timd, ) and df ( for time Tyt ) and this is repeated periodically.
When the potential isf® ( during To¢¢), then particles are free toftlise. Suppose we
choose,To¢r ~ X2/2D, whereD is the difusion constant. Then, during this time, many
particles starting from close to the potential minima woldde difused to the peak on the
left hand side while few particles would have reached thé peathe right. Now when we
switch on the potential, the particles on the left will sldi@vn the slope to the next minima
while those on the right return to the same minima (see Figl)).1 Hence we get a net
motion to the left. It is important to note thate require djfusionin order to get a directed

motion.
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Figure 1.3: Partd) of the figure shows a saw-tooth potential, an example of gmasetric
potential. Partl§) shows a switching function used to generate a time-depgnde
potentialU;(x) = U(X)f(t), whereV(x) is as given in partd). For timeT,,
potential in on and for timd,¢¢, U(X) = 0. Such a driving can lead to an uni-
directional particle current.
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Figure 1.4: Brownian particles are trapped in a periodicjrasgtric potential that can be
turned on and . The random dfusion when the potential isflois converted
into net motion to the left when the ratchet is switched on.
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Figure 1.5: A rocking ratchet model where the external fascearied periodically in time.
Because of the asymmetry of the potential, the situatiprs(not same as that of
(©). In this case we get a motion in the direction of steepereslop

Now suppose there is a gradient in the potential (which ogpte current, usually called
asload). Then till some maximum load called atalledload, the particles are able to move
against this gradient and thus useful work can be done.

I1. Rocking ratchet: In the case of flashing ratchets, discussed above, the Ebtiundt-
tuates between on andfstates. In another class of ratchets known as rocking rst¢be],
where one applies a time-dependent force with zero meark{geél.5)). For example such
a potential can be given dy(x,t) = U(X) — sin(wt)x. This corresponds to a situation where
the slope of the saw-tooth potential is periodically vairetime. More generally, this vari-
ation of slope can be done in a random or periodic way, the @gyirement being that the
average slope is zero. Consider the zero temperature case, When the force is negative,
( part ©) in Fig. (1.5)), particles can remain trapped in the valléyhe potential, where

local force there is positive. On the other hand, when therazat force is positive ( part)
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(@)

U(x) = Uy sin(x)

(b)

Temperature profile, T(x) =§ AT  sin(>xp- )

Figure 1.6: Inhomogeneous ratchet model where a periodenpal @), and a temperature
profile (b), is separated by a phasdtfdrencep. Dark regions in&) correspond
to the higher temperature regions. Direction of the curdepiends on this phase
difference.

in Fig. (1.5)), then patrticles slide down the slope. Thusditeations+F and—F are not
equal and opposite to each other, which happens due the agyyrohthe potential, and we
get a net current. This can be shown to be true even for fimi@éeatures. Unlike the case
of flashing ratchets, the direction of the current in thiseciasan the direction of the steeper
slope. Note that the flashing and rocking ratchets can betitai as examples wherefaC
current is generated by applying & field.

[11. Inhomogeneous ratchet: A third type of ratchet is the inhomogeneous ratchets
[57, 58], which unlike flashing and rocking ratchets, havatisfly symmetric periodic po-
tential U(X). They show directional transport due to the presence afesgapendent tfu-
sion codficientD(x). This space dependence can arise, for example from alpasieying
temperaturd (X) [57 — 60], since the dfusion constant is given y(x) = ksT(X)/y. These
systems are common in nature. For example, colloidal pestdifusing near any surface
have space dependentfdsion codicient, molecular motors moving on the microtubules
experience space dependent mobility [63]. In this caserdtuhet &ect arises because the
system dissipates energyffeérently at diferent places due to the space dependent tempera-

tureT(X). In this case the only criterion to be satisfied is that bbéhgotentiald (x) and the
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temperaturel (x) have to be periodic, and should be separated by a phéseedice other
than O orr.

Consider partd) in Fig. (1.6), where dark regions corresponds to highempenature (
this is sometimes called as Landauer torch ) correspondiriget maxima of temperature
profile. Particles try to settle at the minima of the potdriiat, all the time they fluctuate
around this minima due to noise from the bath. Thus whengdesticome into the contact
with these higher temperature regions they get enough gteicyoss the barrier and jump
to next valley on the right. Thus particles in any minima \ittid it easier to jump to the
right than to the left. Hence this temperature anisotropylpces a net particle transport in
the system, whose direction and magnitude depends on tisepha

Contribution of this thesis. Here we look at models of both heat and particle pumps.
These models are somewhaffeient from various ratchet models which we have described
above and are motivated by models of quantum pumps. Unl&dléishing and rocking
ratchets, there is no asymmetric potential in the examplestwdy. These models have
external time-dependent magnetic field, forces etc. doiagkwen the system and driving
the system in to non-equilibrium steady state. The ratcffiet&ls achieved through the fact
that the external driving is both time, as well as space dépean

In chapter (3) we study following two classical models ofty@amp,

1. A spin system consisting of two coupled Ising spins eacledrby periodic magnetic

fields with a phase ¢lierence, and connected to two heat reservoirs.

2. An oscillator system of two interacting particles drivmnperiodic forces with a phase

difference and connected to two reservoirs.

In both these models we drive the system by external periidie-dependent magnetic
fields or forces, with a phaseftBrence and connected to multiple reservoirs. We find that
though these models are based on same designing prin@pkesf them ( Ising system ) is
able to work both as a heat pump and as an engine but the othet: i8s discussed earlier

for ratchet systems, to work, require spatial or temponairasetry. In these models there is
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no built-in asymmetry but the phasdférent driving leads to an overall symmetry breaking.
In chapter (4) we study a model of a particle pump. We look atsymmetric exclusion
process (SEP), with time-dependent hop-out rates at twoooe sites. These hop-out rates
are periodic in time and with a phasefdrence. We find that in this system, in the steady
state we get a non ze©C current. Unlike previous models studied in chapter (3)eher
there is a particle transport. The hop-out rate is relatetheéodifusion constant and the
modulation of this dfusion constant can be thought of as arising from a spatialeangoral
modulation of the temperature or friction dheient. We study this model by simulations and
also analytically by doing a perturbation theory in drivetgength around the exactly known
time-independent SEP. We calculate general current esipreand study its behaviour in
few special cases. We look at the behaviour of this curreatfaaction of driving frequency

and the phase flerence and also get a formal expression in adiabatic andrfastg limits.
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2 Work distribution functions for
Hysteresis loops in a single spin
system.

2.1 Introduction

Consider a magnetic system in a time-dependent magnetic Askklime that the magnetic
field is varied periodically. Then plotting the magnetipatiof the system against the in-
stantaneous magnetic field we get the well-known hystemsige. The area enclosed by
the hysteresis loop gives the work done on the system by tieersi field and this leads to
heating of the magnet. In the usual picture, that one has sithgsis, one expects that the
work done is positive. However if the magnetic system is shal contains small number of
magnetic moments) then this is no longer true. For a smalhetagne finds that the work is
a fluctuating quantity, and in a particular realization df tiysteresis experiment one could
actually find that the magnet cools and does work on the dyifonce.

In general, for aamall system driven by time-dependent forces whose ratesairslow
compared to relaxation times, one typically finds that waioon-equilibrium quantities,
such as the work done or the heat exchanged, take values fi@triaution. Recently there
has been a lot of interest in the properties of such distohat Part of the reason for the in-
terest is that it leads us to examine the question as to howustha laws of thermodynamics,
which are true for macroscopic systems, need to be modifieshwie deal with mesoscopic
systems [1].

For instance in our example of the magnet with a small numbspios, there is a finite

probability that all the spins could suddenly spontangoftigl against the direction of the
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field by drawing energy from the heat bath. Intuitively thigss one the feeling that there has
been a violation of the second law. In fact historically garbservers of Brownian motion
had the same feeling when they saw the “perpetual” motiom@frownian particles [2].
However if one looks at the precise statement of the secomaiee realizes that there is
no real violation.The second law is a statement on the madiginle behavior while here
we are looking at fluctuations about the most probable valldsgese become extremely
small for thermodynamic systems. On the other hand, forlssgatems these fluctuations
are significant and a study of the properties of these fluctsitcould provide us with a
better understanding of the meaning of the second law in itegept context. This will be
necessary for an understanding of the behavior of mesassygptems such as molecular
motors, nanomagnets, quantum dots etc. which are currarghs of active experimental
interest.

Much of the recent interest on these non-equilibrium flutbbws has focused on two inter-
esting results on the distribution of the fluctuations. Bw® (1) the Jarzynski relation{8]
and (2) the fluctuation theorems {717]. A large number of studies, both theoretical and
experimental [19- 24] have looked at the validity of these theorems in a vaétyystems
and also their implications. At a fundamental level bothsththeorems give some measure
of “second law violations”. At a practical level the posstlgi of using these theorems to
determine the equilibrium free energy profile of systemsigislata from non-equilibrium
experiments and simulations has been explored-[28].

In this chapter we will be interested in the fluctuations @& #nea under a hysteresis loop
for a small magnet. We look at the simplest example, nameiggesising spin in a time-
dependent magnetic field and evolving through Glauber dyesarhlysteresis in kinetic Ising
systems have been studied earlier {383] where the main aim was to understand various
features such as dependence of the average loop area onirsyvesges and amplitudes,
system size féects and dynamical phase transitions . The area distributas also studied
in [33] but the emphasis was onfidirent aspects and so is quite incomplete from our present

viewpoint.
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A two state model with Markovian dynamics was earlier stddig Ritortet al. [34] to
analyze experiments on stretching of single moleculeste8yswith more than two states
have also been studied [35] in the context of single-mokexiperiments. However, the
detailed forms of the work-distributions have not been stigmted and that is the main aim
of this study. These distributions are of interest sinceetlage only a few examples where
the explicit forms of the distributions have actually beevrked out [37— 40]. Most of the
experiments so far, for example those in the RNA stretchingpements of Liphardet al.
[19] or the more recent experiment of Douardtel. [25] on torsionally driven mirrors, are
in regimes where the work-distributions are Gaussian.

