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Nonclassicality in the sense of quantum optics is a prerequisite for entanglement in multimode radiation states.
In this work we bring out the possibilities of passing from the former to the latter, via action of classicality
preserving systems like beam splitters, in a transparent manner. For single-mode states, a complete description
of nonclassicality is available via the classical theory of moments, as a set of necessary and sufficient conditions
on the photon number distribution. We show that when the mode is coupled to an ancilla in any coherent state,
and the system is then acted upon by a beam splitter, these conditions turn exactly into signatures of negativity
under partial transpose (NPT) entanglement of the output state. Since the classical moment problem does not
generalize to two or more modes, we turn in these cases to other familiar sufficient but not necessary conditions
for nonclassicality, namely the Mandel parameter criterion and its extensions. We generalize the Mandel matrix
from one-mode states to the two-mode situation, leading to a natural classification of states with varying levels
of nonclassicality. For two-mode states we present a single test that can, if successful, simultaneously show
nonclassicality as well as NPT entanglement. We also develop a test for NPT entanglement after beam-splitter
action on a nonclassical state, tracing carefully the way in which it goes beyond the Mandel nonclassicality test.
The result of three-mode beam-splitter action after coupling to an ancilla in the ground state is treated in the same
spirit. The concept of genuine tripartite entanglement, and scalar measures of nonclassicality at the Mandel level
for two-mode systems, are discussed. Numerous examples illustrating all these concepts are presented.
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I. INTRODUCTION

States of multimode quantized radiation fields are, by
very definition, nonclassical in nature. However, for many
purposes it is useful to characterize certain states as displaying
nonclassical features in a particularly prominent or manifest
manner. The quantum optical concept of nonclassicality, based
on the diagonal coherent state representation [1], and the notion
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of entanglement [2], are two such important nonclassical
features displayed by some states but not by others. Whereas
the former has played an important role from the early days
of quantum optics [1,3–12], the latter has received enormous
attention more recently, with the development of the theory
of quantum information [13–17]. Of course, entanglement
is meaningful only in the case of two or more modes of
radiation, while nonclassicality is a useful concept even at
the single-mode level.

The main aim of this work is to study the relationships
between quantum optical nonclassicality and entanglement
of various kinds, and the possibility of generating the latter
given the former. In this context the asymmetry between
these two features must be carefully appreciated. It is well
known that quantum optical nonclassicality is a prerequisite
for entanglement [18]. Whereas every entangled state is
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nonclassical, a nonclassical state may be separable (tensor
product of nonclassical states, for instance) or entangled; thus,
entangled states are a proper subset of nonclassical ones.
Then the following questions become meaningful. For every
signature of nonclassicality, how much further must one go
and what additional conditions have to be met before one
is assured of entanglement (of a specified type)? Given a
nonclassical separable state, can it be transformed into an
entangled state through a physically realizable process using
classicality preserving systems?

In speaking in this sense of converting nonclassicality into
entanglement we have in mind the use of passive devices
such as beam splitters [19–21] which act on several modes
of a given system to produce unitary linear combinations
of the annihilation operators of the modes. Such systems
preserve total photon number and, furthermore, they cannot
create or destroy nonclassicality. A general study must include
developing and clearly specifying signatures of various levels
of nonclassicality on the one hand, and of entanglement on
the other, and then examining how one can reach the latter
starting from the former, using these classicality preserving
passive systems.

Three comments by way of clarification are in order
before we describe the manner in which the contents of
this paper are organized. First, it should be stressed that our
concern in this paper is (almost exclusively) with non-Gaussian
states. Nonclassicality of Gaussian states is necessarily of the
squeezing type (quadrature squeezing), and a beam splitter
can convert such a nonclassicality into entanglement. It is
essentially this Gaussian scenario that largely formed the
workbench during the early years of the theory of entanglement
for continuous variable (canonical) systems, elevating the role
of the symplectic group of linear canonical transformations and
its unitary (metaplectic) representation. The interplay between
nonclassicality and entanglement in the Gaussian case has been
long appreciated. For instance, the principal result of Ref. [15]
can be phrased thus, as emphasized by Kimble recently [22]:
A two-mode (mixed) Gaussian state is separable (positive
under partial transpose) if and only if its nonclassicality
can be removed by local linear canonical transformations—
entanglement is the same as nonlocal nonclassicality.

More recently, however, there has emerged considerable
interest in non-Gaussian states [23–34]. References [32–34]
may be consulted for a good introduction to the literature.
Nonclassicality signature of non-Gaussian states is not re-
stricted to quadrature squeezing—the state can be antibunched,
for instance. A non-Gaussian state which is neither squeezed
nor antibunched could exhibit nonclassicality signature in
the higher moments of the photon count statistics or photon
number distribution [9]. Non-Gaussian states thus exhibit a
rich variety of nonclassicality signatures [35–37].

The second comment is with respect to beam splitters;
we make extensive use of these gadgets in the present work.
In the domain of quantum optics, nonclassicality generating
operations like squeezing are considered to be expensive
resources whereas the beam splitter, being a passive device,
is rightly considered inexpensive. The latter is passive in the
sense that it cannot alter the total number of photons in the
pair of modes it couples, and also in the stronger sense that it
cannot create or destroy nonclassicality. It thus makes sense

to ask to what extent the expensive nonclassicality resource
can be converted into the (expensive) entanglement resource
using the inexpensive beam-splitter resource. One should,
however, appreciate that the beam splitter effects a joint unitary
transformation on the pair of modes it couples, and hence will
be considered an expensive resource in a different context like
a pair of nanomechanical oscillators. Our analysis thus applies
to the specific context of quantum optics.

The third and final comment is with respect to the partial
transpose test [15,38], of which we make repeated use in
this work. For a bipartite system described by Hilbert space
HA ⊗ HB , let {|j 〉A} represent a fixed orthonormal basis
(ONB) in HA and {|α〉} represent such an ONB in HB , so that
{|j 〉A ⊗ |α〉B} is an ONB in HA ⊗ HB . Thus any bipartite
density operator has the form ρ =∑j α, k β ρj α, k β |j 〉A ⊗
|α〉B A〈k| ⊗ B〈β|. Then partial transpose with respect to
subsystem B is defined by partial transpose (PT): ρj α, k β →
ρj β, k α , (i.e., through transposition of only the Greek indices).
A separable operator obviously remains positive under partial
transpose (PPT), and it follows that PPT is a necessary
condition for separability. Conversely, a density operator that
fails to be PPT is certainly entangled: Negativity under partial
transpose (NPT) is a sufficient condition for inseparability.
That there exists a gap between these two statements is
evidenced by the existence of states which are PPT and yet
inseparable [39]. Such states are said to be PPT entangled. In
the cases of Hilbert space dimensions 2 × 2 and 2 × 3, and
only in these cases, is PPT equivalent to separability [40].
It is known that PPT entangled states cannot be distilled:
NPT is a prerequisite for distillability [39]. An inseparable
state whose entanglement cannot be distilled is said to have
bound entanglement. In spite of intense effort from many
groups, it is not yet known with certainty if NPT implies
distillability [41–46], and the question as to if there exists a
gap between NPT entanglement and distillable entanglement
remains an important open problem [47]. It is known in the
continuous variable case of two-mode Gaussian states that
PPT is equivalent to separability and NPT is equivalent to
distillability [15,48], but our primary interest in this work is
with non-Gaussian states.

The contents of this paper are arranged as follows. Section II
defines the concepts of quantum optical classicality (QO-cl)
and quantum optical nonclassicality (QO-noncl) for general
single-mode fields. In the phase-invariant case they are entirely
stated in terms of the photon number distribution [49]. This
is possible thanks to the result of the classical Stieltjes
moment problem [50]. It is then shown that if such a single-
mode state is coupled to an ancilla in any coherent state
and passed through any nontrivial U(2) beam splitter, the
resulting two-mode output state shows NPT entanglement
[38] precisely when the input single-mode state is quantum
optically nonclassical [51,52]. In this case the signatures of
the two coincide exactly. Section III defines quantum optical
classicality and nonclassicality for general two-mode states.
We then describe a single test which, if successful, is able
to establish simultaneously both the nonclassicality and NPT
entanglement of a given two-mode state. Of course, proof of
entanglement automatically implies proof of nonclassicality,
so the interest here is in the structure of the expressions
used in the test. Since theorems of the moment type are not
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available for two or more modes, we describe in Sec. IV a
sufficient criterion for one-mode nonclassicality originally due
to Mandel [8], and extend it to two-mode systems as well. All
the later considerations of this work are based on this Mandel
level of nonclassicality which is, of course, weaker than the
general notion of nonclassicality. Several levels or types of
nonclassicality in this sense are described, and three examples
to illustrate the ideas are presented.

In Sec. V we study states of two-mode systems for which
both notions of nonclassicality and entanglement make sense.
We find conditions for nonclassical states to become NPT
entangled via BS action, and show in detail the way in which
these conditions go beyond those that guarantee Mandel-type
nonclassicality. This analysis is applied to two examples to
see the formalism in action. Distillability of the resulting
state is demonstrated in one case. Section VI takes up the
theme of Sec. II and extends it to a higher number of modes.
Thus we couple a two-mode state which is nonclassical to
a third ancilla mode in vacuum, pass this three-mode state
through a beam splitter acting on the three modes, and
develop tests for NPT entanglement in the output state. As
in Sec. V, here, too, the precise manner in which testing for
entanglement goes beyond testing for nonclassicality of the
Mandel type is emphasized. Section VII discusses the subtle
notion of genuine tripartite entanglement, while Sec. VIII
brings out some features of two-mode Mandel-level nonclas-
sicality and beam-splitter action. All the ideas in Secs. VI–
VIII are illustrated through several examples with tractable
analytical structures. Section IX contains some concluding
remarks.

II. SINGLE-MODE FIELDS

Let the photon annihilation and creation operators for
the concerned mode be written as â and â†, obeying the
commutation relation,

[â,â†] = 1. (2.1)

The familiar Fock states and coherent states are

|n〉 = (n!)−1/2(â†)
n|0〉, n = 0,1,2, . . . ,

(2.2)

|za〉 = e− 1
2 |za |2

∞∑
na=0

zna
a√
na!

|na〉, â|za〉 = za|za〉, za ∈ C.

The Fock states {|n〉} form an orthonormal basis for
the space of all single-mode states, while the coherent
states {|za〉} form a normalized nonorthogonal overcomplete
system.

For a single mode there is no meaning to entanglement, only
a separation of states into the quantum optical classical (QO-cl)
and the quantum optical nonclassical (QO-noncl) types. This
is based on the diagonal coherent state representation of a
general (pure or mixed) state ρ̂(a):

ρ̂(a) = π−1
∫

C

d2za φ(za)|za〉〈za|. (2.3)

The properties of the real diagonal representation weight φ(za)
determine the nature of ρ̂(a) [1]:

φ(za) � 0 ⇔ ρ̂(a), QO-cl,
(2.4)

φ(za) 
� 0 ⇔ ρ̂(a), QO-noncl.

In the former case, the meaning is that φ(za) is pointwise
nonnegative; it is then mathematically a valid probability
density in phase space.

If one is interested only in the expectation values of
number-conserving observables (i.e., of operators commuting
with N̂a = â†â), and hence diagonal in the Fock basis, it
suffices to use the phase-averaged form ρ̂

(a)
D of ρ̂(a):

ρ̂
(a)
D =

∫ 2π

0

dθ

2π
eiθN̂a ρ̂(a)e−iθN̂a

= 1

π

∫
d2zaP (Ia)|za〉〈za|, Ia = |za|2, (2.5)

P (Ia) =
∫ 2π

0

dθ

2π
φ(zae

iθ ), ρ̂
(a)
D N̂a = N̂aρ̂

(a)
D .

Clearly, ρ̂
(a)
D is a physical state, equivalent to ρ̂(a) as far

as expectation values of number-conserving operators are
concerned. Moreover, the quantity P (Ia) is the diagonal
representation weight for ρ̂

(a)
D , so (2.4) leads to the coarse-

grained classification [11,12],

P (Ia) � 0 ⇔ ρ̂
(a)
D , QO-cl,

(2.6)
P (Ia) 
� 0 ⇔ ρ̂

(a)
D , QO-noncl.

