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Calorimetric study of the effect of bent-shaped dopant molecules on the critical behavior
at the nematic-smectic-Ad phase transition
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We report results of calorimetric studies for the binary mixture of rodlike host n-alkyloxy-cyanobiphenyl
(nOCB, n = 8,9) and bent-shaped guest 1,3-phenylene-bis[4-(3-methylbenzoyloxy)]-4′-n-dodecylbiphenyl-4′-
carboxylate (BC12). The effect of bent-shaped dopant molecules on the critical behavior associated with the
nematic-smectic-Ad phase transition has been studied in detail. The transition temperature for the nematic-
smectic-Ad phase sharply decreases as the increase of the mole fraction of the dopant concentration (denoted X

for the BC12/9OCB mixture and Y for the BC12/8OCB mixture). The dependence of the critical exponent α on
X and Y is well explained in terms of the McMillan ratio. A nearly tricritical exponent has been obtained for the
X = 0.01 mixture. X = 0.02 − 0.03 mixtures, pure 8OCB, and Y = 0.01 − 0.03 mixtures exhibit nonuniversal
behaviors with effective exponents lying between the 3D-XY and tricritical exponents. The heat capacity anomaly
for Y = 0.05 has been well described with the 3D-XY exponent. The critical amplitude ratio A−/A+ is close to 1
and insensitive to the dopant concentration. No Fisher renormalization of the critical exponent has been observed
even for nearly tricritical compositions, which indicates the smallness of the concentration plays a decisive role
rather than the steepness of the N-SmAd phase boundary.
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I. INTRODUCTION

Recent research into liquid crystalline binary mixtures
composed of bent-shaped and rodlike molecules has shown
various interesting phenomena such as novel phase transitions
[1,2] and nanophase segregations [3–5]. On the other hand,
the exact treatment of phase transitions in such mixture
systems is complicated because measurements are usually
performed along with a constant concentration x, while fixing
the chemical potential difference in the mixture significantly
acts as a thermodynamic constraint. As Fisher discussed [6,7],
the heat capacity exponent α is modified as αx = −α/(1 − α)
in the vicinity of the transition temperature Tc, which is known
as the Fisher renormalization. So far, this phenomenon has
been observed in rodlike liquid crystalline mixtures at the
nematic (N)-smectic-A (SmA) phase transition [8–10] and
smectic-A1-smectic-A2 phase transition [11,12]. In addition,
recently, the present authors have carried out high-resolution
calorimetric studies on a novel orientational phase transition of
bent-shaped molecules in a smectic liquid crystal matrix [13].
It has been found that the heat capacity anomaly can be
described with Fisher-renormalized form in the vicinity of
Tc and that the magnitude of α plays a significant role as found
in several systems [6,8,14].
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A detailed estimation [15] regarding the crossover temper-
ature between the Fisher renormalization and the underlying
critical behavior can be written as

τ =
[
Ax(1 − x)

(
1

Tc

dTc

dx

)2
]1/α

, (1)

where A is the unrenormalized critical amplitude of spe-
cific heat in units of R. This indicates that the extent of
the renormalization strongly depends on the magnitude of
several parameters, not only T −1

c · dTc/dx, but also α, etc.
In particular, it can also be noticed from Eq. (1) that the
concentration x itself plays an important role. The crossover
temperature becomes small with decreasing concentration, so
that it can happen that no renormalization can be observed
experimentally, even for the tricritical exponent. Somehow,
almost all earlier reports mainly discussed the observation of
Fisher renormalization with respect to the steepness of the
phase boundary. Thus the importance of the concentration still
remains ambiguous and should be examined experimentally
to obtain a quantitative conclusion.

In this paper we report the results of intensive calorimetric
investigations on the N-SmAd phase transition with bent-
shaped dopant molecules. Molecular structures of the host
and dopant materials are shown in Fig. 1. Rodlike liquid
crystalline molecules, n-alkyloxy-cyanobiphenyl (8OCB) and
(9OCB), have been used as host compounds. Bent-shaped
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FIG. 1. Structures of (upper) bent-core dopant molecule
1,3-phenylene-bis[4-(3-methylbenzoyloxy)]-4′-n-dodecylbiphenyl-
4′-carboxylate (BC12) and (lower) rodlike molecule
n-alkyloxy-cyanobiphenyl (nOCB, n = 8,9).

