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Reciprocity constraints on the matrix of reflection
from optically anisotropic surfaces
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We derive certain constraints on the reflection matrix for reflection from a plane, nonmagnetic, optically
anisotropic surface using a reciprocity theorem stated long ago by Van de Hulst [Light Scattering by Small
Particles (Wiley, 1957)] in the context of scattering of polarized light. The constraints are valid for absorbing
and chiral media and can be used as tools to check the consistency of derived expressions for such matrices in
terms of the intrinsic parameters of the reflecting medium as illustrated by several examples. © 2009 Optical
Society of America
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. INTRODUCTION
xcept in the simplest situations, when linearly polarized

ight is incident on an optically isotropic surface or a spe-
ially oriented anisotropic surface, the polarization state
f the lightwave in general changes when it is reflected
rom a surface. Changes in polarization states imply
hanges of phase, as we know from the work of Pan-
haratnam. A correct analysis of optical devices involving
olarization, with or without interference, requires a pre-
ise and reliable method for handling polarization trans-
ormations resulting from reflections. These are described
y means of a 2�2 complex reflection matrix. The speci-
cation of this matrix requires the choice of a set of basis
tates for the incident as well as the reflected waves along
ith their phases. In this paper we first describe the most
atural convention for the basis states and a consistent
ne for the description of reciprocity. We then derive cer-
ain constraints that reflection amplitudes must satisfy
n account of the principle of reciprocity and illustrate
heir use with several examples.

The principle of reciprocity in polarization optics has
een widely discussed in the literature and is different
rom time-reversal invariance in that (i) it applies to sys-
ems with absorption, and (ii) it deals with one incident
ave and one scattered wave at a time. For a recent re-
iew we refer the reader to Potton [1]. For the purpose of
his paper the most appropriate formulation of reciprocity
s the one given by Van de Hulst [2] in which he chooses to
otate the scatterer instead of reversing the wave.

. PHASE CONVENTION
t was pointed out recently [3,4] that when a plane wave
f light changes its direction of propagation from a wave
ector k� to a wave vector k�� because of refraction, reflec-
ion or scattering, the definition of the matrix that relates
he incident polarization state to the final polarization
tate, i.e., the Jones matrix, requires the choice of a set of
asis states and their phases for each of the two direc-
1084-7529/09/112368-5/$15.00 © 2
ions of propagation. The choice that is most often used
oth in polarization optics as well as in scattering theory
s the following, also illustrated in Figs. 1 and 2.

For the wave vector k� , a set of orthogonal, linearly po-
arized states along x̂ and ŷ, called the p and the s states,
s chosen as the basis states 1 and 2, respectively, where x̂
s in the plane and ŷ is perpendicular to the plane of re-
ection or scattering. The phases of the basis states are
hosen such that in the basis state 1, Ex=E exp�i�t�, Ey
0, and in the basis state 2, Ex=0, Ey=E exp�i�t�, where
x and Ey are the x and y components of the electric field

n the wave. With this convention, the vector
1/�2�col.�1,1� represents a linearly polarized state along
direction lying in the �x̂ , ŷ� plane, making an angle 45°
ith x̂, and the vectors �1/�2�col.�1, ± i� represent the

ight and left circularly polarized states. For the wave
ector k��, the convention most often used in scattering
heory as well as in polarization optics is the following:
otate the basis states about an axis perpendicular to the
lane of reflection, i.e. along ŷ, through an angle such that

� goes to k��. Let x̂ and ŷ go to x̂� and ŷ� under this rota-
ion. The polarization basis states for k�� are chosen to be
inearly polarized states along x̂� and ŷ� with their rela-
ive phases chosen such that in the basis state 1, Ex�
E exp�i�t�, Ey�=0, and in the basis state 2, Ex�=0, Ey�
E exp�i�t�. Note that since the rotation is about ŷ, ŷ�
ŷ. This choice leads to a precise phase convention for
ackscattering or for reflection at normal incidence at a
urface, where k��=−k� . For this case one gets x̂�=−x̂ and

ˆ�= ŷ. We shall call the above convention the “traveling-
rame convention.” In the literature the above described
hoice of phase convention is referred to as “choice of the
oordinate system.”