Furthermore, all information about P (Ia) is contained in the
photon number probabilities p(n) ≡ 〈n|ρ̂(a)|n〉 = 〈n|ρ̂(a)

D |n〉
for n = 0,1,2, . . . [49]. It is convenient to call the set of
probabilities {p(n)} the photon number distribution (PND).
Clearly, ρ̂

(a)
D can be explicitly written in terms of the PND and

vice versa:

ρ̂
(a)
D =

∞∑
n=0

p(n)|n〉〈n|,
(2.7)

p(n) =
∫ ∞

0
dIaP (Ia)e−Ia Ia

n/n! � 0.

Therefore, one can ask if the conditions (2.6) for the
coarse-grained QO-cl–QO-noncl divide can be explicitly given
in terms of the PND {p(n)}. This is indeed possible [49],
as a result of the classical analysis of the Stieltjes moment
problem. It involves two infinite sequences of matrix positivity
conditions, set up as follows. It is convenient to introduce the
auxiliary quantities,

qn = n!p(n), n = 0,1,2, . . . . (2.8)

Then define two real symmetric infinite dimensional matrices
L and L̃ as follows:

L = (Ln′n), Ln′n = qn′+n, n′,n = 0,1,2, . . . ,
(2.9)

L̃ = (L̃n′n), L̃n′n = qn′+n+1, n′,n = 0,1,2, . . . .

The diagonal elements Lnn of L are q2n, while L̃nn of L̃

are q2n+1. Using L and L̃, we can define a sequence of
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(N + 1)-dimensional matrices L(N), L̃(N) as restrictions. Then
the key result is [49]

P (Ia) � 0 ⇔ {
ρ̂

(a)
D and PND {p(n)} are QO-cl

}
⇔ L(N),L̃(N) � 0, N = 0,1,2, . . . , (2.10)

L(N) = (Ln′n : n′,n = 0,1,2, . . . ,N
)
,

L̃(N) = (L̃n′n : n′,n = 0,1,2, . . . ,N).

Both L(N) and L̃(N) are real symmetric (N + 1)-dimensional
matrices, made up of the intersections of the first (N + 1) rows
and (N + 1) columns of L and L̃, respectively. Conversely, we
have

P (Ia) 
� 0 ⇔ {
ρ̂

(a)
D and PND {p(n)} are QO-noncl

}
⇔ some L(N) 
� 0 and or some L̃(N) 
� 0.

(2.11)

As noted earlier, for one-mode states there is no concept
of entanglement. However, a QO-noncl state characterized
by (2.11) can be converted to a state possessing NPT
entanglement by adjoining it to a second ancilla mode,
the b mode, initially say in its vacuum state, and passing
this two-mode state through a generic beam splitter (BS)
corresponding to an element of the group U(2). This is seen as
follows.

The b mode brings in an added operator pair b̂, b̂† obeying
the same commutation relation (2.1), and each of â, â†

commutes with b̂ and b̂†. Let now

u =
(

u11 u12

u21 u22

)
(2.12)

be a general element of the two-dimensional unitary group
U(2). The action of the corresponding BS on the operators of
the two modes is given by conjugation with a unitary operator
Û acting on the two-mode Hilbert space, the dependence of Û

on u being left implicit [11,21]:

Û

(
â

b̂

)
Û−1 = u†

(
â

b̂

)
, Û

(
â†

b̂†

)
Û−1 = uT

(
â†

b̂†

)
,

Û−1

(
â

b̂

)
Û = u

(
â

b̂

)
, Û−1

(
â†

b̂†

)
Û = u∗

(
â†

b̂†

)
.

(2.13)

This unitary operator is “passive” in the sense that

Û (N̂a + N̂b) = (N̂a + N̂b)Û . (2.14)

It is also passive in another important sense in the present
context: For any two-mode state the property of being QO-cl
or QO-noncl is preserved upon passage through any BS, so
BS action can neither create nor destroy nonclassicality. (The
output state of a beam splitter is a coherent state if and only
if the input is. This will be clarified and elaborated in the next
Section.)

We start with the a-mode state ρ̂
(a)
D which commutes with

N̂a , and take as the two-mode input to the BS the separable
(product) state,

ρ̂(ab)
in = ρ̂

(a)
D ⊗ |0〉bb〈0|. (2.15)

This commutes with the total number operator N̂a + N̂b.
Passage through the BS preserves this property and results
in the output state,

ρ̂
(ab)
out = Û ρ̂(ab)

in Û−1 = Û

∞∑
n=0

p(n)

n!
(â†)n|0,0〉〈0,0|(â)nÛ−1

=
∞∑

n=0

p(n)

n!
(u11â

† + u21b̂
†)n|0,0〉〈0,0|(u∗

11â + u∗
21b̂)n.

(2.16)

As a general notation let us now use n,n′,n′′, . . . to denote the
eigenvalues of N̂a , and m,m′,m′′, . . . to denote eigenvalues of
N̂b. Then the general Fock state matrix elements of ρ̂

(ab)
out are

〈n′,m′|ρ̂(ab)
out |n,m〉 = δn′+m′,n+m qn+m

un′
11u

m′
21√

n′!m′!

u∗n
11u

∗m
21√

n!m!
.

(2.17)

To see whether ρ̂
(ab)
out possesses NPT entanglement, we carry

out the partial transpose (PT) operation by implementing it
in the b-mode space in the Fock basis. This amounts to
interchanging m and m′ on the right-hand side of Eq. (2.17),
and gives

〈n′,m′|ρ̂(ab)PT
out

∣∣n,m
〉 = δn′+m,n+m′ qn+m′

un′
11u

m
21√

n′!m!

u∗n
11u

∗m′
21√

n!m′!
.

(2.18)

The question now is whether this is a physical state [i.e., if
ρ̂

(ab)PT
out � 0].

We now isolate two principal submatrices out of the matrix
ρ̂

(ab)PT
out in the Fock basis, which are closely related to the

matrices L, L̃ of Eq. (2.9). The first one is the submatrix
H = (Hn′n) obtained by taking m′ = n′, m = n in (2.18):

Hn′n = 〈n′,n′|ρ̂(ab)PT
out |n,n〉

= qn+n′
(u11u

∗
21)n

′

n′!
(u∗

11u21)n

n!
, n′,n = 0,1,2, . . . ,

H = A†LA, A = diag

(
(u∗

11u21)n

n!
, n = 0,1,2, . . .

)
.

(2.19)

The second is the submatrix H̃ = (H̃n′n) obtained by taking
m′ = n′ + 1, m = n + 1 in (2.18):

H̃n′n = 〈n′,n′ + 1|ρ̂(ab)PT
out |n,n + 1〉

= qn+n′+1
(u11u

∗
21)n

′

n′!
u∗

21√
n′ + 1

(u∗
11u21)n

n!

× u21√
n + 1

, n′,n = 0,1,2, . . . , (2.20)

H̃ = Ã†L̃Ã,

Ã = diag

(
(u∗

11u21)n

n!

u21√
n + 1

, n = 0,1,2, . . .

)
.

Invertibility of A and Ã implies that H, H̃ � 0 if and only
if L, L̃ � 0. We then see that every signature of ρ̂

(a)
D and the

PND {p(n)} being QO-noncl, such as some L(N) 
� 0 or some
L̃(N) 
� 0, directly implies a corresponding signature of ρ̂

(ab)
out
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being NPT entangled, since either H 
� 0 or H̃ 
� 0, implying
that ρ̂

(ab)PT
out 
� 0. It is in this precise sense that any nontrivial

BS is able to convert input QO-nonclassicality of a single
mode to NPT entanglement of the output state ρ̂

(ab)
out , in a sense

preserving the signature of nonclassicality.
A simple calculation shows that in the input state (2.15)

of the ab system, the b mode need not be in the vacuum but
could be in a general coherent state |zb〉b for some complex
nonzero zb. Since

|zb〉b = D(b)(zb)|0〉b,
(2.21)

D(b)(zb) = exp(zbb̂
† − z∗

bb̂),

we have the following replacements for the previous
Eqs. (2.15) and (2.16):

ρ̂(ab)
in = ρ̂

(a)
D ⊗ |zb〉bb〈zb|

= D(b)(zb)
{
ρ̂

(a)
D ⊗ |0〉bb〈0|}D(b)(zb)

−1
,

(2.22)
ρ̂

(ab)
out = Û ρ̂(ab)

in Û−1

= D(a)(u12zb)D(b)(u22zb)
{
Û ρ̂

(a)
D ⊗ |0〉bb〈0|Û−1

}
×D(a)(u12zb)

−1
D(b)(u22zb)

−1
.

(In passing we note that this input state no longer commutes
with N̂a + N̂b.) Here we have used Eq. (2.13). Thus the matrix
elements of this two-mode BS output state in the displaced
orthonormal product basis D(a)(u12zb)D(b)(u22zb)|n,m〉 are
identically the same as the matrix elements of ρ̂

(ab)
out of

Eq. (2.16) in the Fock basis |n,m〉. Implementing the PT oper-
ation in this new product basis we recover the earlier results.
Thus every signature of QO-noncl of ρ̂

(a)
D is transformed by

a general BS action into a corresponding signature of NPT
entanglement of the output two-mode state (2.22).

In both cases, (2.16) and (2.22), we see that nontrivial
BS action, while being passive and so maintaining any QO
nonclassicality present in the input state, is able to convert an
initially unentangled two-mode state into an NPT entangled
state. This it can do provided there is some QO nonclassicality
to begin with. Crudely speaking, what the beam splitter
achieves in the present case is to take the input nonclassicality
which resides “locally” in the a mode and convert it into
nonclassicality residing “nonlocally” as entanglement between
the modes.

III. TWO-MODE FIELDS—GENERAL PROPERTIES
AND AN ENTANGLEMENT TEST

We now consider specific new features encountered in the
study of states of a two-mode system. A general two-mode
state ρ̂(ab) possesses the diagonal coherent state representation,

ρ̂(ab) =
∫ ∫

d2za

π

d2zb

π
φ(za,zb)|za,zb〉〈za,zb|, (3.1)

in terms of the two-mode (product) coherent states |za,zb〉.
Analogous to Eq. (2.4), the properties of φ(za,zb) determine
the nature of ρ̂(ab):

φ(za,zb) � 0 ⇔ ρ̂(ab) QO-cl,
(3.2)

φ(za,zb) 
� 0 ⇔ ρ̂(ab) QO-noncl.

In the former case, φ(za,zb) has the properties of a probability
distribution in the four-dimensional phase space.

Now, apart from examining whether a given state ρ̂(ab) is
QO-cl or QO-noncl, we can also ask in the latter case whether it
is entangled, and if so whether it is NPT type, distillable [39],
etc. These added questions become meaningful. In fact we
will develop later in this section an interesting test or criterion
which can witness simultaneously for QO-nonclassicality as
well as NPT entanglement.

With respect to BS action (2.12) and (2.13) representing
general elements u ∈ U(2), we note the following. Such action
is nonlocal since the modes a and b get linearly mixed, in
addition to being passive in the sense of conserving N̂a + N̂b.
Since annihilation operators go into linear combinations of
annihilation operators under this action, coherent states go
into coherent states with the matrix u acting on the pair za ,
zb as a column vector. Therefore, convex sums of coherent
states go into similar convex sums [53], φ(za,zb) experiences
a point transformation φ(za,zb) → φ(u11za + u12zb, u21za +
u22zb), and thus such BS action preserves the QO-cl or
QO-noncl nature of the state ρ̂(ab). This is another sense of
BS action being passive.