molecules (1,3-phenylene-bis[4-(3-methylbenzoyloxy)]-4′-n-
dodecylbiphenyl-4′-carboxylate; BC12) has been used as a
dopant in the rodlike molecules. The overall phase diagram
of the BC12/8OCB system has been reported in Ref. [2]. We
particularly focus on the region where the concentration of the
bent-shaped molecules is small. In both systems, it has been
found that doping of the bent-shaped molecules gives rise to
a sharp decrease of the N-SmAd transition temperature TNA

and a gradual increase of the isotropic (I)-N phase transition
temperature TIN . For clarity, we use hereafter the notation X

for the BC12/9OCB and Y for the BC12/8OCB mixtures to
denote the mole fraction of BC12. The detailed analysis for
the N-SmAd critical behavior revealed that the dependence
of the critical exponent on X and Y has been well described
in terms of the McMillan ratio r = TNA/TIN . The crossover
of α from tricritical (αTCP = 0.5) to 3D-XY (αXY = −0.0066
[16,17]) values has been observed by mixing a small amount of
bent-shaped molecules. On the other hand, no sign of the Fisher
renormalization of the critical exponent has been found, even
for the nearly tricritical cases. This indicates that, despite the
steep phase boundary, the smallness of the concentration plays
a decisive role and hinders the observation of the renormalized
critical exponent.

II. METHODS AND RESULTS

The measurements have been done using two techniques,
an ac calorimetry and a heat-flux differential scanning
calorimetry (DSC). The details of the ac calorimetry used
in the present study are found elsewhere [18]. Basically,
the precise specific heat capacity data have been obtained
by measuring the magnitude of an oscillatory temperature
response �Tac exp i(2πf t + π/2 + φ) to an input heater
power P exp (i2πf t). Here f is the frequency of the ac
heating, which has been set to 0.03125 Hz in the present study.
The phase shift φ between the input heater power and the
temperature oscillation of the sample has also been measured,
which provides qualitative information for the nature of
the transition [19]. Particularly, in the case of a first-order
transition, it is known that φ exhibits an anomalous increase
near the transition, as will be discussed later. The temperature
scan rate in the ac calorimetry was about ±0.03 K/h near the
transition region. Another method used here, DSC, has been
employed for the determination of the transition enthalpy.
Semiconducting thermoelectric modules have been used for
the measurement of the temperature difference between a
sample cell and a reference cell. A temperature scan rate of
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FIG. 2. Temperature dependence of the phase shift and heat
capacity for pure 9OCB near the I-N and N-SmAd phase transitions.
The temperature scan rate used is 0.3 K/h for the overall range.

±0.05 K/min has been used. Samples of about 7 mg were
placed in hermetically sealed gold cells.

The specific heat Cp of the liquid crystal sample is obtained
with the use of the following expression:

Cp = (Cobs
p − Cempty

p )/m. (2)

Here Cobs
p is the observed heat capacity of the filled cell, Cempty

p

is the heat capacity of the empty cell, and m is the mass of the
liquid crystal sample.

The temperature variation of Cp and φ obtained for pure
9OCB is presented in Fig. 2. The Cp anomalies associated
with the N-SmA and I-N phase transitions are evident at
350.84 and 353.03 K, respectively. The abrupt anomalous
increase of the phase shift φ, which is characteristic of the
first-order transition [20], has been observed. Such behavior
is also in agreement with other N-SmA phase transitions
with narrow nematic ranges [21]. The two-phase coexistence
regions estimated from the φ anomalies are ∼0.04 K for the
N-SmAd and ∼0.09 K for the I-N phase transitions.

Figure 3 displays the temperature dependence of Cp

and φ for the X = 0.01 mixture. The I-N phase transition
exhibited essentially the same results, indicating the first-order
transition, whereas, in contrast to pure 9OCB, φ shows a small
dip near the N-SmAd transition. Although this behavior is
usually understood to indicate that the transition is second
order, it is valuable to take a closer look at this because the
anomaly in Cp is rather large and sharp. As discussed in
Ref. [22], a linear relationship between φ and Cp is expected
in the absence of two-phase coexistence. In Fig. 4 data near the
N-SmAd transition for pure 9OCB, X = 0.01, and X = 0.03
mixtures are plotted on a φ-Cp plane. In the case of pure
9OCB, data points in the immediate vicinity of the transition
break the linear relation, indicating the first-order nature of
the transition. On the other hand, all the data points fall on a
straight line in the case of the X = 0.03 mixture, which ensures
the absence of the two-phase coexistence. Similar results were
found for mixtures with X = 0.02 and Y = 0.00 − 0.05. For
the X = 0.01 mixture, shown in the middle portion of Fig. 4,
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FIG. 3. Temperature dependence of the phase shift and heat
capacity for the X = 0.01 mixture near the I-N and N-SmAd phase
transitions. The dashed curve represents the background heat capacity
associated with the N-SmAd phase transition. The temperature scan
rates used are 0.03 K/h near the N-SmAd and 0.3 K/h near the I-N
phase transitions.

a slight but noticeable deviation is seen near the transition.
This shows that the transition is very weakly first order in
this mixture. Two-phase coexistence as determined from the
above-mentioned deviation becomes rather narrow, in a range
of about 0.030 K.