. RECIPROCITY CONSTRAINTS
cattering of a polarized plane wave with wave vector k� to
wave with wave vector k�� from a scatterer is described

y a 2�2 complex scattering matrix A whose matrix ele-
009 Optical Society of America
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ent Aij represents the complex amplitude for an inci-
ent wave with unit amplitude in polarization state i
cattering into the polarization state j. If A�k� ,k��� repre-
ents the matrix for scattering from k� to k�� and A�−k�� ,
k� � the matrix for the reverse scattering, the correct
tatement of the principle of reciprocity with the above
hase convention has been given by Sekera [5] as

A�− k��,− k� � = Ā�k� ,k��� �1�

here the matrix Ā is the “n-transpose” of A, defined [3]
s

Āij = �− 1�i+jAji. �2�

or a 2�2 matrix, Ā is the transpose of A with a change
f sign of the off-diagonal elements.

In order to derive the constraints on the reflection ma-
rix resulting from reciprocity, a somewhat different for-
ulation of the principle of reciprocity, first made by Van

e Hulst [2] in the context of scattering problems, is more
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ig. 1. Geometry of scattering of a plane wave with wave vector
� along ẑ to a wave with wave vector k�� along ẑ�, where ẑ and ẑ�
ie in the X–Z plane. The coordinate system �x̂� , ŷ� , ẑ�� defining
he polarization basis states in the scattered wave is obtained
rom the �x̂ , ŷ , ẑ� system in the incident wave by a rotation about
ˆ through an angle �, which is the scattering angle.
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n
ig. 2. Geometry of reflection of a plane wave propagating along

ˆ from a plane surface SS whose normal along n̂ lies in the X–Z
lane. The angle of incidence is � and the relation between the
oordinate systems �x̂ , ŷ , ẑ� and �x̂� , ŷ� , ẑ�� is the same as in the
cattering problem illustrated in Fig. 1.
seful [6]. Van de Hulst chose to rotate the scatterer
ather than reverse the direction of propagation. Let the
olarization basis states for k� and k�� be defined using the
raveling-frame convention, let k� and k�� be along ẑ and ẑ�,
espectively, and let the scattering be in the �x̂ , ẑ� plane as
hown in Fig. 1, where � is the scattering angle. Van de
ulst’s theorem states: If the scatterer is rotated through
80° about an axis defined by the line bisecting the angle
etween the vectors k�� and −k� , called the bisectrix, the
atrix A�k� ,k��� goes to the matrix Ā�k� ,k���, where Ā is the

-transpose of A defined by Eq. (2).
The theorem, translated to the problem of reflection

rom a plane surface in optics, can be phrased as follows:
f the reflecting medium, assumed to be reciprocal, is ro-
ated about the normal n̂ to the surface SS through 180°
Fig. 2), the reflection matrix Z goes to Z� where

Z� = Z̄, �3�

nd where Z̄ is the n-transpose of Z defined by Eq. (2).
The theorem is true in the presence of absorption and

ichroism and has the straightforward consequence that
f the reflecting medium, assumed to be reciprocal, is in-
ariant under a rotation through � about n̂, the reflection
atrix Z for any angle of incidence must be antisymmet-

ic. For such cases therefore,

Zij = − Zji. �4�

uch cases include the following:

A. An optically isotropic medium, i.e., a medium with
o birefringence or dichroism, linear or circular.
B. A medium with only optical activity and circular di-

hroism but no linear birefringence and no linear dichro-
sm.

C. An absorbing uniaxial medium with or without op-
ical activity, with the optic axes for birefringence and di-
hroism coinciding and being perpendicular to the sur-
ace.

D. An absorbing uniaxial medium with or without op-
ical activity, with the optic axes for birefringence and di-
hroism coinciding and lying in the plane of the surface.

E. A nonabsorbing biaxial medium with one of the
rincipal axes perpendicular to the surface.

In addition to the above cases, when light is incident
ormally, any reflecting medium is invariant under a �
otation about the direction of the incident beam. At nor-
al incidence therefore, the reflection matrix for any re-

iprocal medium must be antisymmetric.
In cases A, B, and C, when light is incident on the sur-

ace normally, there is an additional constraint when the
eflecting surface is invariant under an arbitrary rotation
bout the direction of incidence, i.e., about the normal to
he surface. In the traveling-frame convention this addi-
ional constraint can be expressed as

R���ZR��� = Z, �5�

here
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R��� = �cos � − sin �

sin � cos �
� �6�

s a rotation matrix that rotates an incident Jones vector
bout the beam axis by an arbitrary angle �.
Equation (5) can be proved as follows: Let the reflection
atrix of the unrotated sample be Z and let ��f	 be the fi-

al state resulting from reflection of an incident state ��i	
o that

��f	 = Z��i	. �7�

he reflection matrix ZR of the rotated sample is obtained
rom the condition that when the state ��i	 rotated
hrough an angle � is incident on the rotated sample, the
eflected state, in the traveling-frame, must be the state
�f	 rotated by an angle −�, i.e.,

ZRR�����i	 = R�− ����f	. �8�

quations (7) and (8) give

ZR = R�− ��ZR�− ��. �9�

ince � is arbitrary, the requirement of invariance under
otation about the beam axis therefore gives Eq. (5).