On the other hand, while a QO-cl state has no entanglement,
a QO-noncl state may be separable (i.e., unentangled), or may
possess entanglement. Entangled states are a proper subset of
QO-noncl states, and NPT entangled states are a further subset.
Now BS action can cause a transition, within the QO-noncl
subset, from a separable to an entangled state, in which case
we can further inquire into the nature of the entanglement
so obtained, whether it is the NPT type, etc. This is, in fact,
the case in the transition from ρ̂(ab)

in of Eq. (2.15) to ρ̂
(ab)
out of

Eq. (2.16), or the transition in Eq. (2.22).
Continuing with the definitions of QO-cl and QO-noncl

in Eq. (3.2), if we are interested only in the total number
conserving matrix elements of various operators (i.e., of
operators commuting with N̂a + N̂b), it suffices to work with
the total phase averaged state:

ρ̂
(ab)
D =

∫ 2π

0

dθ

2π
eiθ(N̂a+N̂b)ρ̂(ab)e−iθ(N̂a+N̂b)

=
∫

d2za

π

d2zb

π
P (Ia,Ib,θ )|za,zb〉〈za,zb|,

(3.3)
Ia = |za|2, Ib = |zb|2, θ = argz∗

azb,

P (Ia,Ib,θ ) =
∫ 2π

0

dθ ′

2π
φ(
√

Iae
−iθ ′

,
√

Ibe
i(θ−θ ′)).

This state is number conserving:

ρ̂
(ab)
D (N̂a + N̂b) = (N̂a + N̂b)ρ̂(ab)

D ,
(3.4)

〈n′m′|ρ̂(ab)
D |nm〉 = δn′+m′,n+m〈n′m′|ρ̂(ab)|nm〉.

Since the coarse-grained P (Ia,Ib,θ ) is the (real) diagonal
representation weight of ρ̂ab

D , we have the following QO
classification at this level [11,12]:

P (Ia,Ib,θ ) � 0 ⇔ ρ̂
(ab)
D is QO-cl,

(3.5)
P (Ia,Ib,θ ) 
� 0 ⇔ ρ̂

(ab)
D is QO-noncl.

We use this in the next Section.
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We now revert to a general state ρ̂(ab) and describe a test
which, if it succeeds, simultaneously establishes both QO
nonclassicality of ρ̂(ab) and its NPT entanglement. It is clear, of
course, that any test which establishes the latter immediately
implies the former; the interest here is in the structure of the
test itself.

We set up an infinite matrix N̂ with operator entries N̂jk,lm

where j,k,l,m run independently over 0,1,2, . . . . The pair
jk denotes a “row index” and takes in sequence the values
00; 10,01; 20,11,02; 30,21,12,03; . . . . Similarly, the “column
index” pair lm also takes these same values in the same
sequence. We define the entries of N̂ , thus,

N̂jk,lm = N̂
†

lm,jk = â†j b̂†kâl b̂m. (3.6)

Clearly N̂ = (N̂jk,lm) is an infinite “Hermitian” matrix of
operator entries. Note that these entries are in normal-ordered
form. Starting with the diagonal representation (3.1), for any
set of complex coefficients {cjk} and the associated positive
semidefinite operator

∑
jk,lm c∗

jkN̂jk,lmclm, we always have

Tr

(
ρ̂(ab)

∑
jk,lm

c∗
jkN̂jk,lmclm

)

= Tr

[
ρ̂(ab)

(∑
jk

cjkâ
j b̂k

)†(∑
lm

clmâl b̂m

)]

=
∫ ∫

d2za

π

d2zb

π
φ(za,zb)

∣∣∣∣∣
∑
lm

clmzl
az

m
b

∣∣∣∣∣
2

� 0. (3.7)

This is independent of φ(za,zb) being classical or otherwise,
because we have here the expectation value of a positive
semidefinite Hermitian operator. On the other hand, if we
pass to the partial transpose ρ̂(ab)PT of ρ̂(ab), by performing
transposition only in the space of states of the b mode in the
Fock basis, this will amount to everywhere replacing b̂†j b̂m

by b̂†mb̂j , since in the Fock basis b̂† and b̂ are real [54].
Thus, for the same positive semidefinite operator as in (3.7)
we have

Tr

(
ρ̂(ab)PT

∑
jk,lm

c∗
jkN̂jk,lmclm

)

= Tr

(
ρ̂(ab)

∑
jk,lm

c∗
jkâ

†j b̂†mâl b̂kclm

)

=
∫ ∫

d2za

π

d2zb

π
φ(za,zb)

∣∣∣∣∣
∑
lm

clmzl
az

∗m
b

∣∣∣∣∣
2

. (3.8)

Notice the difference in the integrands of the last integrals
in (3.7) and (3.8); the latter integral is sure to be positive if
ρ̂(ab)PT � 0; otherwise it could be negative.

Thus we arrive at a single step test for QO-nonclassicality
and NPT entanglement of ρ̂(ab). The above expression (3.8)
being negative implies two things simultaneously:

(i) φ(za,zb) 
� 0, hence ρ̂(ab) is QO − noncl,
(3.9)

(ii) ρ̂(ab)PT 
� 0, and hence ρ̂(ab) is NPT entangled.

As we said already, ρ̂(ab) being NPT entangled already implies
it is also QO-noncl. The point here is that the expression (3.8)
being negative manifestly displays both properties of ρ̂(ab)

immediately.
This interesting result is an indication of the possibility,

in suitable circumstances, of “bridging the gap” between
the characterization of QO nonclassicality and the further
characterization of (NPT) entanglement for two-mode fields
in an efficient manner. For the particular test based on (3.8),
there is no “gap” at all, but as we will show this will not always
be the case.

IV. MANDEL MATRICES AND STATE CLASSIFICATION
FOR ONE AND TWO-MODE FIELDS

The discussion of single-mode states in Sec. II made use of
the probabilities p(n), n = 0,1,2, . . . , individually. In terms
of the moments of the PND, this means in principle that all
its moments are involved. It is naturally possible to make
much more limited statements about QO nonclassicality if
one uses only the first and second moments, say, of the
PND. This is the content of the Mandel criterion for QO
nonclassicality stated in terms of the Mandel matrix (or Mandel
Q parameter) associated with a given state. It is useful to begin
by outlining this for single-mode states to set up notations, and
then generalize to two modes.

Another motivation is that for two or more modes there are
no moment theorems at all comparable in scope to the one
stemming from the classical Stieltjes moment problem, and
therefore no simple generalizations of Eqs. (2.10) and (2.11)
into necessary and sufficient conditions for QO classicality can
be expected to be available.

A. Mandel matrices for single-mode states

Given a one-mode state ρ̂(a), we construct by Eq. (2.5)
the state ρ̂

(a)
D conserving N̂a . The fact that ρ̂

(a)
D is a physical

state leads to a certain 2 × 2 real symmetric matrix, involving
the first and second moments of the PND {p(n)}, being
positive semidefinite:

ρ̂
(a)
D � 0 ⇒

(
1 〈N̂a〉

〈N̂a〉
〈
N̂2

a

〉
)

=
(

1 〈â†â〉
〈â†â〉 〈â†ââ†â〉

)
� 0,

(4.1)

〈N̂a〉 =
∞∑

n=0

np(n),
〈
N̂2

a

〉 = ∞∑
n=0

n2p(n).

All expectation values here are in the state ρ̂
(a)
D . The Mandel

matrix associated with ρ̂
(a)
D is obtained by replacing the

expectation value 〈N̂2
a 〉 by the expectation value of the normal-

ordered form â†2â2 of N̂2
a :

M (1)(ρ̂(a)
D

) =
(

1 〈â†â〉
〈â†â〉 〈â†2â2〉

)
. (4.2)

Here the superscript (1) indicates that we are considering states
of a single mode. While positivity of ρ̂

(a)
D implies the positivity
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of the 2 × 2 matrix in (4.1), it does not imply the positivity of
M (1)(ρ̂(a)

D ). From Eq. (2.7) we easily obtain

〈â†â〉 =
∞∑

n=0

np(n) =
∫ ∞

0
dIaP (Ia)Ia = 〈Ia〉,

〈â†ââ†â〉 =
∞∑

n=0

n2p(n)

=
∫ ∞

0
dIaP (Ia)Ia(Ia + 1) = 〈Ia(Ia + 1)〉, (4.3)

〈â†2â2〉 =
∞∑

n=0

n(n − 1)p(n) =
∫ ∞

0
dIaP (Ia)I 2

a = 〈I 2
a

〉
,

〈â†2â2〉 − 〈â†â〉2 =
∫ ∞

0
dIaP (Ia)(Ia − 〈Ia〉)2.

Clearly, the last expression cannot be negative if
P (Ia) is pointwise nonnegative. Thus we are led to
the Mandel classification of states of a single-mode
field [8,12]:

P (Ia) � 0, ρ̂
(a)
D is QO-cl

⇒ {
M (1)

(
ρ̂

(a)
D

)
� 0 ⇔ detM (1)

(
ρ̂

(a)
D

)
� 0

⇔ (�Na)2 − 〈Na〉 � 0
}
,

ρ̂
(a)
D displays super-Poissonian

statistics (super-PS),

{
M1
(
ρ̂

(a)
D

) 
� 0 ⇔ detM (1)
(
ρ̂

(a)
D

)
< 0 ⇔ (�Na)2 − 〈Na〉 < 0

}
⇒ P (Ia) 
� 0, ρ̂

(a)
D is QO-noncl,

ρ̂
(a)
D displays sub-Poissonian statistics (sub-PS). (4.4)

It is because the Mandel matrix is two-dimensional with
obviously positive trace that the positivity or nonpositivity
of M (1)(ρ̂(a)

D ) reduces to that of its determinant, hence to that
of (�Na)2 − 〈Na〉.

B. Single-mode squeezed vacuum example

As a useful and instructive example of this concept, we
consider the case of a single-mode squeezed vacuum [3–5].
Such a state is obtained by applying a unitary (scaling) operator
involving the exponential of a complex combination of â†2 and
â2 to the Fock vacuum |0〉a , and is parametrized by a complex
variable ξ = ξ1 + iξ2 or an equivalent complex variable ω:

|ψ (a)(ω)〉 = exp

{
1

4
(ξ â†2 − ξ ∗â2)

}
|0〉a

= (1 − |ω|2)
1
4

∞∑
n=0

√
�(n + 1/2)

n!
√

π
ωn |2n〉a, (4.5)

ω = ξ

|ξ | tanh(|ξ |/2).

Since only even photon number states are present, the
probabilities p(1), p(3), p(5), . . . in the PND vanish. That
is, L̃ 
= 0 but all its diagonals vanish, implying L̃ 
� 0, which

is immediate evidence that these states are QO-noncl. Some
important expectation values are

〈ψ (a)(ω)|{â†,â, N̂a,N̂
2
a ,â†2â2, â2}|ψ (a)(ω)〉

=
{

0, 0, S2, S2(S2 + 2C2), S2(2S2 + C2),
ξ

|ξ |
}
,

S = sinh(|ξ |/2), C = cosh(|ξ |/2). (4.6)

The 2 × 2 Mandel matrix for this state is, thus,

M (1)(|ψ (a)(ω)〉) =
(

1 S2

S2 S2(2S2 + C2)

)
,

(4.7)
detM (1)(|ψ (a)(ω)〉) = S2(S2 + C2) � 0,

where S and C are given in Eq. (4.6). Thus these states have
super-PS, and the QO-nonclassicality does not show up, or is
missed, at the Mandel level.

C. Mandel matrices for two-mode states

The two-mode generalization of the Mandel matrix idea
leads naturally to a more intricate classification of states. We
consider only states ρ̂

(ab)
D conserving (i.e., commuting with)

N̂a + N̂b. First we develop the analog of the positivity property
(4.1), the statement that the number fluctuation (�Na)2 for a
PND {p(n)} can never be negative. Define a column and row
vector with number-conserving operator entries as follows:

Ĉ =
(

â†

b̂†

)
⊗
(

â

b̂

)
=

⎛
⎜⎜⎜⎝

N̂a

â†b̂

b̂†â
N̂b

⎞
⎟⎟⎟⎠ ,

(4.8)
Ĉ† = (N̂a b̂†â â†b̂ N̂b

)
.