Figure 5 shows the N-SmAd heat capacity anomalies
obtained for various BC12/9OCB and BC12/8OCB mixtures.
The heat capacity anomalies associated with the N-SmAd

transition are evident, accompanying a decrease of the tran-
sition temperatures with the increase of the concentration.
As seen from the phase diagram displayed in Fig. 6, the
TNA value decreases sharply with increase of the dopant
concentration with phase boundaries of dTNA/dX ∼−150 K
for BC12/9OCB and dTNA/dY ∼−130 K for BC12/8OCB,
which are shown as solid lines. Contrary to the N-SmAd

transition, TIN monotonically increases with respect to the
dopant concentration, resulting in the expansion of the nematic
temperature range.

The dashed curve shown in Fig. 3 represents the estimation
of the background heat capacity associated with the I-N phase
transition. The excess specific heat capacity for the N-SmAd

phase transition is obtained by subtracting the contribution
from the I-N phase transition Cp(background):

�Cp = Cp − Cp(background). (3)

A similar procedure has been also done for data on other
samples.

The transition enthalpy δH in the N-SmAd phase transition
has been estimated as

δH = �HL +
∫

�Cp dT . (4)

Here �HL and
∫

�Cp dT indicate the latent heat and the
enthalpy change due to pretransitional fluctuations,
respectively. Whereas �Cp is measured by the ac calorimetric
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FIG. 4. (Color online) Plot of the phase lag φ against Cp

for (upper) pure 9OCB, (middle) X = 0.01 mixture, and (lower)
X = 0.03 mixture near the N-SmAd phase transition obtained by
ac calorimetry. Open circles (red) and squares (blue) represent data
above and below the transition temperature.

technique, DSC directly measures δH . When the transition
is second order, �HL is absent, and the transition enthalpy
obtained by DSC should be the same as that by ac calorimetry.
For pure 9OCB, the δH value obtained by DSC shows a larger
value compared with that of ac calorimetry, indicating the
presence of the latent heat. Figure 7 displays the heat capacity
anomalies for X = 0.01 and Y = 0.02 obtained by DSC and ac
calorimetry. For the Y = 0.02 case, both results agree with one
another on the whole and indicate a second-order transition.
On the other hand, the heat capacity anomaly by DSC for
X = 0.01 is slightly larger than that by ac calorimetry in the
vicinity of Tc. This agrees with the very weak first-order
nature of the transition accompanying a small latent heat,
which has been expected from the φ-Cp plot mentioned above.
Table I summarizes phase-transition temperatures TNA and
TIN , two-phase coexistence width δTNA and δTIN , transition
enthalpy δHNA, latent heat �HL,NA, and the McMillan ratio.
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FIG. 5. Temperature variation of the excess heat capacity �Cp

near the N-SmAd phase transition for BC12/8OCB mixtures (upper)
and for BC12/9OCB mixtures (lower) obtained by ac calorimetry.

We also add that any noticeable hysteresis indicating phase
separation was not observed in all cases.

For the critical exponent analyses, the data obtained by
ac calorimetry have been used. As described above, the DSC
measurements also provide the high-resolution data. However,
since the temperature scan rate used in our DSC measurements
is faster than that of the ac calorimetric measurement, the DSC
data in the very vicinity of Tc may be smeared by the finite scan
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FIG. 6. Partial phase diagrams for BC12/9OCB (left) and
BC12/8OCB (right). The transition temperatures have been deter-
mined by ac calorimetry.
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FIG. 7. (Color online) Temperature dependence of the heat
capacity for mixtures X = 0.01 (upper) and Y = 0.02 (lower) near the
N-SmAd phase transitions. The closed (red) and open circles (black)
represent the data obtained by ac calorimetry and DSC, respectively.

rates. The fits to the �Cp have been performed with the follow-
ing expression, including corrections-to-scaling terms [16,23]:

