organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(Benzyloxy)phenyl 4-hexadecyloxy-3methoxybenzoate

Waleed Fadl Ali Al-Eryani,^a H. T. Srinivasa,^b S. Jeyaseelan,^a T. Sadashivaiah^a and H. C. Devarajegowda^a*

^aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and ^bRaman Research Institute, C.V. Raman Avenue, Sadashivanagar, Bangalore 560 080, Karnataka, India Correspondence e-mail: devarajegowda@yahoo.com

Received 26 February 2011; accepted 5 March 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.052; wR factor = 0.131; data-to-parameter ratio = 15.4.

In the title compound, $C_{37}H_{50}O_5$, the central benzene ring makes dihedral angles of 39.72 (14) and 64.43 (13)° with the benzyl and 3-methoxybenzoate rings, respectively. The crystal structure is stabilized by intermolecular $C-H\cdots\pi$ interactions involving the central benzene ring and the benzene ring closest to the aliphatic chain.

Related literature

For general background to 4-(hexadecyloxy)-3-methoxybenzoate, see: Parker *et al.* (1977); Nessim (2011); Sadashiva & Subba (1975); Castellano *et al.* (1971). In a three-ring system, when two rings are linked by a unit which preserves conjugative interaction and molecular rigidity, the second linking unit can be more flexible, see: Gray (1976).

Experimental

 Crystal data

 $C_{37}H_{50}O_5$ b = 9.7352 (4) Å

 $M_r = 574.77$ c = 31.3738 (14) Å

 Triclinic, $P\overline{1}$ $\alpha = 94.155$ (4)°

 a = 5.4507 (2) Å
 $\beta = 94.261$ (4)°

 $\gamma = 95.576 (4)^{\circ}$ $V = 1647.02 (12) \text{ Å}^{3}$ Z = 2Mo K α radiation

Data collection

```
Oxford Diffraction Xcalibur<br/>diffractometer30991 measured reflections<br/>5841 independent reflections<br/>2558 reflections with I > 2\sigma(I)<br/>R_{int} = 0.063Oxford Diffraction, 2010)<br/>T_{min} = 0.664, T_{max} = 1.00030991 measured reflections<br/>5841 independent reflections<br/>R_{int} = 0.063
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 379 parameters $wR(F^2) = 0.131$ H-atom parameters constrainedS = 0.91 $\Delta \rho_{max} = 0.13$ e Å⁻³5841 reflections $\Delta \rho_{min} = -0.16$ e Å⁻³

 $\mu = 0.08 \text{ mm}^{-1}$

 $0.22 \times 0.15 \times 0.12 \text{ mm}$

T = 293 K

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C8-C13 and C14-C20 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C6 - H6 \cdots Cg2^{i}$ $C22 - H22B \cdots Cg3^{ii}$	0.93	2.97	3.576 (3)	124
	0.96	2.94	3.793 (2)	148

Symmetry codes: (i) x - 2, y, z + 1; (ii) x + 1, y, z.

Data collection: *CrysAlis PRO CCD* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO CCD*; data reduction: *CrysAlis PRO RED* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *CAMERON* (Watkin *et al.*, 1993); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank Professor T. N. Guru Row and Mr Venkatesha R. Hathwar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2423).

References

- Castellano, J. A., McCaffrey, M. T. & Goldmacher, J. E. (1971). *Mol. Cryst. Liq. Cryst.* **2**, 345–366.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gray, G. W. (1976). Advances in Liquid Crystals, Vol. 2, edited by G. H. Brown, p. 1. New York: Academic Press.
- Nessim, R. I. (2011). SRX Chemistry, doi:10.3814/2010/534608.
- Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.
- Parker, R. A., Kariya, T., Grisar, J. M. & Petrow, V. (1977). J. Med. Chem. 20, 781-791.
- Sadashiva, B. K. & Subba, G. S. R. (1975). Curr. Sci. 44, 222-224.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

Acta Cryst. (2011). E67, o840 [doi:10.1107/S1600536811008403]

4-(Benzyloxy)phenyl 4-hexadecyloxy-3-methoxybenzoate

W. F. A. Al-Eryani, H. T. Srinivasa, S. Jeyaseelan, T. Sadashivaiah and H. C. Devarajegowda

Comment

Many organic compounds exhibiting liquid crystalline properties contain two phenyl rings with substituents in the *para* positions. On moving from two-ring mesogens with one linking unit to three-ring mesogens with two linking units, meso-phase thermal stabilities are greatly enhanced. In a three-ring system, when two rings are linked by a unit which preserves conjugative interaction and molecular rigidity, the second linking unit can be more flexible (Gray, 1976).