With their help next define a 5 × 5 matrix with operator entries
and which is “Hermitian” like N̂ in Eq. (3.6), and also “positive
definite”:

̂ =
(

1

Ĉ

) (
1 Ĉ†) =

(
1 Ĉ†

Ĉ ĈĈ†

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 N̂a b̂†â â†b̂ N̂b

N̂a N̂2
a N̂ab̂

†â N̂aâ
†b̂ N̂aN̂b

â†b̂ â†b̂N̂a â†b̂b̂†â (â†b̂)2 â†b̂N̂b

b̂†â b̂†âN̂a (b̂†â)2 b̂†ââ†b̂ b̂†âN̂b

N̂b N̂bN̂a N̂bb̂
†â N̂bâ

†b̂ N̂2
b

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.9)

Given a state ρ̂
(ab)
D , by taking entry-wise expectation values

of the operators in ̂ we get the 5 × 5 numerical Hermitian
matrix  which is clearly Hermitian positive semidefinite and
generalizes (4.1):

 = 〈̂〉 = Tr

(
ρ̂

(ab)
D

(
1 Ĉ†

Ĉ ĈĈ†

))

=
(

1 〈Ĉ†〉
〈Ĉ〉 〈ĈĈ†〉

)
� 0 . (4.10)
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We now define the two-mode Mandel matrix for the state
ρ̂

(ab)
D by replacing ĈĈ† in Eq. (4.10) by its normal-ordered

expression (the entries in Ĉ and Ĉ† are already in the
normal-ordered form) [12]:

B̂ =: ĈĈ† : , M (2)
(
ρ̂

(ab)
D

) = Tr

(
ρ̂

(ab)
D

(
1 Ĉ†

Ĉ B̂

))
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 〈â†â〉 〈b̂†â〉 〈â†b̂〉 〈b̂†b̂〉
〈â†â〉 〈â†2â2〉 〈â†b̂†â2〉 〈â†2âb̂〉 〈â†b̂†âb̂〉
〈â†b̂〉 〈â†2âb̂〉 〈â†b̂†âb̂〉 〈â†2b̂2〉 〈â†b̂†b̂2〉
〈b̂†â〉 〈â†b̂†â2〉 〈b̂†2â2〉 〈â†b̂†âb̂〉 〈b̂†2âb̂〉
〈b̂†b̂〉 〈â†b̂†âb̂〉 〈b̂†2âb̂〉 〈â†b̂†b̂2〉 〈b̂†2b̂2〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
∫ ∞

0
dIa

∫ ∞

0
dIb

∫ 2π

0

dθ

2π
P (Ia,Ib,θ )χ (Ia,Ib,θ ) χ (Ia,Ib,θ )†, (4.11)

χ (Ia,Ib,θ ) = (1 Ia

√
IaIbe

+iθ
√

IaIbe
−iθ Ib)T .

The superscript (2) indicates that we are dealing with a two-
mode state, and this Mandel matrix is 5 × 5 Hermitian but not
necessarily positive semidefinite.

Before presenting a classification of two-mode states based
on the 5 × 5 Mandel matrix, we introduce a useful derived
object. This is the 2 × 2 Mandel matrix associated with a
general single mode defined as a linear combination of the
modes a and b, the reduced subsystem state of this chosen
single mode being calculated with respect to the two-mode
state ρ̂

(ab)
D . The definition of the annihilation operator Â of

such a mode and then of its Mandel matrix are

Â = αâ + βb̂, |α|2 + |β|2 = 1 : [Â,Â†] = 11,

M (2,1)
(
ρ̂

(ab)
D ; α,β

) =
(

1 〈Â†Â〉
〈Â†Â〉 〈Â†2Â2〉

)

= Y (α,β)†M (2)
(
ρ̂

(ab)
D

)
Y (α,β), (4.12)

Y (α,β) =

⎛
⎜⎜⎜⎜⎜⎝

1 0
0

0 ψ0(α,β)

0

0

⎞
⎟⎟⎟⎟⎟⎠ ,

ψ0(α,β) =
(

α

β

)
⊗
(

α∗

β∗

)
=

⎛
⎜⎜⎝

αα∗

αβ∗

βα∗
ββ∗

⎞
⎟⎟⎠ .

The dependence of Â on α,β is left implicit. The super-
script (2,1) at the start of the above equations indicates
that we are dealing with a general single-mode Mandel
matrix obtained from the two-mode Mandel matrix for the
a-b system in the state ρ̂

(ab)
D , by focusing on a variable

linear combination Â of â and b̂. As we will imme-
diately see, for two-mode states both the 5 × 5 matrix
M (2)(ρ̂(ab)

D ) and the 2 × 2 matrix M (2,1)(ρ̂(ab)
D ; α,β) are

important.

The two-mode definitions of Mandel-type nonclassicality,
sub-Poissonian statistics (sub-PS), super-Poissonian statistics
(super-PS), etc. are now as follows:{

ρ̂
(ab)
D is QO-cl ⇔ P (Ia,Ib,θ ) � 0

}
⇒ {

M (2)
(
ρ̂

(ab)
D

)
� 0 ⇔ ρ̂

(ab)
D has super-PS

}
,

M (2)
(
ρ̂

(ab)
D

) 
� 0 ⇔ {
ρ̂

(ab)
D is QO-noncl, has sub-PS

}
. (4.13)

In the definition of super-PS, we used Eq. (4.11). The sub-PS
case can be usefully separated into two types, depending on
whether or not the nonpositivity of the 5 × 5 matrix M (2)(ρ̂(ab)

D )
is visible already at the single-mode level for some choice of
coefficients α, β. Thus we define

ρ̂
(ab)
D has Type I sub-PS

⇔ M (2,1)
(
ρ̂

(ab)
D ,α,β

) 
� 0 for some α,β;

ρ̂
(ab)
D has Type II sub-PS ⇔ M (2)(ρ̂(ab)

D

) 
� 0,

but M (2,1)(ρ̂(ab)
D ,α,β

)
� 0 for all α,β. (4.14)

The physical meaning is that in Type I sub-PS, the Mandel level
of QO nonclassicality is easy to detect already in terms of a
suitable single-mode combination, while in Type II sub-PS,
such nonclassicality is hidden or intrinsically two mode in
character [12].

For calculational purposes one can pass from the 5 × 5
Mandel matrix M (2)(ρ̂(ab)

D ) to a slightly simpler 4 × 4 matrix
as follows. From Eq. (4.11),

M (2)
(
ρ̂

(ab)
D

) = Tr

(
ρ̂

(ab)
D

(
1 Ĉ†

Ĉ B̂

))
=
(

1 C†

C B

)
,

(4.15)
C = Tr

(
ρ̂

(ab)
D Ĉ

)
, B = Tr

(
ρ̂

(ab)
D B̂

)
.

(When necessary the state will be indicated as an argument of
C,B). Then it is easy to see that

M (2)
(
ρ̂

(ab)
D

)
� 0 ⇔ � = B − CC† � 0,

(4.16)
M (2)(ρ̂(ab)

D

) 
� 0 ⇔ � 
� 0.

Thus the 4 × 4 Hermitian matrix � determines whether we
have super-PS or sub-PS. For the separation of the latter into
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Type I and Type II, we have for any complex two-vector φ =
( φ1

φ2
) the following:

φ†M (2,1)
(
ρ̂

(ab)
D ; α,β

)
φ

= |φ1 + φ2C
†ψ0(α,β)|2 + |φ2|2ψ0(α,β)†�ψ0(α,β).

(4.17)

So given M (2)(ρ̂(ab)
D ) 
� 0, we are able to say

Type I sub-PS ⇔ ψ0(α,β)†�ψ0(α,β) < 0 for some α, β;

Type II sub-PS ⇔ ψ0(α,β)†�ψ0(α,β) � 0 for all α, β.

(4.18)

Indeed we easily find from Eqs. (4.12) and (4.16) that

det M (2,1)(ρ̂(ab); α,β) = ψ0(α,β)†�ψ0(α,β). (4.19)

D. Examples of two-mode states and Mandel matrices

We consider two examples. We have seen in Sec. II that
a single-mode QO-noncl state, when combined with a second
ancilla mode in vacuum (or in a coherent state) and then passed
through a nontrivial U(2) BS, always results at the output in a
two-mode state exhibiting NPT entanglement. We study this
as the first example.

The two-mode state in question is given in Eq. (2.16). It
is understandable that its 5 × 5 Mandel matrix is obtainable
from the 2 × 2 Mandel matrix associated with the single-mode
input state ρ̂

(a)
D . Straightforward calculation shows that

ρ̂
(ab)
D = Û (u)

{
ρ̂

(a)
D ⊗ |0〉bb〈0|}Û (u)−1, u ∈ U(2) :

M (2)(ρ̂(ab)
D

) = W (u)†M (1)(ρ̂(a)
D

)
W (u), (4.20)

W (u) =
(

1 0 0 0 0

0 u∗
11u11 u∗

21u11 u∗
11u21 u∗

21u21

)
,

W (u)W (u)† = 112×2.

Next using (4.12) we can immediately obtain the variable
single-mode projection of this two-mode Mandel matrix:

M (2,1)
(
ρ̂

(ab)
D ; α,β

) = Y (α,β)†W (u)†M (1)
(
ρ̂

(a)
D

)
W (u)Y (α,β)

=
(

1 0
0 |ξ |2

)
M (1)

(
ρ̂

(a)
D

) (1 0
0 |ξ |2

)
,

ξ = u11α + u22β. (4.21)

From these expressions and the results of Sec. II, we find that
the two-mode states produced from single-mode states in the
above manner have the following significant properties:

(i) ρ̂
(a)
D has QO-noncl PND ⇒ ρ̂

(ab)
D has NPT entanglement;

(ii) ρ̂
(a)
D has super-PS ⇒ ρ̂

(ab)
D has super-PS; (4.22)

(iii) ρ̂
(a)
D has sub-PS ⇒ ρ̂

(ab)
D has Type I sub-PS,

M (2,1)(ρ(ab)
D ; α,β

) 
� 0 for every α,β.

Of course only properties (ii) and (iii) involve the Mandel
matrix analysis; it is significant that in (iii), every single-mode
combination of the modes a and b displays sub-PS. To this we
can add the following: states ρ̂

(ab)
D obtained from states ρ̂

(a)
D via

Eq. (4.20) can never display Type-II sub-PS; and any sub-PS
in ρ̂

(a)
D leads to both Type-I sub-PS and NPT entanglement

in ρ̂
(ab)
D .

The second example is the two-mode generalization of the
squeezed vacuum state defined for a single mode in Eq. (4.5).
We take independent complex ξ , ξ ′ or ω, ω′ and define

|ψ (ab)(ω,ω′)〉 = |ψ (a)(ω)〉 ⊗ |ψ (b)(ω′)〉, (4.23)

with the second factor involving an exponential in b̂†2 and
b̂2 applied to |0〉b. This pure state is clearly also QO-noncl,
but it is manifestly a product state of Schmidt rank one.
Unlike the single-mode case in Eq. (4.7), however, now the
QO nonclassicality shows up at the Mandel level. The 5 × 5
Mandel matrix for the state (4.23) is easily found using
Eqs. (4.6) and their b-mode analogs:

M (2)(|ψ (ab)(ω,ω′)〉) =
(

1 C†

C B

)
, C† = (S2 0 0 S ′2),

B =

⎛
⎜⎜⎜⎜⎝

S2(2S2 + C2) 0 0 S2S ′2

0 S2S ′2 eiηSCS ′C ′ 0

0 e−iηSCS ′C ′ S2S ′2 0

S2S ′2 0 0 S ′2(2S ′2 + C ′2)

⎞
⎟⎟⎟⎟⎠ , η = argξ ′ξ ∗. (4.24)

Here S ′ and C ′ are defined as in Eq. (4.6) but in terms of ξ ′. The 4 × 4 matrix � of Eq. (4.16) is

� =

⎛
⎜⎜⎜⎜⎝

S2(S2 + C2) 0 0 0

0 S2S ′2 eiηSCS ′C ′ 0

0 e−iηSCS ′C ′ S2S ′2 0

0 0 0 S ′2(S ′2 + C ′2)

⎞
⎟⎟⎟⎟⎠ . (4.25)
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The eigenvalues of � are S2(S2 + C2), S ′2(S ′2 + C ′2),
SS ′(SS ′ + CC ′), and SS ′(SS ′ − CC ′). Assuming that ξ , ξ ′
are both nonzero, the last eigenvalue is negative, leading by
Eq. (4.16) to the conclusion that M2(|ψ (ab)ω,ω′)〉) 
� 0 or that
the state |ψ (ab)(ω,ω′)〉 has sub-PS. This is an interesting and
somewhat nonintuitive result since we have seen in Eq. (4.7)
that each factor in the product state |ψ (ab)(ω,ω′)〉 has super-PS.
We must now see whether it is Type I or Type II. For this we
must compute the expectation value of � in Eq. (4.25) for
the four-component column vector ψ0(α,β) as required by
Eq. (4.18):

ψ0(α,β)†�ψ0(α,β)

= (|α|2S2 + |β|2S ′2)2 + |α|4S2C2 + |β|4S ′2C ′2

+ 2SCS ′C ′Re[eiη(α∗β)2] � (|α|2S2 + |β|2S ′2)2

+ (|α|2SC − |β|2S ′C ′)2 > 0, (4.26)

since Re[eiη(α∗β)2] � −|α|2|β|2. It follows that the sub-PS
of the product state |ψ (ab)(ω,ω′)〉 is of Type II; it is hidden
or intrinsic. This is consistent with the fact that the individual
factors |ψ (a)(ω)〉 and |ψ (b)(ω′)〉 are both super-PS.