�Cp = A±|t |−α
(
1 + D±

1 |t |θ + D±
2 |t |2θ

) + Bc. (5)

Here t = (T − Tc)/Tc is the reduced temperature, and ±
indicates above and below Tc. D±

1 and D±
2 are the coefficients

of the first- and second-order corrections-to-scaling terms,
respectively. The corrections-to-scaling exponent θ is taken
to be 0.5 [16,23]. The constant term Bc is the critical
contribution. The data in the vicinity of the transition
temperature are not used due to the instrumental limitations
and the inhomogeneity of the sample. The fits to the data
have been performed for |t |min � |t | � |t |max, with |t |max

being the maximum reduced temperature used in the fits. The
|t |min values have been determined according to the method
described in Ref. [24]. The rounding regions thus determined
are described in the caption of the tables shown below.

Table II shows the results for the X = 0.01 mixture.
Although the transition was found to be first order for this
mixture, the critical exponent analyses with Eq. (5) can be
justified because the first-order nature is very weak. Indeed,
two-phase coexistence width only amounts to about 30 mK,
comparable to the typical rounding region found for second-
order phase transitions. The fits have been carried out for
several |t |max values to check the dependence of the adjustable
parameters on the data range. From the simple power-law fit
without corrections-to-scaling terms, the critical exponent α

is in the range 0.54–0.57, which is independent of the data
range shrinking and slightly larger than the tricritical value
αTCP = 0.5. The amplitude ratio A−/A+ is smaller than 1.
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TABLE I. Values of transition temperature TNA and TIN , two-phase coexistence width δTNA and δTIN ,
transition enthalpy δHNA, latent heat �HL,NA, and McMillan ratio. Subscripts NA and IN represent
N -SmAd and I -N transitions, respectively. The unit is K for TNA, TIN , δTNA, and δTIN , and J/g for δHNA

and �HL,NA.

Sample TNA δTNA δHNA �HL,NA TIN δTIN McMillan ratio

X = 0.00 350.83 0.038 1.47 0.18 353.03 0.09 0.994
X = 0.01 349.79 0.030 1.18 0.12 353.63 0.13 0.989
X = 0.02 347.85 0.86 353.72 0.17 0.983
X = 0.03 346.22 0.68 354.33 0.14 0.977
Y = 0.00 340.18 0.40 353.38 0.06 0.963
Y = 0.01 338.65 0.33 354.08 0.07 0.956
Y = 0.02 337.81 0.31 354.78 0.11 0.952
Y = 0.03 335.66 0.29 355.45 0.14 0.944
Y = 0.05 333.76 0.27 355.96 0.56a 0.938

a This value is less reliable because only data with relatively fast scan-rates (∼ 4 K/h) are available near the
I -N transition for this mixture.

However, this is rather artificial because A−/A+ values are
dependent on the data range. The quality of the fit has been
improved in the sense of χ2 values after inclusion of the
corrections-to-scaling terms, while α remains insensitive to the
data range. As displayed in Fig. 8, the fit with |t |max = 0.003
shows a good agreement with the experimental data. Thus
we see that the D±

1 and D±
2 terms play an important role.

A−/A+ ∼ 1 has been obtained by taking the corrections-to-
scaling terms into account. The first corrections-to-scaling
terms show a good agreement with the theoretical expectation
that D−

1 /D+
1 ∼ 1. As described above, α values are close to

0.5, indicating that there is no Fisher renormalization of the
critical exponent. This also implies that the first corrections-
to-scaling terms A±D±

1 |t |θ−α reduce to be almost temperature
independent. Hence, we rewrite Eq. (5) as the following
expression:

�Cp = A±|t |−α
(
1 + D±

2 |t |) + B±. (6)

The obtained adjustable parameters are summarized in
Table III. Values of α and Tc are more or less the same as
those obtained using Eq. (5). The fits with D±

2 = 0 show poor
χ2 values, especially for large |t |max fits, while the quality of
the fit has been improved by taking the D±

2 term into account.
The results of the fits for the X = 0.03 mixture are shown

in Table IV. The critical exponent lies in α = 0.23 − 0.30.

These α values are nonuniversal, being between αXY and
αTCP, and clearly small compared to those of the X = 0.01
mixture. The amplitude ratio A−/A+ still lies ∼1. For the
X = 0.03 mixture, the fits with the corrections-to-scaling
terms sometimes exhibit unphysical results for which the D±

1
and D±

2 values are very large. In those cases the Tc values
slightly differ from the fits in which the leading exponent term
is dominant or the D±

1 are fixed to zero. To avoid such artifacts,
fits were made with Tc value fixed at 346.226 K. As the result,
the D±

1 and D±
2 terms become small and relatively stable.