We perform Monte-Carlo simulations to obtain the distribos for diferent driving rates.
We consider dferent driving protocols and look at the two cases correspgra the tran-
sient and the steady state fluctuation theorems. It is shioatrifie limiting cases of slow and
fast driving rates can be solved analytically. We also pouttthat the problem of computing

work-distributions is similar to that of computing residertime distributions.

2.2 Definition of model and dynamics

Consider a single spin, with magnetic momgnin a time-dependent magnetic fie).

The Hamiltonian is given by
H=-uho o==+1 (2.1)

We assume that the time-evolution of the spin is given by tlaeikGer dynamics. Let us first
consider a discretized version of the dynamics. Let theevafithe magnetic field at the end
of the (h— 1)th time step bé,_; and let the value of the spin log_;. The discrete dynamics
consists of two distinct process during tité time step:

1. The field is changed froim,_; to h, = h,_; + Ah,. During this step an amount of work
AW = —uop_1Ah, is done on the system.

2. The spin flips with probabilitp(e#™on1/7) whereZ = &M + e is the equilibrium

partition function at the instantaneous field value. Thédiap is a parameter that is required
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when we take the continuum time limit and whose value willesgiilibration times. At the
end of this step the spin is in the statg During this step the system takes in an amount of
heatAQ = —uhy(on — on_1) from the reservoir.

Given the microscopic dynamics we can derive time-evotugiquations for various prob-
ability distributions. These are standard results but ywea@uce them here for completeness.

Time-evolution equation for spin distributiofirst let us consider the spin configuration
probability P,(c) which gives the probability that at timethe spin is in the state. We
write the field in the formh, = hyf, wheref, is dimensionless and let us defiae= Buh.

Then we get the following evolution equation:

[PM(T)]:(l—pe;” P ][an]
Pnoa(1) P 1-p% )\ Pal)

To go to the continuum-time limit we take the limifs—»0, At—0, with p/At — r and

f, = f(t), Pn(o0) — P(o,t). Using the dimensionless time= rt we then get:
P _
or

—ef(7) f(r)
IS:(P(T’T)] 7-:( ezf() _e:(z) J
s —ef (7 ef@ .
P(l, T) —£ Z Z

The magnetizatiom(r) = (o (7)) = 2P(1, 7) — 1 thus satisfies the equation

-7P  where (2.2)

AMT) _ (o) + tanHef ()] (2.3)
dr
whose solution is
m(z) = e "m(0) + f e ) tanh F ()], (2.4)
0

Time-evolution equation for Work distributioithe total work done at the end of thih

time step is given by:

n
W= —u Z o1_1Ah, (2.5)
=1

To write evolution equations for the work-distributionstiecessary to first defirg,(W. o),
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the joint probability that at the end of timth step the spin is in the stateand the total work

done on it isW. ThenQ,(W. o) will satisfy the following recursions:

e €fne1 fn+1

QW T)=(1-p Zos ))Qn(W + uAhp, T) + p( 7o

—€ fn+1 1:n-¢-1

)Qn(W + uAhn, T) + (1 - IO(

I’]+ n

)Qn(W — uAhy, 1)

Qn+1(W l) = p(

))Qn(W — pAhy, 1)

We take the limitsAt —» 0, p — 0 with p/(At) — r, h, — h(t) and Ah,/(At) — h.
Then using the dimensionless variabldefined earlier, and the total work done upto time

w=BW = —¢ [ dr'o(r’) df/de’ we finally get

File) df 4Q
—TQ+Ed v

(i) ==(o )
Qw,l7) ) ° (0 1

From Eq. (2.6) we get the following equation iQ(w, 7) = Q(w, T,7) + Q(w, |, 7):

where (2.6)

O

aZQ : Fle) ,8°Q

+(1- —)— = eftanh@f)a + (f) s 2.7)

We have not been able to solve these equations analyticadpein the limiting cases where
the rate of change of the magnetic field is very slow or very. fasa recent study done by
Chvostaet al. [38, 39], this kind of evolution equation for a two level syst is solved
analytically, and their results match with our simulatiesults.

In the next two sections we will first present results from Moe@arlo simulations which

give accurate results for any rates and then discuss theabpases.

2.3 Results from Monte-Carlo simulations

We have studied threeftigrent driving processes:

(A) The system is initially in equilibrium at zero field andethield Buh) is then increased
linearly as a function of time from 0 te. The total time duration of the processtis(or
Tm in dimensionless units). By changing while keepinge fixed we can control the rate at

which the magnetic field sweep takes place.
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(B) The system is initially in equilibrium and the field, which taken to be piecewise
linear, is changed over one cycle. The total time duratiamefycle is 4, for a symmetric
cycle and is 2, + 1,,) for an asymmetric cycle.

(C) The system is run through many cycles till it reaches aegquitibrium steady state.
We measure work fluctuations in this steady state.

In cases (A) and (B) we will be interested in testing the tramisiluctuation theorem (TFT)
while in case (C) we will look at the steady state fluctuaticgottem (SSFT). Let us briefly
recall the statements of these theorems for work distobstin systems with Markovian
dynamics.

Crooks’ Fluctuation TheoremLet us quickly recall the various definitions of the fluc-
tuation theorems with our present notation. Consider our spstem, initially in thermal
equilibrium and then external magnetic fi¢lfd), is changed from an initial valug, at time
t = 0, to a final valuen; in a finite timet,,. Suppose the work done on the system during
this process i8V and the change in equilibrium free energyis. Let the dissipated work
Wy = W-AF, have a distributiolQ(W,). Now consider a time-reversed path for the external
field hg(t) = h(ty, — t) for which the work distribution i€9Qr(W;y). The fluctuation theorem of
Crooks’ then states:

Q(Wd) eBWd
— = . 2.8
Qr(-Wa) (2.8)
For Gaussian processes it can be shown @gW,) = Q(Wy) [15] and hence we get the

usual form of the transient fluctuation theorem (TFT)

QWa) s,
W) ~ e, (2.9)

Another situation where TFT is satisfied is the case wherd@elkis kept constant or if the

process is time-reversal symmetric. Finally we note thatlgrzynski relation
@) = [ dwie Qe - 1 (2.10)

follows immediately from Crooks’ theorem Eq. (2.8) and sol w# satisfied in all cases
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where Crooks’ holds.

In the following sections we will verify that Crooks’ FT is ahys satisfied but that TFT
does not hold whenever the distributions are non-Gausswepses and the process does not
have time-reversal symmetry. We will also test the validifyarticular version of the steady
state fluctuation theorem (SSFT), whiclitdis from the Cohen-Gallavotti theorem in that
we consider a finite time. Thus, this version of SSFT has the same form as Eg. (2.9) with
the diference that the initial state is chosen from a non-equilibrsteady state distribution
instead of an equilibrium distribution.

In the simulations we used the discrete time dynamics spdcifi the beginning of
Sec. (2.2). To get results corresponding to the continuonme timit we took the param-
eter valuesAt = t,,/10000 andp = At. The distribution functions for a given rate were

obtained by generating2 1(° realizations.

2.3.1 Field increased linearly from Oto €

In this casef(r) = 7/t and we have chosen = 0.5. We note that with a static field,
the equilibrium relaxation time is given iy = 1/r or r, = 1. The rate of change of
magnetic field~ 1/t,, and comparing this with the relaxation time we find that slowd a
fast rates correspond, respectively, to large and smalksgdbort,,/t, = 7. In Fig. (2.1) we
plot the work distributions for various values of. We have plotted the distribution of the
dissipated workvy = w — BAF (HereAF = —Incoshe). In Fig. (2.2) we plot the average
magnetization as a function of field, again foffdrent rates. Some interesting features of
the work-distributions are:

(i) The distributions are in general broad. This is true esethe slowest driving rates
where the average magnetization (Fig. (2.2)) itself is eltmsthe equilibrium prediction.
Note that the allowed range of valuesvafis [-e — BAF, e — BAF] ~ [-0.38,0.62]. Also we
see that the probability of negative dissipated work isificant.

(ii) For slow rates the distributions are Gaussian and thrsle understood in the follow-

ing way. Imagine dividing the time range into small inteszaBecause the rate is slow, there
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Figure 2.1: Distributions of the work done in driving a magaedifferent rates when mag-
netic field is changed linearly.

are a large number of spin flips within each such interval,smthe average magnetization
from one interval to the next can be expected to be uncoeel&ince the work is a weighted
sum of the magnetization over all the time intervals we cgeekit to be a Gaussian.

(ii) For fast rates we ged—function peaks atv = +e. This again is easy to understand
since the spin doesn’'t have time to react and stays in itglistate. In Sec. (2.4) we will
work out analytic expressions for the the work distribuiday considering probabilities of
O—spin flip and Lspin flip processes.

For slow rates we have verified (see Fig. (2.3)) that the fatain theorem is satisfied.
For faster rates we see that the probability of negative wookesses is higher than what is

predicted by the TFT.
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Figure 2.2: Average magnetization(r) for different rates, when magnetic field is changed
linearly.

Figure 2.3: Plot shows that the fluctuation theorem is validsfow processes with Gaussian
work-distributions. Inset shows that for a fast ratg & 5.0) the probability of
negative work is much larger than that predicted by the FT.
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h --- Symmetric cycle
o T v — Asymmetric cycle

Figure 2.4: Magnetic field changed over a cycle. In the symmease the total cycle time
is 4r, while in the asymmetric case it iS2(+ 7).