The electron-rich title compound,4-(benzyloxy)phenyl 4-(hexadecyloxy)-3-methoxybenzoate has a long flexible aliphatic chain with a bulky, laterally substituted methoxy group at one end and the other end having a hydrophobic benzyl group. Lateral and terminal substitution lead to a significant change in some of the properties of compounds having medical importance and also in obtaining desired properties in mesogenic materials (Parker *et al.*,1977; Nessim, 2010; Sadashiva *et al.*,1975). With this background, we have synthesized (Castellano *et al.*, 1971) the title compound, 4-(benzyloxy)phenyl 4-(hexadecyloxy)-3-methoxybenzoate, and here we report its crystal structure.

The crystal structure of the title compound contains one molecule in the asymmetric unit (Fig. 1). The dihedral angle between the aromatic rings are: A/B, B/C and A/C 39.72 (14)°, 64.43 (13)° and 24.72 (13)°, respectively. The alkyl chain and aromatic ring C make a dihedral angle of 5.71 (10)°. The packing of the molecules is stabilized by intermolecular C6—H6…Cg2 and C22—H22B…Cg3 interactions, where Cg2 and Cg3 are the centroids of rings B and C, respectively (Table 1). The packing of the molecules in the title structure is depicted in Fig. 2.

Experimental

A mixture of 4-(hexadecyloxy)-3-methoxybenzoyl chloride (5 mmol) was added to 4-(benzyloxy)phenol (5 ml) in 5 mol of dry dichloromethane. The resultant mixture was stirred at room temperature for 30 min and heated for 10 min at 338 K, then poured into ice-cold hydrochloric acid and extracted with dichloromethane. The combined organic layers were washed with water and dried. Evaporation of the solvent under vacuum yielded a white solid material which was recrystallized from pure dichloromethane at room temperature. The yield was about 92%. M.p. 358 K. Elemental analysis for $C_{37}H_{50}O_5$ requires C 77.31%, H 8.77%. Found C 76.98%, H 8.35%.

Refinement

All H atoms were placed at calculated positions with C—H = 0.93 Å for aromatic H, 0.97 Å for methylene H and 0.96 Å for methyl H. They were refined using a riding model with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $1.2U_{eq}(C)$ for all other H.

Figures

Fig. 1. The title molecule with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2. A view of the crystal structure down the *a* axis.

4-(Benzyloxy)phenyl 4-hexadecyloxy-3-methoxybenzoate

Crystal data	
$C_{37}H_{50}O_5$	Z = 2
$M_r = 574.77$	F(000) = 624
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.159 {\rm ~Mg~m}^{-3}$

Hall symbol: -P 1	Melting point: 358 K
