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Abstract:  Optical micromanipulation of carbon nanotubes (CNT), that has hitherto been 
elusive, has been achieved in an aqueous suspension of CNTs in an optical tweezers setup, via 
the mediation of microbubbles. These microbubbles are formed when CNT bundles are brought 
to the focal volume. With the bubbles themselves being easily trappable in the tweezers, the 
CNTs adhered to the surface of the microbubbles can now be held immobilised. CNTs held in 
the optical trap focus are found to emit bright light in the visible, which may be a sustained 
glow, or an uncontrolled flare. These observations and the underlying mechanisms will be 
discussed in the talk.  

Conventionally, white light generation refers to broadband light resulting from high order 
nonlinear processes that occur in materials that are subjected to high incident light intensities. In this 
Progress Report we discuss white light generation from nanosources under milliwatt  cw illumination, 
namely CNTs in optical tweezers.  
 Carbon nanotubes are a “wonder material” with very many interesting properties.  The very 
high aspect ratio of their dimensions, and their structural stability, give rise to unique properties.  High 
tensile strength, high electrical conductivity, good semiconducting properties of some nanotubes have 
given CNTs a versatility unmatched by other known materials.   Our experiments were aimed at 
trapping and manipulating CNTs optically, in a tweezers setup operating at 1064nm[1]. Experiments 
were conducted on carbon nanotubes that were 1.2 to 1.5 nm in diameter and a few microns in length.  
The CNTs were agglomerated in the form of bundles, of sizes varying from 1 to 10 µm. In order to 
select as small bundles as possible, the nanotubes were suspended in  water with 1% sodium dodecyl 
sulphate as surfactant,  centrifuged, and the supernatant used. Attempts to optically trap the CNTs 
showed that they were vigorously repelled from the tweezers focus [2].  However, when brought close 
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to the focal volume fast enough that the tweezers could not kick it away, microbubbles were seen to 
form in the fluid, invariably emerging from the ends of CNT bundles (Fig. 1).  

The size and number of bubbles could be simply and reproducibly controlled by adjusting 
the tweezer light intensity or its focussing.  Bubbles as large as 100 µm (diameter) could be readily 
created; we were restricted by our field of view. Most interestingly, neighbouring CNT bundles were 
found to be attracted to the microbubbles; they moved rapidly through the fluid and adhered onto the 
microbubble’s surface (Fig. 2). As the microbubbles could easily be trapped in the tweezer, the CNTs 
that were originally repelled by the tweezer light could now be spatially immobilized and optically 
manipulated. 
 

 

Bundles of CNTs 

Bubbles 

 

Figure 1: Microbubbles originating  from a CNT bundle at 
the tweezer focal volume (centre of the picture). 

 
 

The observations mentioned so far can be interpreted thus – tweezers work on the principle of dipole 
force. In a light field with an electric field gradient (as in tightly focused light), an object experiences a 
force given by: 

F = α │grad(E)2│/2 
 
where grad is the gradient in the electric field.  The polarizability, α, away from resonance is positive 
for light to the red of a resonance and is negative for light to the blue. Thus in a focused beam, an 
object can be immobilized at an intensity maximum using red-detuned light.   
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Figure 2: CNT bundles in the vicinity are attracted to the 
microbubble; they adhere to the surface of the bubble.  

 

  The CNTs we used had an absorption profile as shown in Fig. 3. The tweezer light is blue 
detuned to a prominent absorption feature, and thus the focused light provides a repelling force. 
However, when brought to the vicinity of the focal volume at high translation speeds of the tweezer 
sample stage, the repelling force of the tweezer light could be overcome and the CNTs could remain 
within the trap volume for some time, during which they very efficiently absorb the tweezer light and 
get heated. The localised heating causes the expansion and vaporization of fluid both within individual 
tubes and between the tubes of a bundle; it is the expulsion of this hot matter that creates the   
microbubbles.  While the manipulation of the size and number of bubbles by means of light intensity 
is easily understood in terms of this picture, the cause for the attraction of the CNTs to the bubbles is 
not clear. Surface tension and surface charge accumulation are possibilities that are worth exploring. 
 Microbubble-mediated optical trapping of CNTs is found to hold these nano-objects 
immobilized at the laser focus indefinitely. The most spectacular observation on CNTs in the optical 
tweezers has been the emission of very bright emission of light in the visible region of the spectrum. 
The emission, visible to the naked eye was obtained even at tweezer powers as low as a few milliwatt. 
The emission appears as a continuous glow, orange-red in colour, which changes to yellowish colour 
and then to bluish violet on increasing the laser irradiance. It may be noted that the tweezer light is in 
the infrared (1064 nm), and has very low cw power (less than 5 mW). On increasing the irradiance 
further, either by higher input power or tighter focusing of the tweezer light, uncontrolled flares were 
seen, often with the bundles breaking up violently and the debris being expelled away very rapidly.  

 Spectral analysis of the continuous glow showed that the emission spread over the entire 
range of the spectrometer 400-1000 nm, peaking in the visible (600 nm-700 nm). An increase in the 
intensity of the tweezer light caused the overall emission to increase in strength and the peak to shift to 
shorter wavelengths, indicative of a blackbody emission mechanism.  A functional fit to the blackbody 
function, however, showed deviations at either ends of the spectra. This could possibly arise from the 
response of our spectrometer or self-absorption by the sample, or the presence of some non-linear 
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effect. Further work is in progress. Nevertheless, the systematic shift in emission wavelength as well 
as emission intensity undoubtedly indicates a predominantly blackbody emission mechanism. We 
point out that a peak wavelength of ~570 nm in a blackbody emitter would correspond to a local 
temperature  exceeding 5000K – a nano-sun !  At very high irradiance, the CNTs ignite as evidenced 
by the flares and the catastrophic rupture  – a “nano-explosion”. 

 

 
Figure 3: Absorption profile of the CNTs used by us. 

 
. 

 
 
 

Figure 4:  Sustained emission from a CNT bundle. 
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Emission spectrum 
                                    of the glow is from  

                                                                                  500-900 nm 
 

Figure 5: A catastrophic event, resulting in violent break-up of a CNT bundle. 
 

 
Figure 6:   Spectra of light emitted from CNT bundles exposed to various input light powers.  

 
 

     It must be mentioned that light emission has indeed been observed from CNTs earlier, but 
under completely different conditions.  Joule heating of current carrying nano-filaments or nano-ropes 
[3-5] during field emission when isolated nanotubes are subject to high voltages [6,7], and irradiation 
of CNTs by high intensity nanosecond pulsed lasers [8] have been some situations  reported to have 
caused light emission from CNTs.  In all these cases, however, the emission has been at wavelengths 
longer than the visible. Further, earlier attempts to associate the emission to blackbody temperatures 
have estimated a maximum of 2000 K [8].  We believe that our work is qualitatively different in that 
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extremely low power irradiation is used to not only optically trap CNT bundles, via the mediation of 
light-generated microbubbles, but the same low power irradiation also gives rise to emission of 
broadband light from a spatially miniscule nanosource [9].    
     Spatially-controllable nano-sources of broadband emission are of intrinsic interest to the 
atomic, molecular and optical sciences community. Over and above such interest, our observations 
open up a large number of possibilities for applications. The creation of microbubbles in controllable 
fashion could find application in printing technology, control of chemical reactions, micro-mixing of 
fluids, to mention a few. The optical trapping of CNTs promises applications in biomedicine. The 
continuous glow could be used as controllable light source for biomedical engineering applications, 
and the ignition could be used for photodynamic therapy in medicine. Truly, our imagination is the 
limit to applications of this versatile material – the carbon nanotube ! 
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