V. TWO-MODE MANDEL-LEVEL NONCLASSICALITY
TO ENTANGLEMENT BY BS ACTION

We now consider a two-mode state ρ̂
(ab)
D which is QO

nonclassical and of such a nature that this property is seen
at the level of the Mandel matrix (i.e., M (2)(ρ̂(ab)

D ) 
� 0). In
such a case, even if ρ̂

(ab)
D is of product or separable form, its

passage through a U(2) BS could result in an entangled state,
possibly of the NPT type. Our aim is now to see quantitatively
how much beyond the nonpositivity of the Mandel matrix one
has to go to reach NPT entanglement. We set up the general
framework to examine this, then illustrate it by an example. For
simplicity we use a 50:50 BS rather than one corresponding to
a general u ∈ U(2).

We choose the U(2) element and corresponding unitary
operator action as follows [11,21]:

u0 = 1√
2

(
1 1

−1 1

)
∈ U(2) :

(5.1)

Û−1
0

(
â â†

b̂ b̂†

)
Û0 = u0

(
â â†

b̂ b̂†

)
.

At the operator level, action by conjugation on Ĉ, Ĉ†, B̂ of
Eqs. (4.8) and (4.11) is

Û−1
0 ĈÛ0 = V0Ĉ, Û−1

0 Ĉ†Û0 = Ĉ†V T
0 ,

(5.2)
Û−1

0 B̂Û0 = V0B̂V T
0 ,

V0 = u0 ⊗ u0 = 1

2

⎛
⎜⎜⎜⎝

1 1 1 1

−1 1 −1 1

−1 −1 1 1

1 −1 −1 1

⎞
⎟⎟⎟⎠ .

Then when the state ρ̂
(ab)
D is transformed by this BS action to

ρ̂
′(ab)
D = Û0ρ̂

(ab)
D Û−1

0 , (5.3)

the new Mandel matrix is given by a transformation using V0:

M (2)(ρ̂(ab)
D

) =
(

1 C†

C B

)
→

M (2)(ρ̂ ′(ab)
D

) =
(

1 C ′†

C ′ B ′

)
= Tr

(
ρ̂

′(ab)
D

(
1 Ĉ†

Ĉ B̂

))

=
(

1 0

0 V0

)(
1 C†

C B

)(
1 0

0 V T
0

)
,

C ′ = V0C, B ′ = V0BV T
0 . (5.4)

Thus �′ is related to � by congruence:

�′ = B ′ − C ′C ′† = V0�V T
0 . (5.5)

To test next whether ρ̂
′(ab)
D is NPT entangled, we pass to

its partial transpose ρ̂
′(ab)PT
D and evaluate the “expectation

value” of a suitably chosen nonnegative Hermitian operator
with respect to it. If this turns out to be negative, then the
output state ρ̂

′(ab)
D is definitely NPT entangled. To construct

such a test which involves as closely as possible the use of
M (2)(ρ̂ ′(ab)

D ), hence of M (2)(ρ̂(ab)
D ), plus something additional,

we should use a “matrix of operators” similar in structure to(1
Ĉ

)
(1Ĉ†) (i.e, making up a “Hermitian nonnegative” matrix

of operator entries), such that when the partial transpose
operation is switched from ρ̂

′(ab)PT
D to this “matrix,” we obtain

the expectation values of Ĉ, Ĉ†, and B̂ in ρ̂
′(ab)
D , plus something

additional. Now we have seen in the passage from Eq. (3.7)
to Eq. (3.8) that the PT operation converts b̂†j b̂k to b̂†kb̂j , and
b̂j b̂†k to b̂kb̂†j . Keeping these motivations and facts in mind
we construct a 5 × 5 matrix of operators as follows:

Ê =

⎛
⎜⎜⎜⎝

â†â

â†b̂†

â b̂

b̂†b̂

⎞
⎟⎟⎟⎠ , Ê† = (â†â â b̂ â†b̂† b̂†b̂)

→
{(

1

Ê

)
(1 Ê†)

}PT

=
(

1 Ĉ†

Ĉ B̂

)
+
(

0 0

0 Ŷ

)
, (5.6)

Ŷ =

⎛
⎜⎜⎜⎝

â†â 0 â†b̂ 0

0 0 0 0

b̂†â 0 â†â + b̂†b̂ + 1 b̂†â

0 0 â†b̂ b̂†b̂

⎞
⎟⎟⎟⎠ .

We see that in the process of expressing the various operators
involved in normal-ordered form, as anticipated an additional
piece Ŷ linear in the entries of Ĉ appears. Then a test for NPT
entanglement of ρ̂ ′

D(ab) is to evaluate

Tr

(
ρ̂

′(ab)PT
D

(
1

Ê

)
(1 Ê†)

)

= Tr

(
ρ̂

′(ab)
D

{(
1

Ê

)
(1 Ê†)

}PT)
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= M (2)
(
ρ̂

′(ab)
D

)+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
... 0 0 0 0

· · · · · · · · · · · · · · ·

0
0
0
0

...

...

...

...

Y ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Y ′ =

⎛
⎜⎜⎜⎝

C ′
1 0 C ′

2 0

0 0 0 0

C ′
3 0 C ′

1 + C ′
4 + 1 C ′

3

0 0 C ′
2 C ′

4

⎞
⎟⎟⎟⎠ , (5.7)

and see if this matrix is indefinite. By Eq. (5.4), the complete
5 × 5 matrix here is a congruence transformation applied to
the initial-state Mandel matrix M (2)(ρ̂(ab)

D ) plus a 4 × 4 piece
coming from Ŷ , namely it is(

1 0

0 V0

)(
1 C†

C B

)(
1 0

0 V T
0

)
+
(

0 0

0 Y ′

)

=
(

1 C†V T
0

V0C V0BV T
0 + Y ′

)
. (5.8)

Therefore by Eq. (4.16) the positivity or otherwise of the
matrix (5.7) is equivalent to the positivity or otherwise
of either of the two following 4 × 4 matrices at the level
of �:

� = � + V T
0 Y ′V0,

(5.9)
V0�V T

0 = V0�V T
0 + Y ′.

Nonpositivity of either � or V0�V T
0 is proof of NPT

entanglement of the output state ρ̂
′(ab)
D . It is interesting to see

the precise quantitative manner in which this test goes beyond
examination of M (2)(ρ̂

′(ab)
D ) or �′ alone.

A. An illustrative example

To see how the general procedure developed above works,
we study a family of states which is analytically quite simple.
We begin with the family of two-mode pure states of infinite
Schmidt rank,

|µ〉 = e− 1
2 |µ|2

∞∑
n=0

µn

√
n!

|n,n〉, µ ∈ C, (5.10)

form the density matrix ρ̂(ab) = |µ〉〈µ|, and pass to ρ̂
(ab)
D via

Eq. (3.3):

ρ̂
(ab)
D = e−λ

∞∑
n=0

λn

n!
|n,n〉〈n,n|, λ = |µ|2 � 0. (5.11)

This is clearly separable though not of product form.
For the Mandel matrix analysis, |µ〉〈µ| and ρ̂

(ab)
D are

equivalent.

The matrices C, C†, B, � involved in M (2)(ρ̂(ab)
D ) are easy

to calculate since

〈â†â〉 = 〈b̂†b̂〉 = λ, 〈â†2â2〉 = 〈b̂†2b̂2〉 = λ2. (5.12)

We thus have

C =

⎛
⎜⎜⎜⎝

λ

0

0

λ

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝

λ2 0 0 λ2 + λ

0 λ2 + λ 0 0

0 0 λ2 + λ 0

λ2 + λ 0 0 λ2

⎞
⎟⎟⎟⎠ ,

� =

⎛
⎜⎜⎜⎝

0 0 0 λ

0 λ2 + λ 0 0

0 0 λ2 + λ 0

λ 0 0 0

⎞
⎟⎟⎟⎠ . (5.13)

The eigenvalues of � being λ(λ + 1), λ(λ + 1), λ, −λ,
the state ρ̂

(ab)
D in (5.11) is QO-noncl. To find its type we

compute

ψ0(α,β)†�ψ0(α,β) = 2|α|2|β|2λ(λ + 2) � 0, (5.14)

so these states display hidden or Type II sub-PS.
In passing we note that the state ρ̂

(a)
D of mode a obtained

from Eq. (5.11) by tracing over b alone is

ρ̂
(a)
D = Trbρ̂

(ab)
D = e−λ

∞∑
n=0

λn

n!
|n〉aa〈n|, (5.15)

for which the diagonal weight P (Ia) is

P (Ia) = δ(Ia − λ). (5.16)

Partial trace over a gives exactly similar results for mode b.
Thus both ρ̂

(a)
D and ρ̂

(b)
D are QO-cl, with their PNDs coinciding

exactly with that of a coherent state.
Now we pass the two-mode state ρ̂

(ab)
D of Eq. (5.11) through

the BS Û0 of Eq. (5.1); the resulting ρ̂
′(ab)
D is

ρ̂
′(ab)
D = Û0ρ̂

(ab)
D Û−1

0

= e−λ

∞∑
n=0

(
λ

4

)n 1

n!3 (â†2 − b̂†2)n|0,0〉〈0,0|(â2 − b̂2)n.

(5.17)

To apply the NPT entanglement test based on Eq. (5.9) it
is convenient to examine V0�V T

0 . Combining Eqs. (5.4) and
(5.13) we find the matrices �′, Y ′ associated with ρ̂

′(ab)
D to be

�′ = V0�V T
0

=

⎛
⎜⎜⎜⎝

1
2λ2 + λ 0 0 − 1

2λ2

0 1
2λ2 − 1

2λ2 − λ 0

0 − 1
2λ2 − λ 1

2λ2 0

− 1
2λ2 0 0 1

2λ2 + λ

⎞
⎟⎟⎟⎠ ,

Y ′ =

⎛
⎜⎜⎜⎝

λ 0 0 0

0 0 0 0

0 0 2λ + 1 0

0 0 0 λ

⎞
⎟⎟⎟⎠ . (5.18)
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Therefore according to Eq. (5.9) we have to test the positivity
or otherwise of

V0�V T
0

= V0�V T
0 +Y ′

=

⎛
⎜⎜⎜⎝

1
2λ2 + 2λ 0 0 − 1

2λ2

0 1
2λ2 − 1

2λ2 − λ 0

0 − 1
2λ2 − λ 1

2λ2 + 2λ + 1 0

− 1
2λ2 0 0 1

2λ2 + 2λ

⎞
⎟⎟⎟⎠ .

(5.19)

The (2,3) submatrix here is indefinite as it has determinant
− 1

2λ2. This establishes that ρ̂
′(ab)
D of Eq. (5.17) is NPT

entangled. Qualitatively speaking, even though Y ′ in Eq. (5.18)
is nonnegative, the total matrix V0�V T

0 in Eq. (5.19) is
indefinite, with �′ dominating Y ′. The emphasis here has been
to show that the NPT entanglement produced by BS action
can indeed be witnessed by the test based on Eq. (5.9), which
goes beyond the examination of the Mandel matrix in a precise
manner.