2.3.2 Field is taken around a cycle

As shown in Fig. (2.4) we consider twoftirent cyclic forms forf(r). One is a symmet-
ric cycle and the other a asymmetric one. For these two casewdrk-distributions are
plotted in Fig. (2.5) and Fig. (2.6) respectively. For thensyetric cycle we plot the aver-
age magnetization as a function of the field in Fig. (2.7).sTdives the familiar hysteresis
curves.

As before we again find that the work-distributions are bro&wr slow rates we get
Gaussian distributions while for fast rates we gef-dunction peak at the origin which
correspond to a-Bspin flip process. The slow and fast cases are treated aradlytin
Sec. (2.4).

As expected we can verify the transient fluctuation theorenbbth the symmetric and
asymmetric processes. That TFT should be satisfied follows €rooks FT and noting that
the time reversed process has the same distribution as tvarftb process because of the
additionalh - —h symmetry that we have in this case. We have also studied amnastric
half-cycle for which Qr(wg) # Q(wg). Consequently we find that the usual TFT is not
satisfied while the more general form of TFT of Crooks holds. ahew this in Fig. (2.8)

where we have plotte@(wy), €Y Q(—wy) ande™ Qr(—Wqy).
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Figure 2.5: Plot of work-distributions for fierent driving rates when magnetic field is
changed in a symmetric cycle.
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Figure 2.6: Plot of work-distributions obtained forffédirent asymmetric cycles of the mag-
netic field.
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Figure 2.7: Hysteresis curves in driving a magnet #iedent rates when magnetic field is
changed in a symmetric cycle and with the spin initially imdégQrium.

6
5] - Qw( Wy ) | Half cycle of magnetic field
i — € dQR( -Wd)
w
4] |0 oe"Q(-w,) -
T =
3-
i T
2]

Figure 2.8: Plot showing the work-distribution for an asyatnt half-cycle and the valid-
ity of Crook’s fluctuation theorem. Note that the probabilitiynegative work
processes is much higher than that predicted by usual TFT.
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Figure 2.9: Work-distributions in the non-equilibrium atly state.

2.3.3 Properties in the non-equilibrium steady state

We now look at the case when the spin is driven by the oscitidteld into a non-equilibrium
steady state and we measure fluctuations in this steady bidtes case the work distribu-
tions (over a cycle) have the same forms as in the transies @&ag. (2.9)). The joint
distribution functionQ(w, o, ) satisfies the same equation Eq. (2.6) but now the initiat con
ditions are diferent. In Fig. (2.10) we plot the steady state hysteresigesuiNote that unlike
the transient case the hysteresis curves are now closesl loop

Finally we test the validity of the steady state fluctuatibadrem (SSFT). This theorem
has been proved for dynamical systems evolving throughmétestic equations but there
exists no proof that a similar result holds for stochasticatyics. From Fig. (2.11) itis clear

that SSFT does not hold.
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Figure 2.11: Violation of the fluctuation theorem for theastg state work-distribution cor-
responding ta, = 1.0. Inset shows the same plots for the transient case where
FT is clearly satisfied.
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2.4 Analytic results for slow and fast rates

2.4.1 Field increased linearly from 0Oto €

() Slow casety, >> 1
As argued in the previous section we expect that the wortkHoligions to be Gaussians

which will be of the general form

=(w={w) 2

Q(w) = e ¥ . (2.11)

2
Ow

where(w) ando2, are the mean and the variance of the distribu@gw). Since the distribu-

tion satisfies the Jarzynski equality, it follows at once thay are related by
o2 = 2((wy — BAF). (2.12)

Hence we just need to find the mean work done. The mean work idayieen by(w) =
~(€e/Tm) [, "drm(7). In the strict adiabatic limit, — co we havemy(r) = tanh(er/7y)
and the mean work dongv) = —log(cosh¢)) = BAF. For larger,, we try the perturbative

solution
1
m(r) = Mag(r) + —g(7) (2.13)
m
Substituting in Eq. (2.3) we get an equation §r) whose solution gives
€ €T 1
g(r) = ——seck(—) + O(5) (2.14)
Tm Tm Tm
For the work done we then get
W) = BAF + = tanhe) (2.15)
Tm

In Fig. (2.12) we compare the simulations for slow rates \htéhanalytic results.
(ii) Fast casery, << 1.
If we change the field very fast then the spin is not able toaedmnd so there are few

spin flips during the entire process. At the lowest ordergheno flip and this gives rise to
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Figure 2.12: Comparison of work-distributions for slow satdtained from simulations and
from the analytic form. Solid lines show the analytic result

thed—functions peaks ate seen in the distribution. We now calculate the work-disttiidmn
by looking at contributions from-8spin flip and Espin flip processes. L&(T, 7o, 7) be the
probability that, given that the spin fsat timerg, it remains in the same state till time It

is easy to see th&(T, 7o, 7) satisfies the equation

0S(1,70,7) g’

or —— S(1,70.7) (2.16)
Solving we get, for the linear cadér) = v/1,
S(1,0,7) = & b T4 = % (cosh(L))E (2.17)
Tm

Puttingr = 1, corresponds to the process for which the work done is—e. Hence, since

the probability of the spin being initially if state is 12, we get

Prob(w = —¢) = %e‘TTm[cosh(s)]Tz—T (2.18)
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Proceeding in a similar fashion by starting witt) apin we get
1 —tm _Im
Prob(w =€) = > e2 (coshg)) = (2.19)

Next let us consider-4spin flip processes which (for fast rates) are the major dmrtors to
the part of the distribution between the two peaks. &1, r)dr be the probability that the
spin starts in the state flips once between timesto  + dr, and stayq till time 7,,. This

is given by
Si(1,7)dr = S(1,0,7)(e “/™/Z)drS(l, T, Trm) (2.20)
The work done during such a process is given by
€
W=—-— (2r — 1) (2.21)
Tm
Similarly the case where the spin starts froj state gives
Si(l,7)dr = S({,0,7)(e7™/Z)drS(1, 7, Trw) (2.22)
and the work done in this case is

W= (20 - ) (2.23)

Tm
Adding this two contributions and plugging in the form®fo-, 7o, 7) obtained earlier we get

the following contribution to the work-distribution:

_ Tm_-tgw €7 (coshg)®)  e?(coshg)?)
Ql(w)_See = cosh&Y) " coshEY)

The full distribution is given by
1 _Tm m 1 _™m _m
Qw) = ée 2 [coshE)] = 6(w + €) + ée 2 [cosh)] 2z 6(w — €) + Qr(w) (2.24)

for —e < w < ¢, and zero elsewhere. In Fig. (2.13) we show a comparisoni®ftialytic
form with simulation results for,, = 0.01. The strengths of th&-functions atw = +¢ are

accurately given by Egs. (2.18), (2.19).

39



T _=0.01
m
— EXxact
0.01
z
o
O [ T [ T [
-0.5 0 0.5
W

Figure 2.13: Comparison of work-distribution for a fast rat#ained from simulation and
from the analytic form.

2.4.2 Field is taken around a cycle

(i) Slow casery, >> 1
We again expect a Gaussian distribution and siiEe= O for a cyclic process, hence the
mean and variance of the distribution are relatedrfy= 2(w). As before we compute the

mean work to order /r, and find

(W) = ﬁtanr(e). (2.25)

Tm

In Fig. (2.14) we show the comparison of analytical and satiah results.
(ii) Fast caser,, << 1. In this case the work distribution givesafunction peak at the

origin for O-spin flip processes. To find the probability of this, we solge @.16) withf(7)
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Figure 2.14: Comparison of work-distributions for slow satétained from simulations of
the cyclic case and from the analytic form. Solid lines shiogvanalytic results.

for the cycle given by

€
—T ,0<1t<1h
Tm

f(7)
f(7)
f(7)

€
—Q@2tm—1) ,Tm <7< 31
Tm

i(T —4ty) ,3tm < T < 4Ty
Tm

This has the solution
S(1,0,7) = €2 (2.26)

Adding up an equal contribution froi8({, 0, 7,), and since both initial conditions occur

with probability half, we finally get
Prob(w = 0) = e %™ (2.27)

Next we look at the contribution of-dspin flip processes. Let the spin flip occur between
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Figure 2.15: Comparison of work-distribution, for the syntrizecycle with a fast rate, ob-
tained from simulations and from the analytic results.

timest andr + dr. It is convenient to divide the total timergl into four equal intervals, the
dependence ok on r being ditferent in each of the intervals. Thus if we start with the spin

initially in an 7 state then we have

W = —— O<1t<1h
= —(t-2ty) ,Tm<T7<21
= —Q2tm—-1) ,2tn <7< 31

= —(t—-41y) ,3tm <7 <41
The probabilities of each of these processes is again giyen b
Si(1,7)dr = S(1,0,7)(e"/2)drS(l, 7, 411m) (2.28)

Using the relations between and v and summing up the four fierent possibilities we
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finally get (for initial spin state)

Ql(w) = ‘ZTmez[(cosh( )et+ (coshg)) ““-1(coshg)) ] (2.29)

for -1 < w < 1 and zero elsewhere. Note that the allowed range isf[-2, 2] but single
spin-flip processes only contribute to work in the rang&, [L]. Similarly if we start with

spin statel we get

Qi(w) = ‘ZTmez [(cosh( ))‘_‘1+ (cosh%))_ (coshg)) ] (2.30)

for -1 < w < 1. The full work-distribution (contribution from-ispin flip processes) is thus:

QW) = &2 ms(w) + Qj(W) + Qj(w) (2.31)

In Fig. (2.15) we compare the analytic and simulation resdihe strength of thé-function

atw = 0 is accurately given by Eq. (2.27).