When D±
1 terms are included, D−

1 /D+
1 values are close to 1,

and the quality of the fit is improved. Moreover, it is to be noted
that the magnitude of the D±

1 terms becames smaller than that
of the X = 0.01 mixture. For other BC12/9OCB mixtures, the
values of α decreased monotonically with the increase in X,
although the detailed results are not shown. With decreasing X,
it was also found that the corrections-to-scaling terms equally
play an important role while their magnitude becomes smaller.

Table V shows the results for the Y = 0.01 mixture. For the
fits with D±

2 = 0, the obtained α values range in 0.064–0.21,
which is smaller than that for 8OCB. It is seen that the
magnitude of D±

1 decreases further compared to the X = 0.03
sample. On the other hand, A+/A− is still close to 1, implying
the symmetric character of the heat capacity anomaly. The last
two lines in the table show results with nonzero D±

2 . Quality

TABLE II. Results of the fits to the heat capacity data for the X = 0.01 mixture using Eq. (5). The
minimum reduced temperatures used in the fits for T > Tc and T < Tc are |t |+min = 6.6 × 10−5 and |t |−min =
4.6 × 10−5, respectively. The units for A+ and Bc are JK−1 g−1.

|t |max α Tc A+ A−/A+ D+
1 D−

1 /D+
1 D+

2 D−
2 /D+

2 Bc χ 2

0.0005 0.574 349.804 0.0112 0.955 −0.124 3.36
0.0010 0.545 349.804 0.0152 0.951 −0.207 5.13
0.0030 0.536 349.803 0.0170 0.923 −0.232 13.47
0.0050 0.535 349.803 0.0172 0.921 −0.234 12.56
0.0030 0.542 349.806 0.0144 1.074 19.45 0.67 −0.524 1.02
0.0050 0.559 349.806 0.0119 1.071 30.19 0.77 −0.642 2.33
0.0070 0.561 349.805 0.0121 1.018 23.13 0.84 −0.549 6.31
0.0050 0.474 349.807 0.0324 1.118 149.40 0.84 −99.14 0.24 −4.349 1.46
0.0070 0.453 349.807 0.0416 1.117 98.37 0.82 −103.99 0.16 −3.352 1.79
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FIG. 8. (Color online) Temperature variation of the anomalous
heat capacity near the N-SmAd phase transition for X = 0.01. The
solid line shows a fit to �Cp with Eq. (5). Open circles show the data
omitted from the least-squares-fitting procedure.

of the fits has been improved in the χ2 sense. The α values are
close to 0 and seem reasonable because they agree with those
for D±

2 = 0 over narrower data ranges such as |t |max = 0.003.
The results for the Y = 0.05 mixture are summarized in

Table VI. For the simple power-law fits with the corrections to
scaling terms fixed to zero, the α values range between −0.019
and 0.138. It should be noted that the magnitude of the excess
heat capacity is small compared to other data, as displayed
in Fig. 5, and therefore the obscurity for determination of the
critical exponent is inevitable. Because of this, fits with Tc

fixed at 333.777 K have been tried. Fits were also made with
the 3D-XY critical exponent α = αXY = −0.0066. Figure 9
shows the result obtained with Tc = 333.777 K and α = αXY .
The quality of the fits with both α and Tc fixed are comparable
with the fits with parameters adjusted freely. On the other hand,
no clear evidence of the 3D-XY critical amplitude ratio has
been found, and the A−/A+ values still remain close to 1.

III. DISCUSSION

Our calorimetric studies revealed that the N-SmAd phase
transition is first order for pure 9OCB, which agree with the
result obtained by means of a modulated DSC technique [25].
For the X = 0.01 mixture, it has been found that the transition
is very weakly first order. Other mixtures exhibit second-order
transitions. The behavior of the phase signal φ in the ac
technique has been used for the distinction between first- and
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FIG. 9. (Color online) Temperature variation of the anomalous
heat capacity near the N-SmAd phase transition for Y = 0.05. The
solid line shows a fit to �Cp with Eq. (5) with α and Tc fixed at
−0.0066 and 333.777 K. Open circles show the data omitted from
the least-squares-fitting procedure.

second-order transitions. However, it should be stressed that
the ac calorimetric technique cannot determine the transitional
enthalpy, and the response of φ is rather insensitive to the
small latent heat. The Cp data obtained by ac calorimetry
sometimes show a remarkable difference from those of
DSC [26]. Thus, the direct measurement of the transition
enthalpy would be reliable information. So far, the adiabatic
calorimetry is suitable for this requirement [27,28]. Compared
with this, as far as the the earlier DSC measurements are
concerned, because of the dynamic temperature scan incapable
of detecting the heat flow difference instantaneously, it was
difficult to clearly distinguish between first- and second-order
transitions. In the present study, our high-sensitivity DSC
allowed us to give a fairly good agreement of DSC and ac
calorimetry data, providing a reliable evidence to distinguish
between first- and second-order transitions.