We can characterize the NPT entanglement we have proved
in this example further. From the expression in Eq. (5.17), the
terms for n = 0 and n = 1 are, respectively,

e−λ|0,0〉〈0,0|, λ

2
e−λ(|2,0〉 − |0,2〉)(〈2,0| − 〈0,2|), (5.20)

giving the matrix elements,(
ρ̂

′(ab)
D

)
00,00 = e−λ,

(
ρ̂

′(ab)
D

)
20,20 = (ρ̂ ′(ab)

D

)
02,02

= − (ρ̂ ′(ab)
D

)
20,02 = −(ρ̂ ′(ab)

D

)
02,20 = λ

2
e−λ.

(5.21)

One also obtains from the n = 2 term in Eq. (5.17) the matrix
element,

(
ρ̂

′(ab)
D

)
22,22 = λ2

8
e−λ. (5.22)

To demonstrate distillability we follow the recipe of
Ref. [39], and project ρ̂

′(ab)
D into the 2 × 2 bipartite sub-

space spanned by |0〉,|2〉 for the a mode and |0〉,|2〉 for
the b mode. The resulting 2 × 2 state written in the basis
|0,0〉,|0,2〉,|2, 0〉,|2,2〉 reads

ρ̂
′(ab)
D → (

ρ̂
′(ab)
D

)
2×2 ∼

⎛
⎜⎜⎜⎝

1 0 0 0

0 λ
2 − λ

2 0

0 − λ
2

λ
2 0

0 0 0 λ2

8

⎞
⎟⎟⎟⎠ . (5.23)

That ( ρ̂
′(ab)
D )2×2 is inseparable is manifest, for its partial trans-

pose has negative determinant. Indeed, the partial transpose
has an eigenvector of the form α|0,0〉 + β|2,2〉 with a negative
eigenvalue. This demonstrates that the NPT entanglement of
ρ̂

′(ab)
D in Eq. (5.17) is in fact distillable.

B. The two-mode squeezed vacuum

This state defined in Eq. (4.23) is both pure and of product
form (i.e., of Schmidt rank one). It was studied in the previous

section via its Mandel matrix, which showed it to be QO-noncl
with Type-II (i.e., hidden) sub-PS. In principle, after passing
this state through the BS U0, we can apply the test based on
Eq. (5.9) to see if the output state is NPT entangled. However,
this involves some amount of algebra. Fortunately, the fact that
the output state of the BS is entangled can be seen in this case
simply by inspection and without any calculations:

Û0|ψ (ab)(ω,ω′)〉 = Û0exp
[

1
4 (ξ â†2 − ξ ∗â2)

+ 1
4 (ξ ′b̂†2 − ξ ′∗b̂2)

]
Û−1

0 |0,0〉
= exp

{
1
8 [ξ (â† − b̂†)2 − ξ ∗(â − b̂)2]

+ 1
8 [ξ ′(â† + b̂†)2 − ξ ′∗(â + b̂)2]

}|0,0〉.
(5.24)

This is because the final unitary operator acting on |0,0〉 is
clearly not the tensor product of individual unitary operators
acting separately on the two vacua. It is, of course, important
that at least one of the factors |ψ (a)(ω)〉, |ψ (b)(ω′)〉 in the initial
product (4.23) be QO-noncl. A two-mode pure product QO-cl
state is necessarily a product of single-mode coherent states,
and this product structure is maintained by BS.

VI. TWO-MODE NONCLASSICALITY TO THREE-MODE
ENTANGLEMENT

In the preceding Section we studied the possibility of a U(2)
BS converting a two-mode QO-noncl separable state into an
entangled one since both nonclassicality and entanglement are
meaningful concepts for such systems. The entire discussion
was within the framework of the space of states of a two-mode
system.

Now we present a treatment of two-mode states analogous
to that in Sec. II for single-mode systems; that is, we couple a
given two-mode state ρ̂

(ab)
D to a third ancilla mode in vacuum,

pass such an input state ρ̂(abc)
in through a “U(3) beam splitter”

(a classicality preserving passive system), and obtain a three-
mode output state ρ̂

(abc)
out . We then test whether this shows

NPT entanglement as a consequence of (Mandel-level) QO
nonclassicality assumed to be present initially in ρ̂

(ab)
D ; the

PT operation is applied to the c mode. The motivation is to
explore the algebraic expressions and form of the test one is
led to, apart from carrying the physical process described in
Sec. II to the next higher level.

We begin with ρ̂
(ab)
D for which M (2)(ρ̂(ab)

D ) shows QO
nonclassicality. With the ancilla c mode in vacuum we have
an input three-mode state,

ρ̂(abc)
in = ρ̂

(ab)
D ⊗ |0〉cc〈0|, (6.1)

strictly analogous to Eq. (2.15). To a general matrix u ∈ U(3)
we associate a passive “beam splitter” which unitarily mixes
the annihilation operators of the three modes in a manner
analogous to Eq. (2.13), now conserving N̂a + N̂b + N̂c. In
the three-mode Hilbert space this BS u acts through a unitary
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operator Û , and we have [19,20]

u =

⎛
⎜⎝

u11 u12 u13

u21 u22 u23

u31 u32 u33

⎞
⎟⎠ ∈ U(3) → Û : Û †Û = Û Û † = 1, Û

⎛
⎜⎝

â

b̂

ĉ

⎞
⎟⎠ Û−1 = u†

⎛
⎜⎝

â

b̂

ĉ

⎞
⎟⎠ , Û

⎛
⎜⎝

â†

b̂†

ĉ†

⎞
⎟⎠ Û−1 = uT

⎛
⎜⎝

â†

b̂†

ĉ†

⎞
⎟⎠ ,

Û−1

⎛
⎝ â

b̂

ĉ

⎞
⎠ Û = u

⎛
⎜⎝

â

b̂

ĉ

⎞
⎟⎠ , Û−1

⎛
⎜⎝

â†

b̂†

ĉ†

⎞
⎟⎠ Û = u∗

⎛
⎜⎝

â†

b̂†

ĉ†

⎞
⎟⎠ , Û (N̂a + N̂b + N̂c) = (N̂a + N̂b + N̂c)Û . (6.2)

Therefore, upon passage through this BS, the state in Eq. (6.1) changes to

ρ̂
(abc)
out = Û ρ̂(abc)

in Û−1 = Û
{
ρ̂

(ab)
D ⊗ |0〉cc〈0|}Û−1. (6.3)

To test this output state for NPT entanglement, we apply the PT operation to the c mode and then evaluate the “expectation value”
of a suitably chosen Hermitian nonnegative operator:

A = α0 + α1âĉ + α2b̂ĉ + α3â
†ĉ† + α4b̂

†ĉ† : Tr
(
ρ̂

(abc)PT
out A†A

) = α†Xα,

X = Tr

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ̂
(abc)PT
out

⎛
⎜⎜⎜⎜⎜⎜⎝

1

â†ĉ†

b̂†ĉ†

âĉ

b̂ĉ

⎞
⎟⎟⎟⎟⎟⎟⎠

(1 âĉ b̂ĉ â†ĉ† b̂†ĉ†)

⎞
⎟⎟⎟⎟⎟⎟⎠

, α =

⎛
⎜⎜⎜⎜⎜⎝

α0

α1

α2

α3

α4

⎞
⎟⎟⎟⎟⎟⎠ . (6.4)

In spirit, the approach here is similar to that used in the preceding Section leading to Eq. (5.7), though here we are dealing with
the extension from two to three modes. The 5 × 5 Hermitian matrix X, constructed by taking entry-wise expectation values as
defined, is designed to be related to the input Mandel matrix M (2)(ρ̂(ab)

D ) but going beyond it in a well-defined way. Developing
it we find

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

1

â†ĉ†

b̂†ĉ†

âĉ

b̂ĉ

⎞
⎟⎟⎟⎟⎟⎠

(1 âĉ b̂ĉ â†ĉ† b̂†ĉ†)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

PT

=:

⎛
⎜⎜⎜⎜⎜⎝

1

â†ĉ

b̂†ĉ

ĉ†â
ĉ†b̂

⎞
⎟⎟⎟⎟⎟⎠

(1 ĉ†â ĉ†b̂ â†ĉ b̂†ĉ)

: +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0

0 0 0

...

...

...

0 0

0 0

0 0

· · · · · · · · · · · · · · ·
0 0 0

0 0 0

...

...

Ẑ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ẑ =
(

â†â + ĉ†ĉ + 1 b̂†â

â†b̂ b̂†b̂ + ĉ†ĉ + 1

)
= :

(
â

b̂

)
(â† b̂†) : + (1 + ĉ†ĉ)

(
1 0

0 1

)
. (6.5)

Use this in Eq. (6.4), implement the conjugation Û−1(· · ·)Û and use the fact that the c mode is initially in vacuum to get

X = Tr(ρ̂(ab)
D :

⎛
⎜⎜⎜⎜⎜⎜⎝

1

â′†ĉ′

b̂′†ĉ′

ĉ′†â′

ĉ′†b̂′

⎞
⎟⎟⎟⎟⎟⎟⎠

(1 ĉ′†â′ ĉ′†b̂′ â′†ĉ′ b̂′†ĉ′) :

+ Tr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̂
(ab)
D

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 0 0

0 0 0

...

...

...

0 0

0 0

0 0

· · · · · · · · · · · · · · ·
0 0 0

0 0 0

...

...

Ẑ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ẑ′ =:

(
â′

b̂′

)
(â′† b̂′†)

: + (1 + ĉ′†ĉ′)
(

1 0

0 1

)
,

⎛
⎜⎝

â′

b̂′

ĉ′

⎞
⎟⎠ =

⎛
⎜⎝

u11 u12

u21 u22

u31 u32

⎞
⎟⎠( â

b̂

)
. (6.6)

The appearance of the extra terms Ẑ, Ẑ′ is a result of normal ordering similar to the appearance of Ŷ in Eq. (5.6). One
can now disentangle the u dependencies and express the result in terms of M (2)(ρ̂(ab)

D ) and an additional piece involving
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C = Tr(ρ̂(ab)
D Ĉ):

X = W (u)M (2)(ρ̂(ab)
D

)
W (u)† +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0

...

...

...

0 0
0 0
0 0

· · · · · · · · · · · · · · ·
0 0 0
0 0 0

...

...
Z′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W (u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ... 0 0
... 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0
0

...

...

(
u∗

11
u∗

21

)
(u31 u32)

...

...

(
u∗

12
u∗

22

)
(u31 u32)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0
0

...

...
u∗

31

(
u11 u12

u21 u22

) ...
...

u∗
32

(
u11 u12

u21 u22

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.7)

Z′ = Tr
(
ρ̂

(ab)
D Ẑ′), Ẑ′ =

(
u11 u12

u21 u22

)
:

(
â

b̂

)
(â† b̂†) :

(
u∗

11 u∗
21

u∗
12 u∗

22

)
+ [1 + (u∗

31â
† + u∗

32b̂
†)(u31â + u32b̂)]

(
1 0
0 1

)
.

If this matrix X, dependent on ρ̂
(ab)
D and u ∈ U(3), is

indefinite, ρ̂
(abc)
out of Eq. (6.3) is NPT entangled. For this to

happen, as we have assumed, ρ̂
(ab)
D must be QO-noncl, since

the BS Û would map any QO-cl input into similar output, the
ancilla being in a QO-classical state (vacuum).

A. Two illustrative examples

The first is a two-mode state with only a finite number
of photons, so that its QO nonclassicality is a foregone
conclusion:

ρ̂
(ab)
D = p|2,0〉〈2,0| + q|1,1〉〈1,1| + r|0,2〉〈0,2|,

(6.8)
p,q,r � 0 p + q + r = 1.

This is separable, though not a product state. The only
nonvanishing expectation values needed to construct the
Mandel matrix are

〈â†â〉 = 2p + q, 〈b̂†b̂〉 = 2r + q, 〈â†2â2〉 = 2p,
(6.9)

〈â†âb̂†b̂〉 = q, 〈b̂†2b̂2〉 = 2r.