a = 5.4507 (2) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 9.7352 (4) Å	Cell parameters from 5841 reflections
c = 31.3738 (14) Å	$\theta = 2.1 - 25.0^{\circ}$
$\alpha = 94.155 \ (4)^{\circ}$	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 94.261 \ (4)^{\circ}$	T = 293 K
$\gamma = 95.576 \ (4)^{\circ}$	Prism, colourless
$V = 1647.02 (12) \text{ Å}^3$	$0.22\times0.15\times0.12~mm$

Data collection

Oxford Diffraction Xcalibur diffractometer	5841 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2558 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.063$
Detector resolution: 29.3621 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
ω scans	$h = -6 \rightarrow 6$
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010)	$k = -11 \rightarrow 11$
$T_{\min} = 0.664, T_{\max} = 1.000$	$l = -37 \rightarrow 37$
30991 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.131$	H-atom parameters constrained
<i>S</i> = 0.91	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0564P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5841 reflections	$(\Delta/\sigma)_{max} < 0.001$
379 parameters	$\Delta \rho_{max} = 0.13 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.16 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Experimental data is IR (KBr) cm⁻¹; 2912(C—H aromatic stretch), 2870 (C—H aliphatic stretch), 1730 (C=O stretch), 1597 (C=C stretch).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-2.0141 (3)	0.22569 (17)	0.48377 (5)	0.0715 (5)
02	-1.4349 (3)	0.40474 (17)	0.35750 (5)	0.0774 (6)
03	-1.3847 (3)	0.19547 (19)	0.32625 (5)	0.0790 (6)
O4	-0.6971 (3)	0.60994 (15)	0.22712 (5)	0.0608 (5)
O5	-0.9578 (3)	0.74931 (17)	0.27583 (5)	0.0829 (6)
C1	-2.4908 (6)	0.1166 (4)	0.60729 (10)	0.0955 (10)
H1	-2.6039	0.0818	0.6256	0.115*
C2	-2.3740 (6)	0.2458 (4)	0.61544 (9)	0.1069 (11)
H2	-2.4086	0.3007	0.6393	0.128*
C3	-2.2046 (5)	0.2967 (3)	0.58876 (8)	0.0859 (9)
H3	-2.1264	0.3859	0.5948	0.103*
C4	-2.1492 (4)	0.2191 (3)	0.55382 (7)	0.0583 (7)
C5	-2.2705 (5)	0.0905 (3)	0.54574 (9)	0.0948 (10)
Н5	-2.2375	0.0357	0.5217	0.114*
C6	-2.4411 (6)	0.0389 (3)	0.57221 (10)	0.1091 (12)
H6	-2.5222	-0.0496	0.5659	0.131*
C7	-1.9532 (5)	0.2735 (3)	0.52682 (7)	0.0771 (8)
H7A	-1.9371	0.3739	0.5296	0.092*
H7B	-1.7958	0.2432	0.5366	0.092*
C8	-1.8580 (5)	0.2699 (3)	0.45418 (8)	0.0590 (7)
С9	-1.6344 (5)	0.3459 (3)	0.46385 (8)	0.0733 (8)
Н9	-1.5769	0.3710	0.4923	0.088*
C10	-1.4936 (5)	0.3853 (3)	0.43083 (9)	0.0793 (9)
H10	-1.3412	0.4372	0.4372	0.095*
C11	-1.5760 (5)	0.3489 (3)	0.38936 (8)	0.0630 (7)