2.5 Conclusions

We have computed probability distributions of the work davieen a single spin, with
Markovian dynamics, is driven by a time-dependent magrirtid. We find that work fluc-
tuations are quite large (even for slow driving rates) aretehs significant probability for
processes with negative dissipated work. For slow drivirgriumber of spin flips during
the entire process is very large and the total workfisatively a sum of random variables.
Hence the distributions are Gaussian with widths propoaiido the driving rate. On the
other hand for very fast driving the probability of flipping low and we can compute the
work-distributions perturbatively from probabilities aéro-flip, one-flip, etc. processes.
While the two special cases of slow and fast rates can be soketiave not been able to
obtain a general solution valid for all rates even in thigknparticle problem. An exact
solution of this problem was recently obtained by Chvestal. [38, 39].

Recently [40], work distribution functions for a chargedlomal particle placed in a time-

dependent magnetic field has also been studied by Langeuatieq approach. Where the
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work distributions were Gaussian. Distributions of worlddreat in a driven double well

potential have been studied [41, 42] and also experimgntadllised [43, 44], where non-

Gaussian work distributions have been obtained. This systeembles to the two state Ising
spin model discussed by us here.

We note that the problem of calculating the work-distribatis similar to that of calcu-
lating residence-time distributions in stochastic preesqd43- 45]. In fact for the case in
Sec. (2.4.1) the work done is proportional to the averagenet@ation which is easily re-
lated to the residence time (time spin spends @tate). For stationary stochastic processes,
such as the random walk, the residence time distributiorbeambtained exactly. However
for non-stationary processes this becomdsatilt and no exact solutions are available [47].
In our spin-problem too it appears that the non-statioparitthe process makes an exact
solution dfficult.

For a system wittN spins the total work done on the system is simply a sum of th& wo
done on each of the spins. For the case where the spins anatecacting we thus get a
sum of N independent random variables. For lafgehe distribution will be a Gaussian
with a mean that scales with and variance adl'/2. For interacting spins the properties
of the work-distribution is an open problem. Especially offerest is the question as to
what happens as we cross the transition temperature. Thibd®en studied by Chatelain
et al. [48], who found that the Jarzynki equality do hold irffdrent temperature regions.
Finally we note that the large fluctuations in the area undeysieresis curve should be

experimentally observable in nano-scale magnets.
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3 Simple models of heat pumps.

3.1 Introduction

The idea of constructing miniature versions of engines,onsodnd pumps has been an in-
teresting one. The earliest theoretical construct of sudewace is probably Feynman’s
ratchet and pawl model discussed in [49]. In this articlerfregn uses this simple micro-
scopic model to demonstrate why a Maxwell's demon cannokwdn the same article
he also shows how this model can be used to construct a mopisieeat engine and dis-
cusses itsficiency. There have been a number of recent detailed studidsegawl-and-
ratchet model and some subtle flaws in Feynman’s originalraemts have been pointed
out [48—- 50,62 63,68, 69]. A different class of ratchet models have also been studied in
[70—77]. In these models Brownian particles, kept in an asymmpgrtiodic potential and
acted upon by periodic time-dependent forces, are founghibie directed motion. A num-
ber of variations of this model has been studied{B2]. Among its applications it has been
proposed that this could provide a mechanism of transportatbrs in biological cells [85].
Ratchet models which work on somewhaffelient principles are models of quantum
pumps which are recently being studied theoretically {830] and have also been exper-
imentally realized [93, 94]. Since these pumps also worlead remperature it appears that
noise is not an essential feature, which is unlike the casedoal ratchet models. Moti-
vated by the quantum particle pump model, Segal and Nitzae peoposed a model for a
heat pump [95]. In this model a molecule with two allowed gydevels interacts with two
heat reservoirs kept atfeerent temperatures. The energy levélatience is modulated in a

periodic way. Thus unlike the other particle pump modelstanly a single parameter is
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Figure 3.1: Schematic representation of the experimestarably by Switkest al. [93].

varied. An asymmetry is incorporated by taking reservoiith @ifferent spectral properties
and diferent couplings to the molecule. This seems to lead to thieedesumping of heat
from the cold to the hot reservoir.

We will briefly discuss few of the experiments done on the quanpump. One of the
first experiment was by Switkest al. [93], who used the quantum pumping mechanism to
produce a>C current in response to the cyclic deformation of the confjrootentials in an
open quantum dot. The assembly of the the experiment is agmsinadhe Fig. (3.1). Three
gates marked with red circles control conductance of poimtact leads that connect the
dot to electronic reservoirs. In this experiment two codg@antum dots are separately in
contact with particle reservoirs which are at the same ctalnpotential. One appliegiC
gate voltaged/;, = Vpcoswt) andVy, = Vycoswt + ¢) to the two dots respectively. This
leads to a net flow of particle current between the two resexvehose sign depends on the
phasep. This can be seen in Fig. (3.2) where the voltage across thetdoh is proportional
to the current is plotted as a function of phas@edlences. A sinusoidal dependence @ris
observed.

The physical picture of such processes can be understooti@agd. In Fig. (3.3) we show
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Figure 3.2: Plot oWy0(¢) as a function of phasge.

a schematic representation of the quantum pump model. kgbliase dierence between
the voltages be = n/2. In step &), a particle from right reservoir is trapped in a potential
well V, = =V, in the next stepk), V; = -V andV, = 0, so particle goes to the left hand side
well. In step €), V> = Vo, hence particle cannot go back to the right hand side hernogpg

to left reservoir and in steql], sinceV; = V,, particle cannot hop back. Hence it can be seen
that a net charge is transferred from right to left bath, aspibtentials vary periodically in
time. Also the direction of current depends upon the phaserdinces. Another experiment
by Leeket al. [94] looked charge pumping across a carbon nanotube. Theriexgntal set
up is as shown in the Fig. (3.4). A carbon nanotube is attathi¢dde surface of a quartz

crystal and connected to reservoirs ( source (S) and the (iPg). A surface acoustic wave
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Figure 3.3: Two quantum dots in presence of oscillatingagss. Right hand figures show

the two potentials at efierent times in a cycle. A net charge is transferred in one
cycle.

was sent through the quartz crystal, and this produceslliray@otential wells inside the
nanotubes. It was found that an electron current can be giegkacross the nanotube as a
function of the gate voltage. In this system, the transpbdharge resembles the pumping
of water by an Archimedean screw ( see Fig. (3.5) ). In the Ameldean screw, due to the

chirality of the pump by rotating the handle water can be pedni a higher level.
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Figure 3.4: Schematic representation of the experimestarably by Leelet al. [94].

Figure 3.5: Archemedian screw.
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Figure 3.6: System of two Ising spins in contact with two Hesths and are driven by exter-
nal time dependent magnetic fields.

Motivated by these quantum pump models, we examine cldssigdels of heat pump

which have the same basic design. We consider tffergint models:

1. A spin system consisting of two Ising spins each driven éyqgalic magnetic fields

with a phase dierence and connected to two heat reservoirs.

2. An oscillator system of two interacting particles driv@nperiodic forces with a phase

difference and connected to two reservoirs.

In both cases we analyze the possibility of the models to waher as pumps or as engines.
Our main result is that the spin system can work both as a purd@a an engine. On the

other hand the oscillator model fails to perform either tiorc

3.2 Spin System

Our first model consists of two Ising spins driven by time-@legent magnetic fields, (t)

andhg(t) respectively and each interacting with separate heatveisg, see Fig. (3.6). The
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Hamiltonian of the system is given by:
H = —JO’10'2 - hL(t)O'l - hR(t)O'z , 012 = i'l, (31)

whereJ is the interaction energy between the spins. The magneldsfleave the forms
h (t) = hocosQt) andhg(t) = hgcosQt + ¢). The interaction of each spin with the heat
baths is modeled by a stochastic dynamics. Here we assutnia¢htime-evolution of the
spins is given by Glauber dynamics [96], generalized to #meof two heat baths, with
temperature3, andTg. Thus the Glauber spin flip rates for the two spins, arisiogfthe

left and right reservoirs are respectively given by:

rl}m =1 (1-y.0102) (L-vo1)

(R o, =1 (1= yro102) (1 - vro2), (3.2)

where

YLr = tanh@/ks T Rr)

vigr = tanhf r/KsTiRr) (3.3)

andr is a rate constant. The master equation for evolution of pire distribution function

P = [P(+, +, 1), P(—, +,1), P(+, —, 1), P(—, -, 1)]T is then given by:

A

oP -
—=TP, 3.4
o (3.4)
where
L R L R
L A r-, r— 0
L L R R
7 = rs. -rz, —r-, 0 re_
- rR 0 —rt —rR rk
++ +- +-— -
0 R, rt —rt_—-rR

We defineQ,, Qg to be the rates (averaged over the probability ensemblehatvheat
is absorbed from the left and right baths respectively while Wk are the rates at which

work is done on the left and right spins by the external magfiieid. These can be readily
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expressed in terms of the spin distribution function andver@us transition rates. Thus we

find:
QL = Z P(O‘l, o, t)rlo'.lo_zAEl(O'l,O'z)
01,02
QR = Z P(O-l’ g2, t)rslo—zAEZ(o-l’ 0-2)
01,02
W, = —(o1)h =-h Z o1P(01, 02, 1)
01,02
W = —(o2)hgr=-hr Z 02P(01, 02, 1), (3.5)
01,02
where

AEl = 2 (\]0'10'2 + h|_0'1)

AEz = 2 (JO'10'2 + hRO'z) (36)

are the energy costs in flipping the first and second spin céisply. The average energy of

the system is given by

U= (H)= Z H(o1, 02, 1) P01, 02, 1). (3.7)

