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Nonlocal Pancharatnam phase in two-photon interferometry
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We propose a polarized intensity interferometry experiment, which measures the nonlocal Pancharatnam
phase acquired by a pair of Hanbury-Brown–Twiss photons. The setup involves two polarized thermal sources
illuminating two polarized detectors. Varying the relative polarization angle of the detectors introduces a two-
photon geometric phase. Local measurements at either detector do not reveal the effects of the phase, which is
an optical analog of the multiparticle Aharonov-Bohm effect. The geometric phase sheds light on the three-slit
experiment and suggests ways of tuning entanglement.
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The familiar two-slit experiment in quantum mechanics
describes the interference of a single particle with itself.
However, there are also quantum processes that describe
the interference of a pair of particles with itself. As shown
by Hanbury-Brown and Twiss (HBT) [1] about 50 years
ago, such interference is observed in the coincidence counts
of photons. Their original motivation was to measure the
diameters of stars, replacing Michelson interferometry by
intensity interferometry. Their work was initially met with
skepticism because the quantum mechanical interpretation of
the proposed experiment was unclear at the time. The resulting
controversy led to the birth of the new field of quantum optics.
Intensity interferometry is now routinely used in a variety of
fields, from nuclear physics [2] to condensed matter [3].

In the 1980s, Berry discovered [4] the geometric phase in
quantum mechanics, which has now been applied and studied
in various contexts [5]. It was soon realized that Berry’s
discovery had been anticipated by Pancharatnam’s work [6]
on the interference of polarized light, Pancharatnam’s work is
now widely recognized as an early precursor of the geometric
phase [7], with a perspective that is far more general [8] than
the context in which it was discovered by Berry.

Büttiker [9] noted in the context of electronic charge
transport that two-particle correlations can be sensitive to
a magnetic flux even if the single-particle observables are
flux insensitive. The effect of the flux is visible only in
current cross correlations and is a genuinely nonlocal and
multiparticle Aharonov-Bohm effect [10]. This effect has been
experimentally seen in intensity interferometry experiments
carried out using edge currents in quantum Hall systems [3];
the theory was further developed in [11,12] and the possibility
of controlled orbital entanglement and the connection to Bell
inequalities mentioned.

In this paper, we propose an experiment with polarized
light, which shows geometric phase effects only in the intensity
correlations G2 and not in the lower-order correlations G1. The
two-photon Pancharatnam phase effect is also nonlocal in the
precise sense that it cannot be seen by local measurements
at either detector. Coincidence detection of photons in two

*poonam@rri.res.in
†sam@rri.res.in
‡supurna@rri.res.in

detectors yields counts which are modulated by a phase that
has a geometric component as well as the expected dynamical
(or propagation) phase. Unlike in earlier studies [13,14], the
effects of the geometric phase are seen only in the cross
correlation counts of two detectors. Neither the count rate
nor self-correlation of the individual detectors shows any such
geometric phase effects. The phase is given by half the solid
angle enclosed on the Poincaré sphere by the total circuit of a
pair of HBT photons and as expected, is achromatic.

The experimental setup is described below and then a
theoretical analysis is given. Finally we conclude with a
discussion and a comparison with previous work.

The experiment consists of having two thermal sources S1

and S2 illuminate two detectors D3 and D4 (Fig. 1). This setup
is very similar to the HBT experiment [1]. The only difference
is in the use of analyzers (shown in red online), which select
a particular state of polarization. The source S1 is covered
by an analyzer PR , which permits only right-hand circular
light to pass through it, while the source S2 is covered by
an analyzer PL, which permits only left-hand circular light to
pass through. The light is incident on detectors D3 and D4 after
passing through polaroids P3 and P4 , respectively, that permit
only linearly polarized light to pass through (linear analyzers).
The angle ϕ34 between the axes of P3 and P4 and the detector
separation dD can be continuously varied in the experiment.
The measured quantity is the coincidence count C of photons
received at detectors D3 and D4,