C12	-1.7929 (5)	0.2679 (3)	0.37930 (7)	0.0756 (8)
H12	-1.8449	0.2388	0.3509	0.091*
C13	-1.9343 (5)	0.2295 (3)	0.41190 (8)	0.0780 (9)
H13	-2.0841	0.1752	0.4052	0.094*
C14	-1.3455 (5)	0.3188 (3)	0.32803 (8)	0.0597 (7)
C15	-1.1821 (4)	0.3971 (3)	0.30030 (7)	0.0508 (6)
C16	-1.1560 (4)	0.5408 (2)	0.30206 (7)	0.0586 (7)
H16	-1.2479	0.5910	0.3202	0.070*
C17	-0.9947 (4)	0.6095 (2)	0.27701 (7)	0.0557 (7)
C18	-0.8549 (4)	0.5336 (2)	0.25018 (6)	0.0488 (6)
C19	-0.8828 (4)	0.3917 (2)	0.24854 (6)	0.0545 (6)
H19	-0.7900	0.3409	0.2307	0.065*
C20	-1.0477 (4)	0.3241 (2)	0.27319 (7)	0.0560 (7)
H20	-1.0677	0.2278	0.2714	0.067*
C21	-1.1092 (6)	0.8323 (3)	0.30046 (9)	0.1038 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H21A	-1.0653	0.9284	0.2968	0.156*
H21B	-1.0833	0.8164	0.3302	0.156*
H21C	-1.2801	0.8076	0.2908	0.156*
C22	-0.5539 (4)	0.5369 (2)	0.19813 (7)	0.0530 (6)
H22A	-0.6623	0.4775	0.1771	0.064*
H22B	-0.4480	0.4799	0.2137	0.064*
C23	-0.4008 (4)	0.6428 (2)	0.17643 (6)	0.0509 (6)
H23A	-0.2882	0.6983	0.1978	0.061*
H23B	-0.5088	0.7040	0.1632	0.061*
C24	-0.2528 (4)	0.5794 (2)	0.14255 (6)	0.0492 (6)
H24A	-0.3656	0.5235	0.1213	0.059*
H24B	-0.1446	0.5185	0.1559	0.059*
C25	-0.0981 (4)	0.6856 (2)	0.12022 (6)	0.0513 (6)
H25A	-0.2063	0.7487	0.1081	0.062*
H25B	0.0182	0.7390	0.1415	0.062*
C26	0.0445 (4)	0.6264 (2)	0.08497 (6)	0.0480 (6)
H26A	-0.0710	0.5725	0.0637	0.058*
H26B	0.1546	0.5641	0.0970	0.058*
C27	0.1956 (4)	0.7352 (2)	0.06299 (6)	0.0481 (6)
H27A	0.0850	0.7974	0.0511	0.058*
H27B	0.3103	0.7892	0.0844	0.058*
C28	0.3407 (4)	0.6787 (2)	0.02756 (6)	0.0490 (6)
H28A	0.2261	0.6259	0.0059	0.059*
H28B	0.4501	0.6156	0.0393	0.059*
C29	0.4934 (4)	0.7886 (2)	0.00630 (6)	0.0495 (6)
H29A	0.3838	0.8516	-0.0055	0.059*
H29B	0.6076	0.8415	0.0280	0.059*
C30	0.6396 (4)	0.7329 (2)	-0.02914 (6)	0.0489 (6)
H30A	0.7481	0.6692	-0.0175	0.059*
H30B	0.5253	0.6809	-0.0510	0.059*
C31	0.7935 (4)	0.8430 (2)	-0.04990 (7)	0.0503 (6)
H31A	0.9070	0.8954	-0.0280	0.060*
H31B	0.6848	0.9063	-0.0617	0.060*
C32	0.9411 (4)	0.7875 (2)	-0.08517 (6)	0.0487 (6)
H32A	1.0507	0.7247	-0.0733	0.058*
H32B	0.8277	0.7344	-0.1070	0.058*
C33	1.0935 (4)	0.8972 (2)	-0.10622 (7)	0.0509 (6)
H33A	1.2059	0.9507	-0.0844	0.061*
H33B	0.9837	0.9596	-0.1183	0.061*
C34	1.2422 (4)	0.8422 (2)	-0.14120 (6)	0.0507 (6)
H34A	1.1301	0.7857	-0.1624	0.061*
H34B	1.3560	0.7825	-0.1289	0.061*
C35	1.3882 (4)	0.9510(2)	-0.16365 (7)	0.0558 (6)
H35A	1.2741	1.0081	-0.1773	0.067*
H35B	1.4953	1.0103	-0.1423	0.067*
C36	1.5435 (4)	0.8939 (2)	-0.19683 (7)	0.0631 (7)
H36A	1.4371	0.8313	-0.2174	0.076*
H36B	1.6620	0.8400	-0.1829	0.076*