Let the matrix that satisfies the reciprocity constraint
4), as well as the isotropy constraint (5) be called Z0. It
an easily be shown that Z0 must be of the form

Z0 = r�1 0

0 − 1� , �10�

here r is a complex number. In other words whenever a
eciprocal reflecting medium is invariant under an arbi-
rary rotation about the normal to the surface, its reflec-
ion matrix for normal incidence is given by Z0. The result
s known to be true for optically isotropic surfaces. The
act that it is true in the presence of optical activity and
ircular dichroism, and that it follows from simple sym-
etry considerations came as news to the author. We also

ote that since the matrix Z0 is diagonal, it is robust
gainst a phase change between the two basis states.

. DEPENDENCE ON THE POLARIZATION
ASIS
e next discuss the dependence of the theorem given by
q. (3) on the basis states used to express the Jones vec-

ors for the propagation directions k� and k��. Although
hile stating the theorem we assumed a basis of “in-
hase” linearly polarized states along x̂ and ŷ, this is by
o means the only possible choice for the theorem (3) to be
rue. One can also choose as basis states a pair of orthogo-
al elliptically polarized states with the principal axes of
he polarization ellipses being along x̂ and ŷ, the states
eing phased such that at t=0, in the wave with wave
ector k� , the basis state 1 has Ey=0 and the basis state 2
as Ex=0. Similarly, in the wave with wave vector k��, at
=0, Ey�=0 in basis state 1 and Ex�=0 in basis state 2. The
heorem as stated above remains valid in this set of basis
tates. This can be proved easily.

The basis described above is obtained from the original
inearly polarized basis by means of a unitary transfor-
ation U that takes the state �x̂	, i.e., the state with co-
rdinates (90°, 0°) on the Poincaré sphere along a geodesic
rc to a state �P	 with coordinates �90°+� ,0° �, where
0° 	�
−90°. Such a transformation is achieved by
eans of a linearly birefringent wave plate with retarda-

ion � and with its fast axis at 45° to the x̂ axis. The ma-
rix U is therefore given by

U = L45��� = R�45�L0���R�− 45�, �11�

here L���� is the Jones matrix for a linear retarder with
etardation � and fast axis making an angle � with x̂. The
elds in the basis states 1 and 2 are given by (1) Ex
E cos�� /2�exp�i�t�, Ey=−iE sin�� /2�exp�i�t� and (2) Ex
iE sin�� /2�exp�i�t�, Ey=E cos�� /2�exp�i�t�. The cases
=0 and �=� /2 give the fields in the linearly polarized
nd the circularly polarized basis, respectively.
The matrices Z and Z� when transformed to the new

asis are given by Q and Q�, where

Q = UZU†, Q� = UZ�U†. �12�

t can easily be shown by required matrix multiplication
hat

Q� = Q̄. �13�

quation (13) states the reciprocity principle in the basis
f the chosen elliptically polarized states. It needs to be
entioned, however, that in an elliptically polarized ba-

is, the form of the matrix under conditions of normal in-
idence and spatial isotropy (5) is not given by Eq. (10).
he latter requires R��� to be of the form (6), which is

rue only in the linear basis.

. APPLICATIONS
he constraints derived above can be used as tools to
heck derived expressions for the matrices of reflection
rom optically anisotropic surfaces in terms of the intrin-
ic parameters of the sample. Under appropriate condi-
ions the derived expressions must satisfy these con-
traints. We cite below some examples from literature
here derived expressions for reflection matrix elements

ndeed do so.
Sosnowski [7] has derived the reflection matrix ele-
ents for reflection from the surface of a uniaxially aniso-

ropic medium placed in an isotropic ambient medium for
he case when the optic axis is parallel to the interface
nd is oriented at an angle � from the plane of incidence.
hese have been reproduced on p. 355 of [8]. First con-
ider the case of normal incidence, i.e., �0=0. We derived
he expressions for the off-diagonal elements rps and rsp
or this case using the formulas in Eqs. (4.244)–(4.246) of
8]. It was found that they satisfy rps=−rsp as required by
q. (4) above. In the limit of an isotropic medium it was

ound that rps=rsp=0 and rpp=−rss as expected. Next con-
ider the case of oblique incidence, i.e., �0�0. For this
ase we programmed the above chain of formulas on an
xcel worksheet and computed rps and rsp for several
undred randomly chosen sets of the parameters N0, N1o,
1e, �, and �0 in their allowed ranges, where N0 is the re-