01,02

Differentiating Eq. (3.7) with respect to time, we get

U= > H(os,oo0) Plonoat) + > H(ow,oz1) Pler, 02,). (3.8)

01,072 01,02
Differentiating Eq. (3.1) with respect to time and using Eqgl)@nd (3.5) in Eq. (3.8), itis

easy to verify the energy conservation equation:
U = QL + QR + WL + WR. (39)

From Floquet's theorem we expect probability distributi®nat long times to be periodic

with time periodr = 2r/w. We will be interested in the following time averaged ratés o
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Figure 3.7: Plot oy, gr, W versusy with both baths at the same temperature. Inset shows
the currents for the case where the right bath is slightlgeol

heat exchanges and work done, evaluated in the steady state:

f QL,R dt,
0

f W g dt. (3.10)
0

qL,R =

WLRr =

NI A

We numerically solve the master equation Eg. (3.4) and tkatuate the various steady-
state energy exchange ratgs andw, g. In all our numerical calculations we set= 0.5
andJ/kg = 1 and all other quantities are measured in these units. IN(8ig) we consider
the parameter valueg. = Tg = 0.5, hy = 0.25, 7 = 225 and plofg,, gr andw = W + WR

as functions of the phasge It can be seen that, for certain values of the phase, dqpoémd
Jr are negative whilev is positive. Following our sign conventions, this meang #dibthe
work from the external driving is getting dissipated inte two baths. More interestingly
we find that for certain values of the phase we cangget 0 andgr < 0 which means that
there is heat floirom the left reservoito the right reservoir. The direction of heat flow can
be reversed by changing the phase. From continuity argunitastclear that this model can

also sustain heat flow against a small temperature gradibos the inset of Fig. (3.7) shows
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Figure 3.8: Plot ofy., gr, W versusg for parameter values chosen such that the model per-
forms as an engine.

the currents when the right reservoir is kept at a slightlydotemperaturdr = 0.499. In
the absence of any driving we would get a steady cumgent —¢r = 1.41x 10* from
the left to right reservoir. In the presence of driving angathase value = 2.2 we get
Or = 3.674x 1074, g. = —1.025x 10°2 which means that heat flovesit of the cold reservoir.
Thus we see that our model can perform as a heat pump or aerafiag. Similarly we find
that the model can also perform like an engine and convetttba@ork. This can be seen in
Fig. (3.8) where we consider the parameter vallies: 1.0, Tgr = 0.1, hg = 0.25,7 = 190.
In this case we find that for certain valuesgoive can havev'< 0 which means that work is
being done on the external force. For typical values of patars that we have tried we find
that the éiciency of the engine is quite low. For example for Fig. (3.8hw = 0.7z, we
find = W|/¢. = 1.75x 1072,

Finally in Fig. (3.9) we plot the time-dependent energy $fanrates given by Eqg. (3.5)
for parameter values corresponding to the refrigeratoreargine modes of operation. In

both cases the initial configuration was chosen ¢k, +,t = 0) = 1. At long times we
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Figure 3.9: Plot ofQ,, Qg, W as a function of time for parameters corresponding to pump

and engine (inset).

see that all quantities vary periodically with time with $eme period as the driving force.

Fig. (3.9) corresponds to the parameter valliegs= 0.5, Tr = 0.499 hy = 0.25, 7 = 225

and¢ = 2.2 while the inset corresponds to the engine paramatees 1.0, Tg = 0.1, hg =

0.25, 7 = 190 and = 2.2.

3.3 Oscillator System

The second model of our engine consists of two particleshvbgparately interact with two

reservoirs kept at éierent temperatures ( see Fig. (3.10)). The particles icttevith each

other and are also driven by two external periodic forcel wiphase dierence. We consider

the system to be described by the Hamiltonian

H=-L 2 +—kx§+%kx§+%kc(xl—X2)2 = (fL(t) X + fr(t) X2).

(3.11)

The two particles are acted on by external periodic forcesrgby f (t) = f, cost) and

fr(t) = fo cosQt + ¢) respectively, wheré is a phase dierence. Theféect of the heat baths
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Figure 3.10: System of two Brownian particles in contact vinth heat baths and are driven
by external time dependent forces.

at temperature$, andTr is modeled by Langevin equations. Thus the equations ofamoti

are

mXy —(K+ Kke)Xy + KeXo — X + 1 + fi(t)

mX; = —(K+k)xo+keXp —yXe +7r + fr(t) ,

where the two noise terms are Gaussian and uncorrelatedasisfy she usual fluctuation-
dissipation relationg;_r(t)n r(t")) = 2ks T ryd(t—t’). Multiplying the two equations above

by x; andx, respectively and adding them up we get:
H = (—y%a + 1)k + (=y% + 1R)%e — fLt)xi — fr(t)%e, (3.12)

which has the obvious interpretation of an energy conservagquation. Averaging over

noise we get

U = QL+QR+WL+WR, (313)
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where the various energy exchange rates have the sameratétigns as in the previous

discussion and are given by,

Q = ((~y%a+n)%),
Qr = (~y%+1mR)%),
W = —(fixa),

WR = —<fRX2>. (314)

As before we define the average energy transfer rates ingadsstate), , gr, W, Wr. The
present model being linear, it is straightforward to exactimpute these as we now show.
We first obtain the steady-state solutions of the equatiémsodion. We write the equa-

tions of motion in the following matrix form:
MX = —®X — I'X + (t) + f(t), (3.15)

whereX =[x, %]", 7 = [, nr]", f = [focosQt), focosQt + ¢)]", M andI are diagonal
matrices with diagonal elemenis andy respectively andb is the force constant matrix.

The steady state solution of this equation is:

X = Xn()+Xo(t),
where Xy(t) = f i dwe™'G(w)ij(w) ,
Xo(t) = REGQ)fe™],
with G(w) = [® - w?M +iwl]™?, (3.16)

andii = [ dwe @ p(t), f = {1,e)T. Itis easy to see that the matr®(w) has two

independent elements and we denote them as,

Aw) = Gy1 Gz = [K + ke — mw? — iyw] /[(K + ke — Mw? — iyw)? — K]

B(w) = G]_z Gz]_ = kc/[(k + kc — ma)z - I’)/(,t))2 - kg] (317)

Using the above solution in Eg. (3.16), and after some bitlgélaraic simplifications, we
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obtain the following results:

20 Keyke(TL T

q = _OT [ A(Q) + Bi(Q) cosp) + D(Q) sin@) ] + z(géki((k: kc;)/Z) :
f2Q kerke(Te =T

R = _07 [ A(Q) + Bi(2) cosp) — D(QY) sin(p) ] + 2(rr?ékc+((lf+ kC)L)),Z) ’

f2
W= S [AQ)+8(2)c0s6) - B(Q)sin) ]
2

fsQ
Wr OT [ A(Q) + Bi(R2) cosg) + Br(2) sin@) 1, (3.18)

whereAg, A, Br, B, are the real and imaginary partsAfandB respectively and(Q) =
2y?Q%k./Z(Q) whereZ(Q) = |(k+k. —mQ2 —iyQ)?—k2|2. From the expressions in Eq. (3.18)
it is clear that the heat transfer rates can be separatedat¢oministic parts (depending on
the driving strengtH,) and noise parts (dependent on temperature of the two EsBVI he
work terms are temperature independent. We now note thaletieeministic parts ofl_ and
fr, are both negative. This can be shown by using the facts’hat0 andA? — B2 — D? =
y2Q?[(k + k. — mQ?)? + y2Q? — k?]?/Z? > 0. This means that fof_ > Tg, we always get
Jr < 0 and hence we can never have heat transfer from the cold hotheservoir. Thus this
cannotwork as a heat pump. Also we note that whileandwg can individually be negative,
the total work donev, +Wg Iis always positive. This means that this mod@hnotwork as an
engine either. These conclusions remain unchanged evendiefine work aSNL = (fLx),
Wk = (fr%). In Fig. (3.11) we plot the dependence of the rates of heastea and work
done in the system on the phasé&eliencep. The figures correspond to the parameter values
k=2 k =3 m=1 f, =1 v =1andT, = Tg = T. The plots are independent of
the temperatur@. Note that the only fect of the driving is to pump in energy which is
asymmetrically distributed between the two reservoire asymmetric energy transfer into
the baths is an interestingfect considering that there is no inbuilt directional asyrirgniz
the system.

In this model the heat baths and the external driving seencttandependently on the
system. Itis clear that the linearity of the model leads i® $leparability of theféects of the

driving and noise forces and this could be the reason thamtuel is not able to function as a
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Figure 3.11: Plots of heat transfer and work done as a fumctighase dterencep in the
two particle model. Her& = 2r/3.

heat pump. Hence it is important to consider tife@ of non-linearity. We have numerically
studied the ffect of including a nonlinear part of the forafx; + X5 + (X, — X2)*]/4, in the
oscillator Hamiltonian. From simulations with a large raraj parameter values we find that
the basic conclusions remain unchanged and the model doegrio either as a pump or
as an engine. In Fig. (3.12) we show some typical results eedst here also even though
two worksw, andwr become negative, still total work done is always positivemiarly
heat transferred is always negative. In Fig. (3.13) we plettbtal work done on the system,
due to non-linearity we find that this work done now dependthertemperature unlike the

linear model.
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Figure 3.12: Plots of heat transfer and work done as a fumctigghase dterencep in the
two particle model with non-linearity. Her®@ = 27/3 and other parameters

same as in Fig. (3.11).
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Figure 3.13: Plots of total work done as a function of frequeq in the two particle model
with non-linearity. Herep = 7/2 and other parameters same as in Fig. (3.11).
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3.4 Conclusions

In conclusion, we have studied two models which have the sagredients as those on
which recent models of quantum pumps have been construdtedind that the first model
performs as a heat pump to transfer heat from a cold to a hetvas Thus pumping is not
an essentially quantum-mechanical phenomena. Also ouehpmiforms as an engine to
do work on the driving force. It is useful to compare our modgh the other well-studied
microscopic model of a engine, namely the Feynman ratcheétpawl. Recent detailed
studies have shown that this model can function both as amermmnd as a refrigerator
[53, 54]. One diterence of this model from ours is that there is no periodiere driving.
However this also means that in order for the model to workagdic way, at least one of
the degrees of freedom has to be a periodic (or angular)blaridhis may not always be a
desirable feature in realistic models. Surprisingly owosel model, though apparently built
on the same principles, fails to perform either as a pump anangine. We have also tried
the double well potential of type;1 kx¢ + ; ax} — 1 kX3 + 7 @3, which resembles the two
levels (in spin case ). Though we have tried large range @rpater values, still it is not
clear as to what are the necessary conditions for the pumglnmdork.