C37	1.6829 (5)	1.0013 (3)	-0.22100 (8)	0.0932 (9)

H37A	1.7788	0.9560	-0.2412	0.140*
H37B	1.7910	1.0632	-0.2011	0.140*
H37C	1.5674	1.0528	-0.2360	0.140*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0717 (12)	0.0933 (14)	0.0471 (10)	-0.0190 (10)	0.0214 (9)	0.0101 (9)
O2	0.1010 (15)	0.0651 (12)	0.0736 (12)	0.0027 (10)	0.0536 (11)	0.0179 (10)
03	0.0947 (14)	0.0650 (13)	0.0781 (12)	-0.0125 (11)	0.0359 (10)	0.0087 (10)
O4	0.0723 (12)	0.0557 (11)	0.0594 (10)	0.0054 (9)	0.0386 (9)	0.0064 (8)
05	0.1192 (15)	0.0517 (12)	0.0887 (13)	0.0117 (11)	0.0694 (11)	0.0117 (10)
C1	0.107 (3)	0.103 (3)	0.086 (2)	0.009 (2)	0.060 (2)	0.0217 (19)
C2	0.115 (3)	0.121 (3)	0.084 (2)	-0.003 (2)	0.054 (2)	-0.023 (2)
C3	0.094 (2)	0.089 (2)	0.0725 (19)	-0.0078 (18)	0.0354 (18)	-0.0121 (16)
C4	0.0689 (18)	0.0592 (17)	0.0485 (15)	0.0009 (14)	0.0225 (13)	0.0065 (13)
C5	0.124 (3)	0.068 (2)	0.095 (2)	-0.0101 (19)	0.072 (2)	-0.0079 (16)
C6	0.137 (3)	0.072 (2)	0.125 (3)	-0.010 (2)	0.087 (2)	0.005 (2)
C7	0.091 (2)	0.085 (2)	0.0518 (17)	-0.0193 (16)	0.0256 (15)	-0.0008 (14)
C8	0.0557 (17)	0.0704 (18)	0.0519 (17)	-0.0068 (14)	0.0208 (14)	0.0136 (13)
C9	0.084 (2)	0.079 (2)	0.0523 (16)	-0.0247 (17)	0.0274 (15)	-0.0056 (13)
C10	0.086 (2)	0.0706 (19)	0.077 (2)	-0.0273 (16)	0.0371 (18)	-0.0089 (15)
C11	0.072 (2)	0.0627 (18)	0.0576 (18)	-0.0030 (15)	0.0329 (16)	0.0160 (14)
C12	0.0631 (19)	0.120 (2)	0.0447 (16)	0.0001 (18)	0.0124 (14)	0.0197 (15)
C13	0.0581 (18)	0.121 (2)	0.0516 (17)	-0.0179 (17)	0.0087 (15)	0.0165 (16)
C14	0.0623 (18)	0.0673 (19)	0.0499 (16)	-0.0013 (16)	0.0143 (14)	0.0088 (15)
C15	0.0534 (16)	0.0580 (17)	0.0423 (14)	-0.0003 (13)	0.0120 (12)	0.0111 (12)
C16	0.0721 (18)	0.0588 (17)	0.0508 (15)	0.0114 (14)	0.0308 (13)	0.0109 (12)
C17	0.0712 (18)	0.0507 (16)	0.0492 (14)	0.0050 (14)	0.0274 (14)	0.0094 (12)
C18	0.0534 (16)	0.0560 (17)	0.0394 (13)	0.0035 (13)	0.0192 (12)	0.0072 (12)
C19	0.0629 (17)	0.0542 (17)	0.0489 (14)	0.0070 (14)	0.0222 (13)	0.0016 (12)
C20	0.0676 (18)	0.0528 (16)	0.0472 (14)	-0.0040 (14)	0.0166 (14)	0.0036 (12)
C21	0.151 (3)	0.0630 (19)	0.115 (2)	0.0319 (19)	0.088 (2)	0.0190 (17)
C22	0.0544 (16)	0.0575 (16)	0.0498 (14)	0.0072 (13)	0.0201 (13)	0.0060 (12)
C23	0.0556 (16)	0.0503 (15)	0.0500 (14)	0.0074 (12)	0.0190 (12)	0.0074 (11)
C24	0.0491 (15)	0.0520 (15)	0.0493 (14)	0.0067 (12)	0.0173 (12)	0.0076 (11)
C25	0.0521 (16)	0.0518 (15)	0.0521 (14)	0.0040 (12)	0.0190 (13)	0.0061 (12)
C26	0.0486 (15)	0.0483 (14)	0.0487 (14)	0.0038 (12)	0.0144 (12)	0.0064 (11)
C27	0.0493 (15)	0.0478 (14)	0.0485 (13)	0.0040 (12)	0.0149 (12)	0.0035 (11)