ractive index of the isotropic ambient, and N1o, N1e are
he two refractive indices of the anisotropic medium. In
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very case we obtained rps=−rsp. To cite two specific ex-
mples, for n0=1.2, n1o=1.7, n1e=1.3, �0=30°, and �
60°, we obtained rps=0.0637 and rsp=−0.0637; for n0=1,
1o=1.2, n1e=1.5, �0=75°, and �=10°, we obtained rps
−0.0274 and rsp=0.0274.
Engelsen [9] has derived the expressions for the matrix

f reflection from a uniaxially anisotropic film on an iso-
ropic substrate in an isotropic ambient medium for the
ase where the optic axis of the uniaxial medium is per-
endicular to its boundaries with the substrate and the
mbient. These have been reproduced on pp. 356–357 of
8]. The matrix is diagonal in this case. We derived the ex-
ressions for the diagonal elements rss and rpp for normal
ncidence using the formulas in Eqs. (4.249)–(4.257) of [8].
t was found that they satisfy rpp=−rss as required by Eq.
10) above.

Lekner [10] has derived reflection coefficients for reflec-
ion from the interface of an isotropic ambient and a
niaxially anisotropic medium with an arbitrary orienta-
ion of the optic axis. Such a medium is invariant under a

rotation about the surface normal only if the optic axis
s (a) perpendicular to or (b) lies in the plane of the re-
ecting surface, which are therefore the conditions under
hich our constraints apply. For the case (a), substituting
=0 in Eqs. (47) of [10] gives rps=rsp=0 and for the case

b), substituting �=0 in Eqs. (47) of [10], one gets rps
rsp. For the case of normal incidence one finds from Eq.

73) of [10] that rps=rsp for any orientation of the optic
xis. In the limit of an isotropic medium and normal inci-
ence, Eqs. (71) and (72) of [10] give rpp=rss. These re-
ults differ from the results of this paper by a sign. The
eason lies in the phase convention for the reflected p
ave used in [10] [see Eq. (40) of [10]], which differs by �

rom the one used in this paper (Fig. 2), resulting in a
hange in the sign of the reflected p wave amplitude. This
hanges the signs of rsp and rpp. When this change of sign
s accounted for, the results of [10] agree with those of this
aper.
We next consider some examples from the literature on

eflection from a reciprocal, isotropic, chiral medium
here the constraints derived in this paper yield useful

nsights.
Silverman [11] derived the reflection matrix for reflec-

ion at the surface of an isotropic, nonmagnetic chiral me-
ium for two sets of constitutive relations that are (I) in-
ariant and (II) noninvariant under a duality
ransformation of the electromagnetic fields. The sym-
etric constitutive relations (I) lead to null differential

eflection at normal incidence for incident right- and left-
ircularly polarized light. The asymmetric constitutive re-
ations (II), on the other hand, lead to nonzero differential
eflection for right- and left-circularly polarized light. The
uthor indicates a preference for (I) based on some diffi-
ulties with the results obtained from (II). Using the con-
traint stated above, i.e., the reflection matrix for this
ase must be given by Eq. (10), any theory that yields
onzero differential reflection at normal incidence for in-
ident right- and left-circularly polarized light can be
uled out. If we assume that the derivations in [11] that
o satisfy our constraints are correct, it could be con-
luded on grounds of symmetries alone that the asymmet-
ic constitutive relations are incorrect.
Georgieva [12] reported a solution for the amplitudes
or reflection from the surface of a reciprocal optically ac-
ive medium using a corrected Berreman’s matrix, argu-
ng that Berreman’s matrix is incorrect since it yields un-
qual off-diagonal elements for the reflection matrix. The
onsiderations of this paper support this assertion. Of in-
erest, however, is that while the off-diagonal elements in
12] are equal and opposite in sign as required by the
bove constraints, the diagonal elements do not satisfy
hese constraints when light is incident normally. Equa-
ions (27) and (30) in [12] yield, for normal incidence, rss
rpp. The constraint given by Eq. (10), however, requires

ss=−rpp. The negative sign is nontrival, as it represents
he difference between a plane glass plate and a half-
ave retarder. In [12] since rss=rpp and rps=−rsp, the dis-
greement cannot be explained by a phase convention
hich is, in any case, clearly displayed in Fig. 1 of [12] as
eing the traveling-frame convention. We conclude there-
ore that there is a problem with the derivation in [12].