The important dierence between microscopic models of heat engines, subbsesgtud-
ied here, and usual thermodynamic heat engines is thatheedddcts of thermal fluctuations
are important. A secondfilerence is that here the system is simultaneously in contigict w
both the cold and hot baths. The understanding of these stiepic models requires the
use of non-equilibrium statistical mechanics and thereareently no general principles as
in classical thermodynamics. It is clear that further stgdire necessary to understand the
pumping mechanism in simple models of molecular pumps asa#m perhaps lead to more

realistic and practical models of molecular pumps and eagyin
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4 Particle pump with symmetric
exclusion process.

4.1 Introduction

The symmetric exclusion process (SEP) is one of the simplestvell studied models of a
stochastic interacting particle system. In this model Wwitian be defined ondidimensional
hypercubic lattice, particles movefliisively while satisfying the hardcore constraint that
two particles cannot be on the same site. A number of exacltsdsave been obtained for
this model, particularly in one dimension [9597]. If the model is defined on a ring and
conserves the total density, the system obeys the equitibcondition of detailed balance
in the steady state and thus does not support any net cuidottof attention has also been
given to non-equilibrium steady states of driven SEP in Wlhin@ particles can enter or leave
the bulk at the boundaries. For this model, the time-depanciarelation functions [100]
and dynamical exponents have been obtained using the é&qnaéesof the transition matrix
(W-matrix) to the Heisenberg model [101]. Recently, large déwn functional and current
fluctuations have also been calculated for the driven SE@{1102]. Experimentally it has
been shown that SEP can be used to model tfiesion of colloidal particles in narrow pores
[103-108].

Here we study the SEP for the case where hopping rates aredépendent. This is
one of the few studies of a many-particle interacting stettbanodel with time-dependent
transition rates and as we demonstrate shows a lot of ititegdsehaviour. The initial mo-
tivation for this study comes from quantum pump models dised in the previous chapter

[85,88,90—- 92 109- 117]. We saw there that classical heat pumps could be budtroi
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lar principles. Here we investigate the question whethggding similar driving protocols,
particle pumping can be achieved in a classical stochastaem

Classical pumping of particles in time-dependent stocbastidels of non-interacting par-
ticles has earlier been studied [11820] and seen in experiments [123]. Systems exhibiting
pumping €fect have often been modeled as Brownian ratchets in whichmeracting par-
ticles move in an external periodic potential and we haveudised various such models in
chapter (1). Our model ffers from such models in that here we are dealing with a many bod
particle system with interactions, and particle inter@atsi seem necessary for the pumping
effect.

We have studied the time-dependent SEP by simulations aodaalalytically by using
perturbation theory. The first perturbation uses the dgiramplitude as the small parameter.
The other uses the inverse of driving frequency as a smalhpater. Within this perturbative
approach, we are able to obtain exact expressions for wphwsical quantities, and find
very good agreement with simulation results. The mostéstamg result is that in the model
with time-dependent rates at all sitesD& current of order unity can be obtained. We note
that the hopping rates though time-dependent, are stillhsgtmc and hence our result is

surprising.

4.2 Definition of Model

The model is defined on a ring with sites ( see Fig. (4.1)). A site= 1,2,3,...L can be
occupied byn, = 0 or 1 particle and the system contains a totalNof pL particles where
p is the total density. A particle at sitdhops to an empty site either on the left or right with

equal rates given by:

U fo + f1V|

where v, a Sin(t + @) = vt + vie ! (4.1)

Here the site-dependent complex amplitudes are defined by, €?/2i with o, as a real

amplitude andf;, is chosen such that all hopping rates are positive.
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Figure 4.1: Schematic representation of the SEP model vatlogic boundary conditions
where a particle hops to next or previous unoccupied site @qual rates. Blue
and white colors denote occupied and unoccupied sitesatgglg. For example
particle at site 2 can hop to site 1 or 3 with equal probabikityere as particle
at site 5 can hop to the previous site but not to the next sithisaparticular
configuration.

A configuration of the system can be specified by thggtl = 1,2,...L. Let us define
P(t) as the probability vector in the configuration space, widnmentsP(C, t) giving the
probability of the system being in the configuratidn= {n;} at timet. Then the stochastic

dynamics of the many particle system is described by theenaguation:

? = W(t) P(t) = W, P(t) + W1(t) P(t) (4.2)

whereW is the transition matrix, which we have split into a time-@peéndent and a time-
dependent part. One can also consider the time-evolutioat®mns form-point equal-time
correlation function<C, 1,1, _i.(t) = (M..n) = Xy M-, PN, 1), Thus, for example,

the densityp(t) = (n;) and the two-point correlation functidd, (t) satisfy the following
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equations:

0
g + 2U|p| — U-101-1 — U10141 = U (C|_1,| + C|,|+1) - UI+1CI,I+1 - UI—1CI—1,I (43)
aCLm

ot + 2( U + Un )Cl,m —U-1 CI—1,m — U1 CI+1,m — Umn-1 CI,m—l — Ums1 Cl,m+1

= W(Cum+Ciizm) +Un(Cim1m+ Cimme1) —U-1 Ciogym — U1 Crvam

—Um-1 CI,m—l,m — Umy1 CI,m,m+1a for |I - ml #1
0C 41
ot + (U + U1 )Cs1 — U1 Ciiagir — U2 Ci i
= U Crym+ U4 Crrez — U1 Ciiagger — U2 Crsage - (4.4)

From Floquet's theorem [124], it is expected that the longetistate of the system ( as-
sumed to be unique ) will be periodic in time with period= 27/w. Here we will be mainly

interested in thé®C currentJ defined as
-1 T
J = T f Jia(t) dt, (4.5)
0
where the curreni,,; in a bond connecting sitésand| + 1 is given by
Jij+1 = Ulor = Cyir1) — Uiea(orer — Cijaa) (4.6)

and the local density, = (n;). From the periodicity of the state and particle conservatio
follows that theDC current is uniform in space and therefore, using Eq. (4.€)can write

for the DC current:

_ 1 T L
1= =) IZl]J.,l+1(t) dt (4.7)
fi (7w
= ﬁfo ;(VI+1_VI)CI,I+1dt (4.8)

Thus, to find theDC current, we need to compute 2-point correlation functp,(t). In
this chapter, we will first develop a perturbation theory, deneralv;, and then apply it to
some special cases.

Note that forf, = 0, the above model reduces to the homogeneous SEP with jgeriod
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boundary conditions whose properties are known exactlyhiicase the steady state is an
equilibrium state which obeys detailed balance and here@avthrage current is zero (This
result holds even when thgs are site dependent, but time independent). In the steath, s
all configurations are equally probable iR(C) = 1/(y) whenf; = 0. Then one can show

that the density and correlation functions for the homogereSEP are given by:

N
P|(O) = P=T
o _ (N-1)
C, = p(L—l)
L-m) (L
0
Clatetotn = (N_ m)/(N). (4.9)

4.3 Perturbation theory in  f;

For f; # 0, the knowledge of the exact steady state of homogeneousS&tites us to set

up a perturbation expansion fi of various observables. We now describe this perturbation
theory within which we calculate an expression BE currentJ in the bulk of the system.

A similar perturbation technique was developed for a tvaiessystem in [125]. We expand
various quantities of interest with as the perturbation parameter about the homogeneous

steady state correspondingfo= 0. Thus we write

p®) = @)y =p+ > o) (4.10)
r=1
Cim) = (M®N(t)y =C? + i fiC () (4.11)
r=1

and similar expressions for higher correlations. Pluggiigg. (4.11) into Eq. (4.8), we find

that the lowest order contribution tis atO(f2) and given by:
SR &
2
SCES fo 21(\/, ~ Vi) CY, dt (4.12)

To develop our perturbation theory and find'@@;s, we start with the time evolution equa-

tion for densityp,(t) which is given by Eq. (4.3). Plugging in the expansions irs.Hg.10)
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and (4.11), we get the following equation for the dengftyatr™ order:

(9p(r)

ot

- foAlp(r) +2V|/0(r Y-y 110|(r 11)_V|+1p|(111)

= W(CTL + CiY) — vl - vl (4.13)

whereAg = g1 — 29, + g._1 defines the discrete Laplacian operator. Thus the density at
order is obtainable in terms of density and two point cotietafunction at ( — 1) order.
We check that at the zeroth order, we obtain the homogeneBBsf@& which the density
and all equal time correlations are given by Eq. (4.9). At firsler, the above equation then
gives:

1)

apl

ot f0A|p|(l) = oAV, (414)

whererg = p — C(o) The solution for this equation is the sum of a homogeneottsygach
depends on initial conditions and a particular integrallofig times the homogeneous part

vanishes while the particular integral has the followingnagtotic form:
pP(t) = APt - A Dgriot, (4.15)
Substituting Eq. (4.15) in Eq. (4.14) we obtain the follog/iequation fof A™M):
(iw + 26) A — oA, — foAY = ro(vivs — 2v + 1) . (4.16)
This can be written in matrix form as:
Z(w) A =-roB®, (4.17)

where

Zm = —fooima+ (lw+2fg) 61m— fodim1
BIm - _5I,m+1 +2 6I,m - 5I,m—1
A = (ADAD AT ® = (v, v, )T, (4.18)
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and periodic boundary conditions are implicitly taken. HBi@ve equation can be solved for

A and we get:
A = -1, G(w) B, (4.19)

whereG(w) = Z}(w). Both G(w) and B are cyclic matrices and so can be diagonal-
ized simultaneously. The eigenvaluesZgfy) areiw + 4f, sir?(pr/L), while that of B are
4 sirf(pr/L) with p = 1,2, ..., L, and eigenvector elements @&P/t/L%2. HenceA™ can

be written as:

Iy = et sird(pr/L)
n_ _*0 4.20
A L ;; iw + 4fy sir?(pr/L) ym (4.20)
which in the largd. limit gives:
A = Loy Irow LZL: [Z™ 4 2™y (4.21)
= - - m» "
fO f02 Z —Z m=1

where,z. = y/2 - [(y/2)? - 1]¥?, z. = 1/z_ andy = 2 + (iw/ fy).