C28	0.0498 (15)	0.0484 (15)	0.0504 (14)	0.0036 (12)	0.0141 (12)	0.0060 (11)
C29	0.0524 (15)	0.0472 (15)	0.0502 (14)	0.0033 (12)	0.0153 (12)	0.0042 (11)
C30	0.0499 (15)	0.0515 (15)	0.0465 (14)	0.0029 (12)	0.0140 (12)	0.0045 (11)
C31	0.0509 (15)	0.0492 (15)	0.0520 (14)	0.0024 (12)	0.0152 (12)	0.0041 (11)
C32	0.0510 (15)	0.0474 (15)	0.0488 (14)	0.0037 (12)	0.0137 (12)	0.0036 (11)
C33	0.0535 (15)	0.0478 (15)	0.0529 (14)	0.0032 (12)	0.0170 (12)	0.0042 (11)
C34	0.0505 (15)	0.0524 (15)	0.0500 (14)	0.0031 (12)	0.0135 (12)	0.0020 (11)
C35	0.0557 (16)	0.0552 (16)	0.0586 (15)	0.0049 (13)	0.0200 (13)	0.0044 (12)
C36	0.0640 (17)	0.0678 (18)	0.0587 (15)	0.0028 (14)	0.0225 (14)	0.0002 (13)

C37	0.100 (2)	0.097 (2)	0.092 (2)	0.0082 (18)	0.0546 (18)	0.0211 (17)
Geometric param	neters (Å, °)					
01		1 369 (2)	C2	22—H22A	0.97	/00
01		1.401 (2)	C2	2—H22B	0.97	200
02-C14		1 352 (3)	C2	23—C24	1 51	4 (3)
02-C11		1.302(3)	C2	23—H23A	0.97	700
O3—C14		1.195 (3)	C2	23—H23B	0.97	700
O4—C18		1.364 (2)	C2	24—C25	1.51	4 (3)
O4—C22		1.436 (2)	C2	24—H24A	0.97	700
O5—C17		1.360 (2)	C2	24—H24B	0.97	00
O5—C21		1.437 (3)	C2	25—C26	1.51	1 (3)
C1—C6		1.349 (4)	C2	25—H25A	0.97	00
C1—C2		1.351 (4)	C2	25—H25B	0.97	/00
C1—H1		0.9300	C2	26—C27	1.51	5 (3)
C2—C3		1.373 (3)	C2	26—H26A	0.97	/00
С2—Н2		0.9300	C2	26—H26B	0.97	/00
C3—C4		1.355 (3)	C2	27—C28	1.51	3 (3)
С3—Н3		0.9300	C2	27—H27A	0.97	00
C4—C5		1.356 (3)	C2	27—H27B	0.97	000
C4—C7		1.493 (3)	C2	28—C29	1.51	4 (3)
C5—C6		1.375 (3)	C2	28—H28A	0.97	00
С5—Н5		0.9300	C2	28—H28B	0.97	00
С6—Н6		0.9300	C2	29—C30	1.51	4 (3)
C7—H7A		0.9700	C2	29—H29A	0.97	00
С7—Н7В		0.9700	C2	.9—Н29В	0.97	00
С8—С9		1.365 (3)	C3	60—C31	1.51	1 (3)
C8—C13		1.378 (3)	C3	60—H30A	0.97	00
C9—C10		1.388 (3)	C3	60—H30B	0.97	00
С9—Н9		0.9300	C3	61—C32	1.51	4 (3)
C10-C11		1.355 (3)	C3	61—H31A	0.97	00
C10—H10		0.9300	C3	61—H31B	0.97	00
C11—C12		1.359 (3)	C3	2—C33	1.50	9 (3)
C12—C13		1.377 (3)	C3	2—H32A	0.97	000
C12—H12		0.9300	C3	2—H32B	0.97	000
C13—H13		0.9300	C3	3—C34	1.50	9 (3)
C14—C15		1.487 (3)	C3	3—Н33А	0.97	00
C15—C20		1.368 (3)	C3	3—Н33В	0.97	00
C15—C16		1.390 (3)	C3	94—C35	1.51	0 (3)
C16—C17		1.379 (3)	C3	64—H34A	0.97	00
C16—H16		0.9300	C3	64—H34B	0.97	00
C17—C18		1.396 (3)	C3	5—C36	1.49	9 (3)
C18—C19		1.371 (3)	C3	5—H35A	0.97	00
C19—C20		1.379 (3)	C3	5—H35B	0.97	00
C19—H19		0.9300	C3	66—C37	1.51	4 (3)
С20—Н20		0.9300	C3	6—H36A	0.97	00
C21—H21A		0.9600	C3	6—Н36В	0.97	00
C21—H21B		0.9600	C3	67—H37A	0.96	000

C21—H21C	0.9600	С37—Н37В	0.9600
C22—C23	1.497 (3)	С37—Н37С	0.9600
C8—O1—C7	117.87 (18)	C23—C24—C25	113.47 (17)