Lekner [13] has derived expressions for the reflection
atrix for reflection from the boundary of an achiral and

n isotropic chiral medium using the same phase conven-
ion as in [10]. For normal incidence these expressions
ield rpp=rss and rps=rsp=0, and for oblique incidence the
xpressions satisfy rps=rsp as expected.

In section 4 of [13] Lekner deals with the optical prop-
rties of a chiral layer of thickness d placed in an isotropic
mbient and an isotropic substrate. The derived reflection
oefficients for an arbitrary angle of incidence are given
y Eqs. (A4) of [13]. They satisfy rps=rsp as expected.
owever, for normal incidence, i.e., for c1=c2=c+=c−=1,

imple substitutions from Eqs. (A1) and (A2) show that
qs. (A4) do not satisfy rpp=rss as expected. We conclude

herefore that the derivation is in error.

. DISCUSSION
ur reason for dwelling at length on the conventions re-
arding basis states is that the reflection matrix as well
s the statement of the reciprocity principle depend on
hese conventions. While the traveling-frame convention
s a fairly standard one, used by most textbooks on optics
8,14–16] to relate the polarization states for k� to those for
�� for defining the reflection matrix, there are occasional
xceptions. For example Lekner [10,13] and Bassiri et al.
17] use a different convention which we shall call the
fixed-frame convention.” Consequently they obtain ex-
ressions for the Fresnel reflection amplitudes for reflec-
ion off a chiral surface that differ from those in [8,14–16]
n the limit when the chiral parameter goes to zero. As

entioned before the amplitudes obtained with the two
onventions are related by a change of sign of the ampli-
ude of the reflected p wave, hence of rsp and rpp.

In the analysis of propagation problems involving a se-
ies of oblique reflections terminating in a reflection at
ormal incidence so that the beam retraces its path, as for
xample in a Michelson interferometer, the problem of
hase convention occurs twice, once while defining the re-
ection matrix and again while relating the forward and
ackward propagating waves. Since the first choice im-
lies a choice for normal incidence, the natural thing to do
s to make the second choice to be consistent with the first
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ne. Unfortunately this has not always been the practice
n literature. For example, in Vansteenkiste et al. [18] the
raveling-frame convention is used for the reflections at
blique incidence and a fixed-frame convention for relat-
ng the forward and backward propagating waves. As a
onsequence the matrix for reflection at normal incidence
s defined differently from the ones for oblique incidence.

e find this somewhat unsatisfactory and that it is avoid-
ble if one consistently uses the traveling-frame conven-
ion. As demonstrated in [18] it is indeed possible to de-
ive correct results if one carefully keeps track of the
hase conventions. However in regard to both pedagogy
nd applications it would be desirable and simpler if a
onsistent convention were used and all reflections de-
cribed similarly. If the traveling-frame convention is
sed consistently the matrices for reverse propagation are
f course n-transpose of the corresponding matrices for
orward propagation instead of being the transpose [4].
hough less familiar, the n-transpose is, however, an
qually simple and elegant mathematical construct that
atisfies the property �AB�= B̄Ā.

The use of the fixed-frame convention for reflection am-
litudes has sometimes been justified by arguing that for
ormal reflections from an optically isotropic surface it
ields a unit reflection matrix that avoids the asymmetry
etween the s and p wave reflection amplitudes. We point
ut that this is achieved at the expense of counterintui-
ive behaviour of the amplitudes elsewhere. For example,
or reflection from ideal metallic mirrors at grazing inci-
ence the fixed-frame convention gives a unit matrix sug-
esting no polarization change. We know however that
nder these conditions a right-circularly polarized wave

s reflected as a left-circularly polarized wave and vice
ersa. Another problem with the use of the fixed-frame
onvention is that there is an asymmetry of conventions
etween the transmitted and the reflected waves. In a
cattering problem there is no natural place for such an
symmetry. The neat correspondence between the theory
f scattering of polarized waves and that of reflection and
efraction is thus needlessly given up.

To sum up, in the examples discussed above we found
ases ([7,9,11]) where the derived expressions satisfy the
onstraints derived in this paper. We found cases
[10,13,17]) where they do so after accounting for a differ-
nce in phase convention. Finally we found two cases
[12,13]) where the derived expressions do not satisfy the
onstraints, and we conclude that the derivations have er-
ors. We wish to emphasize, however, that the satisfaction
f the constraints is a necessary but not a sufficient con-
ition for the correctness of the derived reflection ampli-
udes. The constraints therefore provide only a partial
est for the derived amplitudes. Finally we note that all
he considerations in this paper relate to the linear re-
ime of optics and do not include nonlinear phenomena.
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