To compute the(f?2) contribution toJ, we need to evalua@&)q, which we now proceed
to obtain. Inserting the perturbation series in Egs. (4al@) (4.11) into Eq. (4.4) we get the
following equation for the correlatioﬁl(% atr™ order forjm— I # 1:

o)
ot

- fo(A+An) C|(rr)n + 2V Cl(f,;” v C' Y — v, cY

I-1,m I+1,m

—1 -1 -1
+ 2Vny C,(’rm ) — Vi1 C|(,rm_)1 — Vmi1 C|(,rm+i

= vi(C P +Ch D Y +vm(Cl Y +CIY )

1-1,l,m I,I+1,m [,m-1,m I,mm+1

(r-1) (r-1) (r-1) (r-1)
- Vi C:I—l,l,m — Vi1 C|,|+1,m —Vm-1 CI,m—l,m — Vmi1 Cl,m,rml’

while for m=1+1:

ac(f)
I1+1 () (r) r)
ot + fo(2C),, -Cl1 —Clln)
_ (r-1) (r-1) (r-1) (r-1)
= V2 (Gl = Cie) + Vi (Gl — Clypiig)
(r-1) (r-1) (r-1) (r-1)
- V(G — Cli) — v (Cy — G- (4.22)
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At first order we get:

8C(l)

I.m  _
ol fo(AI + Am)Cy 1 = Ko(AVi + AmVim)
acy)

6It|+1 + fo(2C, - Cha - Cﬁlz) ko(Vi-1 + Vis2 = Vi = Viy1), (4.23)

whereko = C% - C® | and these are known from Eq. (4.9). The computation of even th
homogeneous solution of the above set of equations is irrgeseontrivial task because of
the form of the equations involving nearest neighbor insli@ed requires a Bethe ansatz or
dynamic product ansatz [99, 100]. However it turns out thatlbng time solution can still

be found exactly and is given by:
Cin(®) = [p(”(t) +pR 0] = Ajpe + A, (4.24)

WhereAf’ln)1 = (ko/ro)(Afl) + AY). Itis easily verified that this satisfies Eq. (4.23) forlath.
To determine whether the system indeed has a product megsyuiges a more detailed
analysis of the higher order terms in the perturbation senl higher correlations. We have
verified that, at first order in perturbation theory, all &ation functions in fact have the
same structure as the two-point correlation function in(Bg4).

We now plug the solution in Eq. (4.24) into Eq. (4.12) for threrage current in the system

and after some simplifications obtain:
J® = k° Z (A% + ADv = AWy — A, (4.25)

with Afl) given by Eq. (4.21). For any given choice of the ratgghis general expression
can be used to explicitly evaluate the &E current in the system.

We now consider two special choices of the rdigs
(i) The choicer; = o = 1, all othera; = 0, andg; = 0, ¢, = ¢ corresponds to the two-site

pumping problem. In the limit of largk, this gives:

Jo = (fo) ko“’LS'n"’ Relz]. (4.26)
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Figure 4.2: Plot of currend versus the phaseftierencep. For parameters as in Fig. (4.4).
The solid lines are from the perturbation theory.

Writing z, = re”, we find that foro <« w* = 2f,, the magnitude ~ 1+ Vw/w* and the
anglen ~ Vw/w*. In the opposite limity ~ 2w/w* andn ~ /2 - w*/w. Usingz, = 1/z,
we find that the current has the scaling form:

3o _ ffkosin¢G( w )

oL 2% (4.27)

where the scaling functioB(x) = 2x for x < 1 and ¥ x for x > 1. We summarize the most
interesting features of the above result. These are: (DCAcurrentJ is obtained, which
decays with system size as J ~ 1/L. (2) TheDC currentJ_depends sinusoidally on the
phase dierence between rates at two sites. (3) The dependenfm)blriving frequency
w shows a peak at a frequeney with J — 1/w asw — o« andJ — w asw — O.
The latter result means that a finite number of particles meoelated even in the adiabatic
limit. We discuss this point in detail in Sec. (4.5). We hawfprmed direct numerical
simulations of the time-dependent SEP and compared thelmowit analytic results. We

plot Jversus phase flerencep and driving frequencw in Figs. (4.2) and (4.3) respectively.
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Figure 4.3: Plot of currentd versus driving frequencw for the same parameters as in
Fig. (4.4). Solid lines are from perturbation theory.
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Figure 4.4: Plot ofDC densityp, across the ring fofy = 0.3, f; = 0.2, w = 0.27r and¢ = 7/2
at half filling for two system sizes obtained from simulagoinset:DC current
(from simulations JJ ~ 1/L as shown by solid line of slopel.
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Figure 4.5: Plot of time-dependent densities at the foeisf aL = 4 lattice. In the initial
configuration, sites 1 and 2 have one particle each and ottesr are empty.
The averages over one time period gigg:= 0.503493 p, = 0.498702 p3 =
0.497417 p, = 0.500388 and) = 0.000514. The points show the curpet+
f1) + 1202, [Parametersfy = 0.4, f; = 0.1, ¢ = 7/2 andw = 0.2x].

In the simulations we have also looked at the steady statstgigorofiles. The results from
simulation are shown in Fig. (4.4). The linear profile is estpd since in the bulk of the
system we havd = —Vp. From Eq. (4.15) it is clear that at first order correcti@®C part
pM vanishes. Hence, we need to look at the higher order cotiiipinamelyp!(t). This

can be found exactly and has the form:

pP(t) = o + APt | APlgrizot (4.28)
The general expression for tieC part is given by:

p? = bl+h,1=2.,L-1

2
p? = b+h+ T Rep; (A — AM)]

2
pP = bL+h+ T Repi (AY,, - A, (4.29)
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where the slopé of the linear density profile is given by

2 * *
Re[vl(A(lg - Ag%g) + vL(Afg - A(Ll_)l’L)] i (4.30)

b:L_fo

and the interceph can be found using the particle conservation condiipp® = 0. This

agrees with the form seen in results in Fig. (4.4). Finallizigy. (4.5) we plot the densiiyi(t)

as a function of time fot. = 4 andN = 2 problem, which can be exactly solved numerically.

As can be seen, the results from the perturbation theorymvaity well with the exact ones.
We also note thal is independent of, for largex. This can be seen by writing the master

equation as:

P fo f1
qan = o WoPM + ZWP(O). (4.31)

Forw > fo, the first term on the right hand side can be neglected thusggilie probability
distribution to be a function of;/w.

(if) The second case we consider is one whgke 1 at all sites ang, = gl, whereq = 2rs/L
with s=1,2...L/2, so that there is a constant phadéedenceq between successive sites. In

this caseAfl)’s given by Eq. (4.20), evaluated at larhaives:

iro ;

AD = Z—fOeM'a (4.32)
where a ﬂ
y/2 — cosq

and from Eq. (4.25) we get for the average current:

2

f
J@ = —lf—ko sing Im[a]
0

2 2 ko w sing (1 — cosq)

T OTw? 42 (1-cosg)?] (4.33)

Thus we see that for most valuesive get a finite current, even in the linlit— oco. For
q~ 1/L andq ~ 7 — 1/L, the current goes to zero for large system sizé as.—3. From the

current expression in Eq. (4.33), we can find out the vaglgeq®, at which the current is a
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maximum. By diferentiating Eq. (4.33) with respectdove get:

cosl’) = (1 + Q2 — V(1 + Q22— (1-Q?), (4.34)

whereQ = w/2fy. It turns out that for large) the maximum is at|" = 27/3, while for small
frequencies we get' ~ vw. Also we find from Eg. (4.33) that in the adiabatic and fast@ri

limits, the currents are respectively given by:

f2ko
7@ {_ 37 CotA/2) w  w/fo << (1-cosa) (4.35)

= 2f2kosing(l—cosq) 2 w/fo>>1.

The perturbation theory results turn out to be quite aceyras can be seen from the
comparisons with simulation results, shown in Figs. (4r&) &.7), for diferent choices of
g namelyq = n/2 andq = 2x/L, for case (ii) discussed above. In these figures we have
plotted the current for dierent system sizes and verify the- L° dependence andi~ L3
dependence for these twgs. Using the expression fdg in Egs. (4.26, 4.33), we find that
J@ . p%(1 - p) which has a maximum at = 2/3 and breaks particle-hole symmetry. This
particle-hole asymmetry can be understood easily. Frondéfiaition of the model we see
that, unlike the particles, the hopping rates of a hole atesyimmetric: a hole at sitehops
towards right with ratey,; and left withu,_;. In Fig. (4.8) we have plotted simulation results
for the average current as a function of particle densitydifierent system sizes, and find
good agreement with our perturbative result, even at aivelgtiarge value off; / f,.