C14—O2—C11	119.68 (19)	C23—C24—H24A	108.9
C18—O4—C22	117.86 (17)	C25—C24—H24A	108.9
C17—O5—C21	117.79 (19)	C23—C24—H24B	108.9
C6—C1—C2	119.1 (3)	C25—C24—H24B	108.9
С6—С1—Н1	120.5	H24A—C24—H24B	107.7
C2—C1—H1	120.5	C26—C25—C24	115.03 (18)
C1—C2—C3	120.5 (3)	С26—С25—Н25А	108.5
C1—C2—H2	119.7	С24—С25—Н25А	108.5
С3—С2—Н2	119.7	C26—C25—H25B	108.5
C4—C3—C2	121.2 (3)	С24—С25—Н25В	108.5
С4—С3—Н3	119.4	H25A—C25—H25B	107.5
С2—С3—Н3	119.4	C25—C26—C27	113.78 (17)
C3—C4—C5	117.6 (2)	C25—C26—H26A	108.8
C3—C4—C7	120.2 (2)	С27—С26—Н26А	108.8
C5—C4—C7	122.2 (2)	С25—С26—Н26В	108.8
C4—C5—C6	121.6 (3)	C27—C26—H26B	108.8
С4—С5—Н5	119.2	H26A—C26—H26B	107.7
С6—С5—Н5	119.2	C28—C27—C26	114.88 (17)
C1—C6—C5	120.0 (3)	С28—С27—Н27А	108.5
C1—C6—H6	120.0	С26—С27—Н27А	108.5
С5—С6—Н6	120.0	С28—С27—Н27В	108.5
O1—C7—C4	110.1 (2)	С26—С27—Н27В	108.5
O1—C7—H7A	109.6	Н27А—С27—Н27В	107.5
С4—С7—Н7А	109.6	C27—C28—C29	114.26 (17)
O1—C7—H7B	109.6	C27—C28—H28A	108.7
С4—С7—Н7В	109.6	C29—C28—H28A	108.7
H7A—C7—H7B	108.2	C27—C28—H28B	108.7
C9—C8—O1	124.8 (2)	C29—C28—H28B	108.7
C9—C8—C13	119.1 (2)	H28A—C28—H28B	107.6
O1—C8—C13	116.0 (2)	C30—C29—C28	114.61 (17)
C8—C9—C10	119.3 (2)	С30—С29—Н29А	108.6
С8—С9—Н9	120.3	С28—С29—Н29А	108.6
С10—С9—Н9	120.3	С30—С29—Н29В	108.6
C11—C10—C9	120.7 (2)	С28—С29—Н29В	108.6
C11—C10—H10	119.7	H29A—C29—H29B	107.6
С9—С10—Н10	119.7	C31—C30—C29	114.33 (17)
C10-C11-C12	120.7 (2)	С31—С30—Н30А	108.7
C10-C11-O2	117.3 (2)	С29—С30—Н30А	108.7
C12—C11—O2	121.9 (2)	С31—С30—Н30В	108.7
C11—C12—C13	118.8 (2)	С29—С30—Н30В	108.7
C11—C12—H12	120.6	H30A—C30—H30B	107.6
C13—C12—H12	120.6	C30—C31—C32	114.43 (17)
C12—C13—C8	121.3 (2)	C30—C31—H31A	108.7
С12—С13—Н13	119.4	C32—C31—H31A	108.7
C8—C13—H13	119.4	C30—C31—H31B	108.7
O3—C14—O2	123.7 (2)	C32—C31—H31B	108.7

O3—C14—C15	125.0 (3)	H31A—C31—H31B	107.6
O2—C14—C15	111.2 (2)	C33—C32—C31	114.58 (17)
C20-C15-C16	119.4 (2)	С33—С32—Н32А	108.6
C20-C15-C14	118.3 (2)	С31—С32—Н32А	108.6
C16-C15-C14	122.3 (2)	С33—С32—Н32В	108.6
C17—C16—C15	120.4 (2)	С31—С32—Н32В	108.6
С17—С16—Н16	119.8	H32A—C32—H32B	107.6
C15—C16—H16	119.8	C32—C33—C34	114.73 (18)
O5—C17—C16	125.1 (2)	С32—С33—Н33А	108.6
O5-C17-C18	115.3 (2)	С34—С33—Н33А	108.6
C16—C17—C18	119.5 (2)	С32—С33—Н33В	108.6
O4—C18—C19	124.8 (2)	С34—С33—Н33В	108.6
O4—C18—C17	115.6 (2)	H33A—C33—H33B	107.6
C19—C18—C17	119.6 (2)	C33—C34—C35	115.30 (18)
C18—C19—C20	120.4 (2)	С33—С34—Н34А	108.4
С18—С19—Н19	119.8	С35—С34—Н34А	108.4
С20—С19—Н19	119.8	С33—С34—Н34В	108.4
C15—C20—C19	120.7 (2)	С35—С34—Н34В	108.4
С15—С20—Н20	119.7	H34A—C34—H34B	107.5
С19—С20—Н20	119.7	C36—C35—C34	114.29 (18)