Nearly tricritical behavior has been observed for the
X = 0.01 mixture. The value of McMillan ratio r = 0.99
for this mixture is in a good agreement with that of the
previously reported value at the tricritical point of the
N -SmAd phase transition. The obtained α values, slightly
larger than αTCP = 0.5, may be due to the weakly first-order
character. From the viewpoint of α values, the observation
of the Fisher renormalization in the present work should be
the most pronounced for X = 0.01 due to the doubling of
the critical exponent at the tricritical point. The value of

TABLE III. Results of fits to the heat capacity data for the X = 0.01 mixture using Eq. (6). The
minimum reduced temperatures used in the fits for T > Tc and T < Tc are |t |+min = 6.6 × 10−5 and
|t |−min = 4.6 × 10−5, respectively. The units for A+ and B± are JK−1 g−1.

|t |max α Tc A+ A−/A+ D+
2 D−

2 /D+
2 B+ B−/B+ χ 2

0.0005 0.554 349.805 0.0134 1.002 −0.155 1.24 2.14
0.0030 0.529 349.806 0.0169 1.062 −0.193 1.52 1.02
0.0050 0.528 349.806 0.0171 1.052 −0.200 1.44 2.56
0.0070 0.533 349.805 0.0167 1.006 −0.208 1.27 6.60
0.0030 0.537 349.806 0.0155 1.063 −19.50 0.98 −0.159 1.62 1.00
0.0050 0.523 349.807 0.0173 1.142 −38.51 −1.23 −0.155 2.37 1.49
0.0070 0.522 349.807 0.0174 1.158 −49.91 −1.30 −0.146 2.69 1.94
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TABLE IV. Results of fits to the heat capacity data for the X = 0.03 mixture using Eq. (5). The
minimum reduced temperatures used in the fits for T > Tc and T < Tc are |t |+min = 9.5 × 10−5 and
|t |−min = 1.4 × 10−4, respectively. The units for A+ and Bc are JK−1 g−1. Quantities in brackets are
held fixed at the given values.

|t |max α Tc A+ A−/A+ D+
1 D−

1 /D+
1 D+

2 D−
2 /D+

2 Bc χ 2

0.0010 0.292 [346.226] 0.0675 1.017 −0.229 1.76
0.0010 0.260 346.224 0.0977 1.006 −0.310 1.29
0.0050 0.269 [346.226] 0.0891 1.006 −0.293 5.00
0.0050 0.252 346.222 0.1076 0.993 −0.331 2.96
0.0030 0.302 346.226 0.0552 1.044 −5.539 1.17 −0.087 1.43
0.0050 0.241 [346.226] 0.1252 1.034 1.885 0.48 −0.422 1.44
0.0070 0.231 346.226 0.1439 1.032 2.391 0.61 −0.484 1.38

Z ≡ (T −1
c · dTc/dx)2 in Eq. (1) is a suitable measure to char-

acterize the observability of the renormalized exponent. Previ-
ously, fully Fisher-renormalized tricritical behaviors show Z

values ranging from 0.74 to 0.2 [9,10,29]. In the present study,
Z ∼ 0.18 for X = 0.01 seems sufficient for the appearance of
the crossover temperature. However, according to the analysis
described above, no sign of the Fisher renormalization has
been obtained. By substituting the parameters to Eq. (1) using
the critical amplitude A± in Table II, the range of the crossover
in the reduced temperature becomes τ ∼ 10−6. This indicates
that the observable region is quite narrow, in accordance with
our analysis. The present result can be compared with our
recent study in a different system, which revealed that a
Fisher-renormalized behavior actually occurs in the vicinity
of Tc [13]. In that case the system also included a tricritical
point and a steep phase boundary, which is apparently similar
to those in the present study. The crucial difference lies in the
dilute composition of the bent-shaped molecules used here.
Hence, we see that the concentration is also a very important
factor to determine the crossover temperature.