Therefore the Mandel matrix is

M (2)
(
ρ̂

(ab)
D

) =

⎛
⎜⎜⎜⎜⎜⎝

1 q + 2p 0 0 q + 2r

q + 2p 2p 0 0 q

0 0 q 0 0

0 0 0 q 0

q + 2r q 0 0 2r

⎞
⎟⎟⎟⎟⎟⎠. (6.10)

The determinants of various nontrivial 2 × 2 submatrices,
the one nontrivial 3 × 3 submatrix, and finally of M (2)(ρ̂(ab)

D )
itself, are (indicating the submatrices by the relevant rows and
columns)

(1,2) : 2p − (q + 2p)2; (1,5) :

2r − (q + 2r)2; (2,5) : 4pr − q2, (6.11)

(1,2,5) : q2 − 4pr; detM (2)
(
ρ̂

(ab)
D

) = q2(q2 − 4pr).

One can easily visualize situations for which the (1,2) and
(1,5) submatrices become indefinite, for instance, q close
to unity and p,r close to zero. In any case, since the (2,5)
subdeterminant is opposite to the (1,2,5) subdeterminant in
sign and also to the full determinant, the state in Eq. (6.8) is
always QO-noncl at the Mandel matrix level.

The type of sub-PS can be easily determined. From
Eq. (6.10) we find the 4 × 4 matrix � to be

� =

⎛
⎜⎜⎜⎝

δa 0 0 q − (q + 2p)(q + 2r)

0 q 0 0

0 0 q 0

q − (q + 2p)(q + 2r) 0 0 δb

⎞
⎟⎟⎟⎠ , δa = 2p − (q + 2p)2, δb = 2r − (q + 2r)2. (6.12)

032118-14



ENTANGLEMENT AND NONCLASSICALITY FOR . . . PHYSICAL REVIEW A 83, 032118 (2011)

Therefore, also,

ψ0(α,β)†�ψ0(α,β) = 2p|α|4 + 4q|α|2|β|2 + 2r|β|4
−[(q + 2p)|α|2 + (q + 2r)|β|2]2.

(6.13)

For α = 1, β = 0 this is δa; for α = 0, β = 1 it is δb. We now
consider p running over its range [0,1] in successive portions
and draw corresponding conclusions:

p = 0 : q = 0 ⇒ δb = −2; q > 0 ⇒ δa < 0,

0 < p < 1
2 : δa > 0 ⇒ 2p − (p − r + 1)2 > 0 ⇒ (p − r)2

+ 1 − 2r < 0 ⇒ 2r > 1 ⇒ δb < 0,

δa = 0 ⇒ (p − r)2 + 1 − 2r = 0 ⇒ p 
= r,

2r > 1 ⇒ δb < 0,

p = 1
2 : q = 0 ⇒ p = r = 1

2 , δa = δb = 0,

q > 0 ⇒ δa < 0,

1
2 < p � 1 : 2p > 1 ⇒ δa < 0. (6.14)

Thus in every situation except p = r = 1
2 , q = 0, either δa

or δb is negative. In this one exceptional case we find, from
Eq. (6.13),

p = r = 1
2 , q = 0 : ψ0(α,β)†�ψ0(α,β) = −2|α|2|β|2,

(6.15)

which is negative for α,β 
= 0. This establishes that the state
(6.8) is of Type I sub-PS.

Now we couple this state to the third c mode in vacuum,
and pass it through a particular U(3) BS, namely a 50:50 BS
acting on the b and c modes alone. The output state is calculated
using Eq. (6.3), and to test whether it is NPT entangled we need
to calculate the matrix X of Eq. (6.7) involving the Mandel
matrix term and the added Z′ term. The choice of u ∈ U(3),
the resulting W (u), and the two parts of X are as follows:

u =

⎛
⎜⎝

1 0 0

0 1/
√

2 1/
√

2

0 −1/
√

2 1/
√

2

⎞
⎟⎠ ∈ U(3), W (u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 0 −1/
√

2 0 0

0 0 0 0 −1/2

0 0 0 −1/
√

2 0

0 0 0 0 −1/2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

W (u)M (2)
(
ρ̂

(ab)
D

)
W (u)† =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −r − q/2 0 −r − q/2

0 q/2 0 0 0

−r − q/2 0 r/2 0 r/2

· · · · · · ·
0 0 0

... q/2 0

−r − q/2 0 r/2
... 0 r/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.16)

Z′ =
(

2p + 3q/2 + r + 1 0
0 q + 2r + 1

)
.

The dotted lines indicate where the 2 × 2 block Z′ has to be
inserted. Leaving out the trivial second and fourth rows and
columns as they do not couple to any others, the determinants
of the various 2 × 2 submatrices and the 3 × 3 submatrix
in X are

(1,3) : r/2 − (q/2 + r)2;

(1,5) : 5r/2 + q + 1 − (q/2 + r)2,
(6.17)

(3,5) : r(q + 2r + 1)/2;

(1,3,5) : (q + 2r + 1)[r/2 − (q/2 + r)2].

Comparing these with Eqs. (6.11) we see that whenever the QO
nonclassicality of ρ̂

(ab)
D manifests itself in the (1,5) submatrix

of M (2)(ρ̂(ab)
D ) being indefinite, simultaneously the three-mode

state ρ̂
(abc)
out displays NPT entanglement. If on the other hand the

(1,2) submatrix of M (2)(ρ̂(ab)
D ) were indefinite, then by suitably

altering the U(3) element u in Eq. (6.16) we can again achieve

NPT entanglement of ρ̂
(abc)
out . In either event, we see how a U(3)

BS can produce NPT entanglement starting from a two-mode
nonclassical state (6.8), and how the signatures go beyond the
indefiniteness of M (2)(ρ̂(ab)

D ) in a precise manner.
The second example to illustrate the ideas of this section

is similar in structure to the example (5.11) of the preceding
section, but differs in certain details. For a real nonnegative
parameter η we define the separable state,

ρ̂
(ab)
D = 1

C

∞∑
n=0

η2n

(2n)!
|n,n〉〈n,n|, (6.18)

where C = cosh η, and later S = sinh η and t = tanh η. The
case η = 0 corresponds to the two-mode vacuum, and so we
take 0 < η < ∞. Using the elementary sums,

∞∑
n=0

(n or n2)
η2n

(2n)!
= η

2
S or

η

4
(S + ηC), (6.19)
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the nonzero expectation values needed for the Mandel matrix are

〈â†â〉 = 〈b̂†b̂〉 = η

2
t, 〈â†2â2〉 = 〈b̂†2b̂2〉 = η

4
(η − t), 〈â†b̂†âb̂〉 = η

4
(η + t). (6.20)

Therefore we find

M2
(
ρ̂ab

D

) =

⎛
⎜⎜⎜⎜⎜⎝

1 ηt

2 0 0 ηt

2
ηt

2
η

4 (η − t) 0 0 η

4 (η + t)

0 0 η

4 (η + t) 0 0

0 0 0 η

4 (η + t) 0
ηt

2
η

4 (η + t) 0 0 η

4 (η − t)

⎞
⎟⎟⎟⎟⎟⎠ . (6.21)

Leaving out the third and fourth rows and columns, the
remaining 2 × 2 subdeterminants are

(1,2) and (1,5) :
η

4

(
η

C2
− t

)
; (2,5) : −η3t

4
. (6.22)

The function η

C2 − t decreases monotonically from 0 to −1
as η runs from zero to infinity. We see that the state (6.18) is
QO-noncl for all η > 0. To determine its type we compute �

and its “expectation value” in ψ0(α,β):

� = η

4

⎛
⎜⎜⎜⎝

η

C2 − t 0 0 η

C2 + t

0 η + t 0 0

0 0 η + t 0
η

C2 + t 0 0 η

C2 − t,

⎞
⎟⎟⎟⎠ ,

(6.23)

ψ0(α,β)†�ψ0(α,β) = η

4

{
η

C2
− t + 2|α|2|β|2(η + 3t)

}
.

At both α = 1, β = 0 and α = 0, β = 1 the last expression is
negative, so the state (6.18) is QO-noncl Type I sub-PS. In this

context we note that the single-mode state ρ̂(a) obtained from
(6.18) by tracing over b is

ρ̂
(a)
D = 1

C

∞∑
n=0

η2n

(2n)!
|n〉aa〈n|, (6.24)

and this has the Mandel matrix and determinant,

M (1)(ρ̂(a)
D

) =
(

1 ηt

2
ηt

2
η

4 (η − t)

)
,

(6.25)

detM (1)
(
ρ̂

(a)
D

) = η

4

(
η

C2
− t

)
< 0.

The properties of ρ̂
(b)
D are identical. So, in contrast to the state

(5.11), now both ρ̂
(a)
D and ρ̂

(b)
D are QO-noncl, accompanying

the Type I nature of ρ̂
(ab)
D .

We now apply the NPT entanglement test outlined in
Eqs. (6.4), (6.6), and (6.7). The necessary expressions
are

W (u)M (2)(ρ̂(ab))W (u)† =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 − ηt

4 0 − ηt

4

0 η

8 (η + t) 0 0 0

− ηt

4 0 η

16 (η − t) 0 η

16 (η − t)

0 0 0 η

8 (η + t) 0

− ηt

4 0 η

16 (η − t) 0 η

16 (η − t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Z′ =
(

1 + 3ηt

4 0
0 1 + ηt

2

)
. (6.26)

The 2 × 2 matrix Z′, which is positive definite, has to be
“added” at the lower right-hand corner of the 5 × 5 matrix,
leading to X of Eq. (6.7). Then the positivity or otherwise of
X has to be examined. However, even without taking account
of Z′, and unaffected by Z′, the (1,3) subdeterminant of X

is η

16 ( η

C2 − t), which is negative. This establishes the NPT

entanglement of ρ̂
(abc)
out in this example.

The considerations of this section show that the scheme
described in Sec. II, elevating single-mode QO-noncl states to
the two-mode level and then allowing BS action to produce
NPT entanglement, generalizes to the next higher level. The
method of Mandel matrices is a practical way to see these
processes in action.

VII. GENUINE TRIPARTITE ENTANGLEMENT

Now that the main methods of our approach—signatures
of nonclassicality at the Mandel matrix level, their nontrivial
extensions to signatures of (NPT) entanglement created by BS
action—have been applied to several examples, we go on to
consider some more subtle features of entanglement. We will
show via an example that in the three-mode case the BS action
on an initial two-mode nonclassical state can lead to genuine
residual tripartite entanglement. This is in the sense of [55],
whereby the output is a tripartite state similar to the GHZ
state [56]: there is no bipartite entanglement when any one of
the three modes is traced away.
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We consider the state (5.11) studied in Sec. V, and subject
it to the treatment of Sec. VI. As we have seen, this (separable)
state shows Type II sub-PS. With ρ̂

(ab)
D as in (5.11), we pass

the state (6.1),

ρ̂
(ab)
D ⊗ |0〉cc〈0| = e−λ

∞∑
n=0

λn

n!
|n,n〉ab ab〈n,n| ⊗ |0〉cc〈0|, (7.1)

through a 50:50 b − c BS, a special U(3) element, whose action
on the mode operators b̂ and ĉ is

Û

(
b̂

ĉ

)
Û−1 = 1√

2

(
1 1

−1 1

)(
b̂

ĉ

)
. (7.2)

The resulting state is

ρ̂
(abc)
out = Û

(
ρ̂

(ab)
D ⊗ |0〉cc〈0|)Û−1

= e−λ

∞∑
n=0

λn

2nn!
|n〉aa〈n|

⊗ (b̂† + ĉ†)
n|0,0〉bc bc〈0,0|(b̂ + ĉ)

n

= e−λ

∞∑
n=0

λnn!

2n
|n〉aa〈n|

⊗
n∑

r,s=0

|r,n − r〉bc bc〈s,n − s|√
r!(n − r)!s!(n − s)!