O5—C21—H21A	109.5	С36—С35—Н35А	108.7
O5—C21—H21B	109.5	С34—С35—Н35А	108.7
H21A—C21—H21B	109.5	С36—С35—Н35В	108.7
O5—C21—H21C	109.5	С34—С35—Н35В	108.7
H21A—C21—H21C	109.5	H35A—C35—H35B	107.6
H21B-C21-H21C	109.5	C35—C36—C37	115.0 (2)
O4—C22—C23	107.48 (17)	С35—С36—Н36А	108.5
O4—C22—H22A	110.2	С37—С36—Н36А	108.5
C23—C22—H22A	110.2	С35—С36—Н36В	108.5
O4—C22—H22B	110.2	С37—С36—Н36В	108.5
С23—С22—Н22В	110.2	H36A—C36—H36B	107.5
H22A—C22—H22B	108.5	С36—С37—Н37А	109.5
C22—C23—C24	112.98 (17)	С36—С37—Н37В	109.5
С22—С23—Н23А	109.0	Н37А—С37—Н37В	109.5
C24—C23—H23A	109.0	С36—С37—Н37С	109.5
С22—С23—Н23В	109.0	Н37А—С37—Н37С	109.5
С24—С23—Н23В	109.0	H37B—C37—H37C	109.5
H23A—C23—H23B	107.8		
C6—C1—C2—C3	-0.9 (5)	C14—C15—C16—C17	177.3 (2)
C1—C2—C3—C4	-0.3 (5)	C21—O5—C17—C16	-4.1 (4)
C2—C3—C4—C5	1.2 (5)	C21—O5—C17—C18	175.7 (2)
C2—C3—C4—C7	-176.2 (3)	C15—C16—C17—O5	179.0 (2)
C3—C4—C5—C6	-0.9 (5)	C15-C16-C17-C18	-0.8 (3)
C7—C4—C5—C6	176.4 (3)	C22—O4—C18—C19	1.7 (3)
C2-C1-C6-C5	1.1 (5)	C22—O4—C18—C17	-178.31 (19)
C4—C5—C6—C1	-0.2 (5)	O5—C17—C18—O4	1.2 (3)
C8—O1—C7—C4	177.7 (2)	C16—C17—C18—O4	-178.90 (19)
C3—C4—C7—O1	-146.5 (2)	O5—C17—C18—C19	-178.75 (19)
C5—C4—C7—O1	36.2 (4)	C16-C17-C18-C19	1.1 (3)

C7—O1—C8—C9	7.1 (4)	O4—C18—C19—C20	180.0 (2)
C7—O1—C8—C13	-175.0 (2)	C17—C18—C19—C20	0.0 (3)
O1—C8—C9—C10	-179.6 (2)	C16-C15-C20-C19	1.6 (3)
C13—C8—C9—C10	2.6 (4)	C14—C15—C20—C19	-176.3 (2)
C8—C9—C10—C11	-0.1 (4)	C18—C19—C20—C15	-1.4 (3)
C9-C10-C11-C12	-3.0 (4)	C18—O4—C22—C23	179.04 (17)
C9—C10—C11—O2	173.6 (2)	O4—C22—C23—C24	-176.06 (17)
C14—O2—C11—C10	122.4 (3)	C22—C23—C24—C25	179.71 (18)
C14—O2—C11—C12	-61.0 (3)	C23—C24—C25—C26	-177.71 (18)
C10-C11-C12-C13	3.5 (4)	C24—C25—C26—C27	179.49 (17)
O2-C11-C12-C13	-173.0 (2)	C25—C26—C27—C28	179.93 (18)
C11—C12—C13—C8	-1.0 (4)	C26—C27—C28—C29	-179.22 (17)
C9—C8—C13—C12	-2.0 (4)	C27—C28—C29—C30	179.90 (18)
O1—C8—C13—C12	179.9 (2)	C28-C29-C30-C31	-179.40 (18)
C11—O2—C14—O3	2.3 (4)	C29—C30—C31—C32	179.64 (17)
C11—O2—C14—C15	-174.30 (19)	C30-C31-C32-C33	179.53 (18)
O3—C14—C15—C20	-6.3 (4)	C31—C32—C33—C34	179.61 (18)
O2-C14-C15-C20	170.3 (2)	C32—C33—C34—C35	177.86 (18)
O3—C14—C15—C16	175.8 (2)	C33—C34—C35—C36	177.31 (19)
O2-C14-C15-C16	-7.6 (3)	C34—C35—C36—C37	177.5 (2)
C20—C15—C16—C17	-0.5 (3)		

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C8-C13	and C14–C20 ring	gs, respectively.		
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C6—H6…Cg2 ⁱ	0.93	2.97	3.576 (3)	124
C22—H22B····Cg3 ⁱⁱ	0.96	2.94	3.793 (2)	148
Symmetry codes: (i) $x-2$, y , $z+1$; (ii) $x+1$, y , z .				

Fig. 2