The present results confirm that the width of the nematic
temperature range plays an important role for deciding the
nature of the N-SmA phase transition. First, the magnitude

of the heat capacity anomaly decreases significantly as
the nematic range grows, showing that thermal fluctuations
associated with the heat capacity anomaly are very sensitive
to the saturation of the nematic order, as pointed out in our
previous work [13] and also in earlier works cited therein (see
Ref. [30], for instance).

The trend of the critical behavior as a function of the
nematic range also deserves attention. The critical behavior for
X = 0.02 and 0.03 mixtures, pure 8OCB, and Y = 0.01–0.03
mixtures exhibit nonuniversal exponents between the 3D-XY

and tricritical values. For X = 0.05, the excess heat capacity
anomaly is well described with the 3D-XY critical exponent.
The amplitude ratio showing the symmetric feature is more
analogous to that of the nCB series [27,28] than that of the
nonpolar mixtures exhibiting nonuniversal tricritical ampli-
tude [29]. The relation between α and TNA/TIN is shown in
Fig. 10. The overall behavior approaching the 3D-XY value is in
remarkable agreement with the previous reports on the N-SmA

phase transitions [31], which are shown in the figure as inverted
triangles and open circles. We also mention here that this
crossover of α gives rise to characteristic behavior regarding
the magnitude of the first-order corrections-to-scaling terms
D±

1 . Their values clearly diminish as the decrease of α values

TABLE V. Results of fits to the heat capacity data for the Y = 0.01 mixture using Eq. (5). The minimum
reduced temperatures used in the fits for T > Tc and T < Tc are |t |+min = 7.4 × 10−5 and |t |−min = 5.9 × 10−6,
respectively. The units for A+ and Bc are JK−1 g−1. Quantities in brackets are held fixed at the given values.

|t |max α Tc A+ A−/A+ D+
1 D−

1 /D+
1 D+

2 D−
2 /D+

2 Bc χ 2

0.0005 0.153 338.663 0.1237 1.027 −0.267 1.22
0.0010 0.135 338.664 0.1576 1.038 −0.312 1.36
0.0030 0.151 338.665 0.1159 1.062 −0.239 1.56
0.0050 0.158 338.665 0.1041 1.069 −0.220 1.52
0.0070 0.162 338.665 0.0980 1.071 −0.210 1.47
0.0030 0.124 [338.663] 0.2147 1.003 1.654 1.76 −0.444 1.05
0.0030 0.064 [338.664] 0.7147 1.006 1.201 1.37 −1.067 1.06
0.0050 0.167 [338.663] 0.1035 1.011 0.807 3.06 −0.248 1.07
0.0050 0.109 [338.664] 0.2668 1.014 1.354 1.54 −0.502 1.09
0.0070 0.211 [338.663] 0.0526 1.023 −1.589 −0.30 −0.125 1.17
0.0070 0.147 [338.664] 0.1351 1.027 0.848 2.00 −0.294 1.18
0.0070 0.032 [338.663] 2.1828 0.997 1.075 1.50 −3.239 2.69 −2.720 0.95
0.0070 −0.021 [338.664] −5.3621 1.000 −0.753 1.35 2.629 2.06 4.626 0.97
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FIG. 10. Specific heat critical exponent α plotted against the
McMillan ratio. The α values displayed here have been obtained from
fits without D±

2 terms. Results reported in Ref. [31] for N -SmAm

transitions (inverted triangles) and for N -SmAd transitions (open
circles) are also shown.

as shown in Table II–VI. It is seen that D±
1 values for the

X = 0.01 mixture are much larger than those for the Y = 0.05
mixture. Although it is known that D±

1 values are nonuniversal,
we can speculate that this trend reflects the change in α. If α is
closer to 0.5, the distinction between D±

1 |t |θ−α and Bc becomes
difficult because they are almost constant terms. Contrary to
the tricritical case, the heat capacity anomaly for X = 0.05
with smaller α can exhibit the clear temperature dependence of
D±

1 |t |θ−α . Moreover, the magnitude of D±
1 terms for Y = 0.05

is in reasonable agreement with other liquid crystal samples
exhibiting the 3D-XY critical behavior [32].