In simulations we have looked at the density profiles and fivad the site wise density
profile p; in case (ii) is flat. This is unlike in case (i), where we foundhhdensities at
the two special sites and then a linear density profile in thk psee Fig. (4.4) ). The flat
density profile, for case (ii), is understood because henetare no speciglumpingsites. It
is interesting that we can get current in the system evereialisence of Fick’s law. We also
note that even if the hop-out rates are made biased in onetidinelike in the asymmetric

exclusion process (ASEP), we can still get a current opasiis bias (for small biases).
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Figure 4.6: Plot ofDC currentJ versus system size for parameterd, = 0.5, f; = 0.1,
w = 0.2r and forq = n/2. Continuous line from perturbation theory and dotted
line from simulations.J goes to a constant value can also be seen from Eq. (4.33)
for this phase dierence.
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Figure 4.7: Log-log plot ofOC currentJ_( dotted line from Eq. (4.33), numerical values )
versus system siZefor q = 2r/L. The current decays agl1® (continuous line)
as predicted by Eqg. (4.33). Parameter valuesfare0.5, f; = 0.4, w = 0.27.
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Figure 4.8: Plot oDC currentJ versus densitp = N/L for parameterdy = 0.5, f; = 0.4,
w = 0.2r and¢, = nl/2 for system sizes = 16,32 and 64. Both the results
from simulations (symbols connected by dotted lines) aachfthe perturbation
theory (lines) are plotted.

4.4 Perturbation theory in  1/w

In this section, we find thBC current within sudden approximation following the proceslu

of [126]. Callingd = wt, the master equation Eq. (4.2) can be rewritten as

PO~ 2 o + wy(0] PO (4.36)
w

which can be expanded in powers gtdby usingP(d) = 3o, w"P™(6) to give

)
dg’g 0 (4.37)
L
dpde(e) ~W,(0PQ = WPO (4.38)

and so on. From the zeroth order equation, we seePfais independent of. In fact, for
w — oo, We expect the system to behave as the unperturbed homage8&® for which
W,P© = 0 is satisfied and as discussed in Section 4.2, all the elsmétiie vectoP© are

known. Using this fact, the first order correctiBff) can be found by integrating Eq. (4.38)
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overd. Following steps as those leading to Eq. (4.12), we now gelvarage currentls, at

orderO(1/w). This is given by:

_ f, 2n L
o f fo do ;(VM —w)cl, (4.39)

where we have expanded the nearest neighbor correlatiatidarC,; = .., w‘“C,[”l‘Ll
in powers of Jw and again use the expression @f, = C)), given by Eq. (4.9). The
first order correction to correlation function can be obedirby perturbatively expanding
EqQ. (4.4) and obeys the following simple equation:
I
do

= fiko (V42 + Vics — Vi — Viy1) - (4.40)

We now again discuss the two special choices of rgtefiscussed in the previous section.
(i) In this case, only two sites have time-dependent hoppiresraSolving the equations

above for the correlation function, we get:

Cl) = fiko(cosg) — cos + ¢)) + Cr2 (4.41)
CH, = —fiko(cos) — cos@ + ¢)) + CL 11 (4.42)
Cll = fiko(cosp) +cos@ + ¢)) + CLs (4.43)

wherec’s are constant of integration (which do not contribute torent). Using the above
equations in the expression fa", we finally obtain

2f2ko sing

o -
s wlL

(4.44)

Thus, we find that to leading order ind (and arbitraryf;), the DC current is the same as
the one obtained by taking largelimit in the current expression Eq. (4.27) obtained from
the f; expansion.

(i) In this case withy, = 1 at all sites, the equations for the first order correlatigrctions

can be solved for arbitrary phasgsand we get:

Clil, = kof1[COSE + ¢)) + COSO + ¢1.1) — COSE + ¢1_1) COSO + ¢1.2)] - (4.45)
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Using these in the current expression and after some siogildns, we get:

ORI IR
0 = 2L [25in6 - ¢) - sinra - dr-0)]. (4.46)
1=1

Note that the above expression depends on the phé&gseetice between nearest and next
nearest neighbor sites. F@r = gl, we recover the result stated in the second line of

Eqg. (4.35).

4.5 Adiabatic calculation

We now discuss an adiabatic calculation similar to that duAsan for a two state model
[123]. The model considered by Astumian consists of a sisggconnected to two reser-
voirs with input rates (t), a(t) and output rate8; (t), 8»(t). The rate equation of the particle

density at the site is given by:

d
d_? =t (4.47)
where I; = a1(1-Q)-51Q, lL=a(1-Q)-5.0Q.

The instantaneous rates satisfy the conditiomg(t)/B:(t) = a(t)/B(t) = €O and
as(t)/aa(t) = Bo(t)/B(t) = €D, For low driving frequencief(t) can be expanded about
the instantaneous equilibrium soluti@®(t) asQ(t) = QO(t) + wQW(t), whereQ©®, QW

satisfy the following equations:

@1(1- Q) - 81,Q? = ap(1- Q) - B,Q¥ = 0 (4.48)
0)
d;{ = —w(ay +P1 + az + B2)QY (4.49)

The instantaneous equilibrium solution, from Eq. (4.48) is

o @ _ 1 4.50
Q a1+ B l+ec’ ( )
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The net particle transpo®¥ (from reservoir 1 into system) over one peridd= 2r/w can

be written as:

T T
N = f |1dt = - f (a/l +,81)(1)Q(1)dt
0 0
T 0)
0 C

a1 +B1+ax+ B dt

1

with F m ,

(4.51)

and Wherefc denotes the integral over a cycle.

In our case formally one can obtain an exact expression ®mgt particle transport.
For this we start with the master equatiéR/ot = W(t)P. Let PO(t) be the instantaneous
equilibrium solution satisfyingV(t)P© = 0. Then, for slow rates, P(t) will have the form
PO(t) + wPW(t) where the correction is given byoP® = W1 gPO/ot . The net particle

transported across any bond in one time cyslecan then be expressed as:

~ T ~ Z Wz (%) O
N—fo dtZC:J(C)P(C,t)——fO dxg;J(C)TP (C',x), (4.52)

where J refers to the current on any given bond. Thus we have a forwpkession, for
the net particle transported, in terms of an integral oveequilibrium averageof some
guantity. However this expression does not appear to havsiaple physical interpretation
and neither is it easy to obtain any explicit results, uniitiefast case treated in section (4.4).
The above equation has to be interpreted carefully, Siideas a zero eigenvalue aid!

is not strictly defined.

4.6 Conclusions

Here we have considered a lattice model @ifidiing particles with hard core interactions and
shown that if the hopping rates at various sites are madedmpendent, but still symmetric,
then aDC current can be generated in the system. Thus, a ratdfest és obtained in

the sense that a directed current occurs even though the@ applied external biasing
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force. Unlike many other examples of models of classicalhets, there is no asymmetric
potential in our model. However asymmetry is incorporateithe modulation of the hopping
rates, and this is best seen when we consider the case wleengotifulation is given by
vi(t) = sin(wt — gl). This of-course corresponds to a wave travelling igiveen direction.

A non-trivial aspect of the problem studied is the fact tint ¢fect goes away as soon as
we switch df the hard-core interactions. For non-interacting B@ current is given by

J = (1/LT) fOT dt Z|L:1 up — U041, and is seen to be exactly zero, for arbitrary choice
of the time-dependent rates. On the other hand, havingaittiens in the system is not a
suficient condition to generate@C current. For the models considered in this chapter, the
hopping rate is site-wise symmetric. But if the hopping raessymmetric bond-wiseg.,

the hop ratey ;1 from sitel tol + 1 is the same as that frol 1 tol, then theDC current is
zero for any choice of phases To see this, consider the density evolution equation abeye

by bond-wise symmetric SEP:

0
% = U_1i(oi-1 = 1) + Uys1(ois1 — o1) (4.53)

Unlike Eq. (4.3) for site-wise symmetric SE®, = p is a solution of the above equation
for any choice of rates;. In fact, an inspection of the master equation shows than ev
with a time-dependentV-matrix, all configurations are equally likely, thus leaglito the
zero current. Thus the exclusion process with bond-wisensgimc rates does not give the
ratchet éect. It is not completely clear as to what are the necessatguaiicient conditions
to get a directed current.

For the model considered here, since the equations fongoynt correlation function do
not close, it does not seem simple to solve the model exatyhave therefore studied the
system analytically using a perturbation theory in the atugé f; and the inverse frequency
1/w. In this study, we have been able to obtain € current at orderf? by solving
the evolution equations for density and two point correlatiunction to orderf;. Also,
we have been able to obtain results for large driving frequday solving the correlation

function alone by such perturbative approaches. Comparitigsimulations we find that
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the perturbative results turn out to be quite accurate.

Finally, we point out that an experimental realization af "fect observed in our model
should be possible in colloidal systems. For instance,idens colloidal suspension in an
externally applied laser field. This constitutes a systerdifb@isive interacting particles in
an external potential (generated by the laser field) of tha #(x, t) = Vo sin(wt — gX). This
system is similar to the model that we have studied. Theresamge diferences, namely,
in this case because the external field is space dependect tiee &ective hopping rates
are not symmetric in the forward and backward directionsvdtild be interesting to study
this model to see if a current can be generated here, andpsedme can make detailed

predictions for experimental observation.
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