. (7.3)

Clearly this is separable in the a/bc cut. However, it is
entangled in both the c/ab and b/ac cuts as we show below.
As a test for NPT entanglement in the c/ab cut, we evaluate
the “expectation value” of a suitably chosen positive operator
on the partially transposed output ρ̂(abc)PT

out , the partial transpose
being applied on the c mode. For the choice of operator Â†Â,
where

Â = α0 + α1b̂ĉ + α2â
†â, (7.4)

a test for NPT entanglement would be to check for violation
of positivity of

Tr
(
ρ̂

(abc)PT
out Â†Â

) = Tr
(
ρ̂

(abc)
out (Â†Â

)PT)

= (α∗
0 α∗

1 α∗
2 ) X

⎛
⎜⎝

α0

α1

α2

⎞
⎟⎠ , (7.5)

X = Tr

⎛
⎜⎝ρ̂

(abc)
out

⎛
⎜⎝

1 b̂ĉ† â†â

b̂†ĉ b̂†b̂ĉ†ĉ b̂†ĉâ†â

â†â â†âb̂ĉ† â†ââ†â

⎞
⎟⎠
⎞
⎟⎠ .

Using the fact that initially the c mode is in the vacuum,
we find

X =

⎛
⎜⎝

1 λ/2 λ

λ/2 λ2/4 λ(λ + 1)/2

λ λ(λ + 1)/2 λ(λ + 1)

⎞
⎟⎠ . (7.6)

As the (2,3) submatrix of X has negative determinant, ρ̂
(abc)
out

is NPT entangled across the c/ab cut. It is easy to see that a
similar test with the same choice of Â, except that now the PT
operation is applied to the b mode, yields the conclusion that
ρ̂

(abc)
out is NPT entangled across the b/ac cut. So we find in this

example bipartite entanglement in a tripartite setup, as a result
of BS action.

Now to show that the entanglement is genuine tripartite,
“residual” in the sense of [55], we have the following:

ρ̂
(ab)
out = Trc

(
ρ̂

(abc)
out

) = e−λ

∞∑
n=0

λnn!

2n
|n〉a a〈n|

n∑
r=0

|r〉b b〈r|
r!(n − r)!

,

ρ̂
(ac)
out = Trb

(
ρ̂

(abc)
out

) = e−λ

∞∑
n=0

λnn!

2n
|n〉a a〈n|

n∑
r=0

|r〉c c〈r|
r!(n − r)!

,

ρ̂
(bc)
out = Tra

(
ρ̂

(abc)
out

) = e−λ

∞∑
n=0

λnn!

2n

n∑
r,s=0

|r,n − r〉bcbc〈s,n− s|√
r!(n − r)!s!(n− s)!

.

(7.7)

The first two are manifestly separable. It may not be obvious
at first glance that the third is also separable but a closer look
shows that it can be written in the form,

ρ̂
(bc)
out = e−λÛ

( ∞∑
n=0

λn

n!
|n〉b b〈n| ⊗ |0〉cc〈0|

)
Û−1, (7.8)

where U is the 50:50 b − c BS (7.2). Note that∑∞
n=0

λn

n! |n〉bb〈n|, the state of the b mode at the input, is simply
the phase-averaged (coarse-grained) version of the coherent
state |√λ〉. Thus ρ̂

(bc)
out is the outcome of a classical state passed

through a BS, so it is classical and hence separable.
It is interesting that the feature of genuine tripartite

entanglement is reminiscent of Type II sub-PS for a two-mode
state at the Mandel level, where the nonclassicality never
shows up at any single-mode level. An interesting question
in this context is the possibility of extension of monogamy
relations to this non-Gaussian case [57,58].

VIII. FURTHER PROPERTIES OF MANDEL
PARAMETERS AND BEAM SPLITTERS

For one- and two-mode field states, we have used the 2 × 2
and 5 × 5 Mandel matrices, respectively, to classify the states
in a physically useful manner. It is convenient to also have
suitably normalized single parameter—“scalar”—measures of
nonclassicality defined in terms of the Mandel matrices. In the
two-mode case a useful requirement would be invariance of
such measures under BS action.

We begin with the single-mode case. Here the Mandel Q

parameter was defined in [8] as

Q = (�N̂a)2 − 〈N̂a〉
〈N̂a〉

= 〈â†2â2〉 − 〈â†â〉2

〈â†â〉 = detM (1)
(
ρ̂

(a)
D

)
〈â†â〉 .

(8.1)

Here all expectation values are in the state ρ̂
(a)
D , and Eq. (4.2)

has been used. From the classification (4.4), Q > 0 and Q < 0
correspond, respectively, to super-PS and nonclassical sub-PS
cases. This parameter is bounded below by −1, which is a
convenient normalization. For Q > 0 there is no upper bound.

In attempting to generalize to two modes, as a first step we
show that the separation of QO-noncl states into Types I and II
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is BS action invariant. For any u ∈ U(2), from Eq. (2.13) and
the direct product structure of Ĉ in Eq. (4.8) we easily obtain

Û−1ĈÛ = V Ĉ, Û−1Ĉ†Û = Ĉ†V †,

Û−1B̂Û = V B̂V †, (8.2)

V = u∗ ⊗ u.

Therefore, with C and B defined as in Eq. (4.15), under general
BS action we have

ρ̂
′(ab)
D = Û ρ̂

(ab)
D Û−1 ⇒ C ′ = V C, B ′ = V BV †,

(8.3)
�′ = V �V †.

Now in the QO-noncl family of states, corresponding to
M (2)(ρ̂(ab)

D ) 
� 0 or equivalently to � 
� 0, the further sepa-
ration into Types I and II is given in Eq. (4.18). Here it is the
“expectation values” of � in four-component column vectors
ψ0(α,β) that are relevant. However, these vectors too have a
direct product structure (4.12), so they are mapped into similar
vectors under the above changes:

V †ψ0(α,β) = (uT ⊗ u†)
(

α

β

)
⊗
(

α∗
β∗

) = ψ0(α′,β ′),

(8.4)(
α′
β ′

)
= uT

(
α

β

)
.

This proves that the separation into Types I and II is preserved
under BS action. More specifically, if a BS converts a
QO-noncl separable state of a definite type into an NPT-
entangled state, this change occurs within the subfamily of
that type.

Now we generalize (8.1) to the two-mode case. Keeping
the requirement of BS action invariance in mind, we define the
two-mode Mandel parameter as

Q′ = Tr(�) − ||�||
2(〈â†â〉 + 〈b̂†b̂〉) , (8.5)

Here ||�|| is the trace norm of �, which for Hermitian � is the
sum of the absolute values of its eigenvalues. Therefore, Q′ is
simply the sum of the negative eigenvalues of � divided by the
expectation value of the total number operator N̂a + N̂b. From
Eq. (8.3), the invariance of Q′ under BS action is obvious.

The parameter Q′ vanishes for QO-cl states (as defined
via the Mandel matrix), and is strictly negative for QO-
noncl states. For two-mode product Fock states, for instance,
Q′ = −1. To follow the distinction between the two types,
we combine Eqs. (4.12) and (8.1) to define the variable
single-mode Mandel parameter,

Q(α,β) = 〈Â†2Â2〉 − 〈Â†Â〉2

〈Â†Â〉 , Â = αâ + βb̂. (8.6)

The minimum value of Q(α,β) as α, β vary is also useful:

Qmin = min
|α|2+|β|2=1

Q(α,β). (8.7)

From all the previous discussions we draw up a table of results
characterizing various two-mode states (always at the Mandel

TABLE I. Showing the various two-mode QO-nonclassicality
types and the possible behaviours of the Mandel parameter for
each type.

Category Definition Description

(i) Qmin � 0, Q′ = 0 QO-cl
(iia) Qmin � Q′ < 0 QO-noncl Type I
(iib) Q′ < Qmin < 0 QO-noncl Type I
(iii) Qmin � 0, Q′ < 0 QO-noncl Type II

level) in Table I. For some of these, we have examples from
previous sections. All QO-cl states, including the states (4.20)
for detM (1)(ρ̂(a)

D ) � 0, come under category (i). On the other
hand, the states (4.20) for detM (1)(ρ̂(a)

D ) < 0 belong to category
(ii). The subclassification into (iia) and (iib) is subtle, but
simple examples of each can be provided. For category (iia)
we consider the product of a Fock state at the a mode and a
coherent state at the b mode:

|ψ〉 = |n〉a ⊗ |z〉b. (8.8)

This is QO-noncl separable. The matrix � is diagonal,

� = diag(−n,n|z|2,n|z|2,0), (8.9)

leading to

Q2 = −n/(n + |z|2) � −1. (8.10)

On the other hand, Q(1,0) = −1, so Qmin � Q′ < 0 which
falls under (iia). For category (iib) we can take the states (6.18)
which are QO-noncl and separable. Using Eqs. (6.20) and
(6.23) we find

Q′ = −1/2 : Q(α,β) = ψ0(α,β)†�ψ0(α,β)/〈Â†Â〉
= 1

2t

{ η

C2
− t + 2|α|2|β|2(η + 3t)

}
. (8.11)

The minimum of Q(α,β) is reached when either α or β is zero:

Qmin = 1

2t

{
η

C2
− t

}
> −1

2
. (8.12)

As 0 > Qmin > Q′, this falls under category (iib).
Another interesting example for (iib) is the class of pure

states obtained as an equal in-phase superposition of product
Fock states with given total occupation number n:

|ψn〉 = 1√
n + 1

n∑
r=0

|r,n − r〉. (8.13)

For the cases n = 1,2,3,4 the numerically computed values
of Q′ are −1, −1.085, −1.123, −1.143, respectively. Since
in any case Q(α,β) and Qmin are bounded below by −1, we
have Q′ < Qmin. We may also note that these entangled states
cannot be produced by BS action on product Fock states,
except when n = 1.

Turning finally to category (iii), we have examples from
Secs. IV and V. For the two-mode squeezed vacuum state
(4.23), we have using Eq. (4.26) and the eigenvalue spectrum
of � stated after Eq. (4.25):

Q′ = SS ′(SS ′ − CC ′)/(S2 + S ′2) < 0, Qmin > 0. (8.14)
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For the family of states (5.11), from Eqs. (5.12) and (5.13) we
find

Q′ = −1/2, Qmin > 0. (8.15)

So, in both cases, we have category (iii) states.

IX. CONCLUSIONS

In this work we have investigated the relationships between
quantum optical nonclassicality of the phase-insensitive type
and entanglement in multimode radiation fields. In particular,
we have examined the possibilities of converting nonclassi-
cality in such fields into entanglement through the use of
classicality preserving passive devices such as beam splitters.
For the case of a single mode, after giving a complete
characterization of the quantum optical nonclassicality at the
level of phase-insensitive quantities, we have shown that such
states through a beam-splitter action with vacuum or more
generally a coherent state at the other port, always give
rise to an NPT-entangled state. For the case of two-mode
radiation fields we have presented a test which simultaneously
witnesses both nonclassicality and entanglement in such
states and have also developed a scheme based on Mandel
matrices for characterizing and classifying nonclassicality in
one- and two-mode states. In particular, it is shown that
in the two-mode case, the characterization at the level of
Mandel matrices permits us to divide two-mode states into
two categories—Type I where the nonclassicality manifests

itself already at the single-mode level and Type II where the
nonclassicality is intrinsically two mode in character with no
Mandel-type signatures of nonclassicality at the single-mode
level. We have also examined in detail the possibility of a
U(2) beam splitter converting Mandel-level nonclassicality
in a two-mode separable state into an NPT-entangled state
and have given tests for NPT entanglement in the state
resulting from such an action. Distillability of the state so
produced is demonstrated in one case. Furthermore, in a
similar spirit as for the case of a single mode, we have also
analyzed the action of a U(3) beam splitter on a two-mode
Mandel-level nonclassical state and have derived conditions
under which the two-mode nonclassicality manifests itself
in NPT entanglement in the resulting three-mode states. In
this context, we have also shown, via an example, how
such an action can lead to a genuine tripartite entangled
state in the sense that there is no bipartite entanglement
when any one of the three modes is traced away. With a
view to ease in categorization of nonclassicality in two-mode
states, by appealing to invariance under beam-splitter action
we have suggested analogs of the Mandel Q parameter
originally introduced in the context of single-mode radiation
states.

As a final remark we note that recent experiments such
as those reported in [59,60] suggest that measurement of the
two-mode Mandel parameter, and detection of nonclassicality
and entanglement through moments-based tests, are feasible
within the current experimental scenario.
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