In contrast to the crossover of the critical exponent, the
critical amplitude ratio shows no clear evidence that A−/A+
agrees with the 3D-XY value of 0.971 or the inverted value of
1.027. Experimentally, the well-described XY -like behaviors
were observed for the cases with a large nematic range of

TNA/TIN < 0.90 [31]. There, heat capacity anomalies above
and below Tc show clearly asymmetric character. Contrary
to those previous reports, the present data are symmetric
and inconsistent with both A−/A+ < 1 and A−/A+ > 1. A
plausible reason may be attributable to an interaction between
director fluctuations δn and the smectic order parameter [33].
This anisotropic effect gives rise to deviations from isotropic
XY behavior when the nematic range is small. In this sense
the TNA/TIN = 0.937 is still not sufficient to produce the
asymmetric heat capacity anomaly.

The fact that the nematic range is widened significantly by
inclusion of bent-shaped molecules is quite remarkable, and a
deeper discussion is warranted. In the present work, since the
mole fractions of the doped bent-shaped molecules are quite
small, they can be regarded as impurities. Apparently similar
widening of nematic phase was reported by Denolf et al. [34].
They explained the linear temperature dependence for the
N-SmA and I-N phase transitions by taking the coupling be-
tween the orientational order parameter S and the mole fraction
of the impurities. However, they always observed a downward
shift of transition temperatures in contrast to the present result,
where the I -N transition increases significantly with X and
Y . Such a difference seems natural because nonmesogenic
impurities have been used in their work, while in our case
the dopant molecules have the capability of forming liquid
crystal phases by themselves. It is of particular interest that the
inclusion of BC12 stabilizes the nematic phase and destabilizes
the Sm-Ad phase. It is possible that the more rigid core of
the BC12 dopant dampens director fluctuations. The question
arises if the bent-core nature of BC12 plays a role, or if a linear
rigid core molecule of similar character produces equal effects.
A linear-core version of BC12 may not stabilize the Sm-A
phase to the same extent but may perhaps stabilize the nematic
phase more, leading to a more or less alike nematic range. Such
possibilities will be interesting candidates for future studies.

TABLE VI. Results of fits to the heat capacity data for the Y = 0.05 mixture using Eq. (5). The
minimum reduced temperatures used in the fits for T > Tc and T < Tc are |t |+min = 2.6 × 10−6 and
|t |−min = 6.3 × 10−5, respectively. The units for A+ and Bc are JK−1 g−1. Quantities in brackets are
held fixed at the given values.

|t |max α Tc A+ A−/A+ D+
1 D−

1 /D+
1 D+

2 D−
2 /D+

2 Bc χ 2

0.0010 [−0.0066] 333.777 −5.196 1.002 5.036 1.03
0.0010 −0.019 333.777 −1.991 1.006 1.817 1.03
0.0030 [−0.0066] 333.783 −4.762 1.001 4.620 1.33
0.0030 0.138 333.777 0.080 0.974 −0.137 1.22
0.0050 0.129 333.778 0.091 0.979 −0.152 1.24
0.0070 0.115 333.779 0.113 0.985 −0.180 1.26
0.0010 [−0.0066] 333.775 −5.074 1.004 0.052 −0.42 4.926 1.00
0.0030 [−0.0066] [333.777] −6.369 1.003 −0.094 1.53 6.137 1.10
0.0030 [−0.0066] 333.775 −6.443 1.003 −0.093 1.63 6.208 1.09
0.0050 [−0.0066] [333.777] −6.005 1.002 −0.075 1.51 5.794 1.16
0.0050 0.004 [333.777] 9.037 0.999 0.043 1.55 −9.233 1.16
0.0050 [−0.0066] 333.775 −6.039 1.003 −0.073 1.60 5.827 1.16
0.0070 [−0.0066] [333.777] −5.767 1.002 −0.061 1.54 5.570 1.20
0.0070 0.073 [333.777] 0.262 0.974 0.209 3.01 −0.366 1.19
0.0070 [−0.0066] 333.776 −5.785 1.002 −0.061 1.58 5.587 1.20
0.0070 [−0.0066] [333.777] −6.522 1.003 −0.120 1.81 0.289 3.58 6.279 1.16
0.0070 [−0.0066] 333.775 −6.675 1.004 −0.121 1.97 0.273 4.42 6.424 1.14
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In summary, we have measured the heat capacity near
the N -SmAd phase transition in mixtures with a small
amount of the bent-shaped molecules. The critical expo-
nent analyses revealed that the tricritical exponent crosses
over toward the XY -like value with the increase of the
nematic temperature range. On the other hand, despite the
sharp change of the transition temperatures with the mix-
ing ratio, no feature of the Fisher renormalization of the
critical exponent has been seen. This result confirms the
expectation that the smallness of the concentration plays

a significant role in the observability of the renormalized
region.
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