C = G2 = 〈N3N4〉
〈N3〉〈N4〉 , (1)

where N3 and N4 are the photon numbers detected at D3

and D4 per unit time (per unit bandwidth). As in the HBT
interferometer, we would expect the coincidence counts to
vary with the propagation phases and so the counts would
depend on the detector separation dD and the wavelength λ of
the light. The additional effect that is present in the polarized
version is that we expect the coincidence counts to also depend
on ϕ34 and to be modulated by a geometric phase of half the
solid angle on the Poincaré sphere shown in Fig. 2.

The geometric phase is achromatic, unlike the propagation
phases mentioned above. Note that the path traversed on the
Poincaré sphere is not traced by a single photon, but by a pair
of HBT photons. Thus the experiment explores an another
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FIG. 1. (Color online) Schematic diagram of the proposed exper-
iment: S1 and S2 are thermal sources, covered by circular analyzers
which pass only right and left circular light, respectively. The two
detectors D3 and D4 receive only linear polarizations. The angle ϕ34

between the axes of the linear polarizers can be continuously varied.
The dashed and solid lines represent photons from the two sources S1

and S2, respectively. The separation between the detectors is dD and
that between the sources is dS .

avatar of the geometric phase in the context of intensity
interferometry.

We now calculate the expected coincidence counts for the
detectors D3 and D4 and show that these counts depend on
the geometric phase. For ease of calculation we suppose that
we are dealing with a single-frequency, i.e., a quasimonochro-
matic beam. In fact the detectors will have a finite acceptance
bandwidth, which has to be incorporated in a more realistic
calculation. The principle of the effect comes across better in
the present idealized situation.

We write aα
1 and aα

2 for the destruction operators of the
photon modes at the sources S1 and S2 where α runs over the
two polarization states. The modes just after the analyzers PR

and PL are represented by projections aα
R = P

αβ

R a
β

1 and aα
L =

P
αβ

L a
β

2 where a sum over repeated Greek indices is understood
and the projection matrices PR and PL onto the right and
left circular states represent the action of the analyzers. The
modes at the detectors are characterized by the destruction
operators aα

3 and aα
4 . We suppose that the separation l between

the sources and the detectors is much larger than the separation
dS between the sources and the separation dD between the
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FIG. 2. (Color online) The path on the Poincaré sphere that
determines the geometric phase. The angle ϕ34 between the linear
polaroids determines the width of the lune on the Poincaré sphere
and the geometric phase.

detectors i.e., l � dS,dD . When light is emitted by a source
and received by a detector, it suffers propagation phases and
decrease of its amplitude inversely with distance. These effects
are captured in the functions uij = 1

l
exp{i[k(|�ri − �rj |) − ωt]},

where ω is the frequency of the light, k is the wave vector,
and �ri and �rj the locations of the detector and source.
With this notation, we express aα

b (where b = 3,4) as aα
b =

P
αβ

b [ P
βγ

L a
γ

2 ub2 + P
βγ

R a
γ

1 ub1 ] and its Hermitian conjugate
a
†α
b as a

†α
b = [ ūb2 a

†γ
2 P

γβ

L + ūb1 a
†γ
1 P

γβ

R ]P βα

b where the
overbar stands for complex conjugation and we use the fact
that the 2 × 2 Hermitian projection matrices P satisfy P 2 = P

and P̄ αβ = P βα .
The quantities of interest1 are 〈N3〉,〈N4〉, being the photon

counts per unit time (per unit bandwidth) at the two detec-
tors (D3 and D4) and 〈 : N3N4 : 〉, the coincidence counts,
where the : : stands for normal ordering which has to be
applied to the number operator product in the numerator of
Eq. (1). Nb is given by Nb = a

†α
b aα

b = [ūb2 a
†α
2 (PLPb)αβ +

ūb1 a
†α
1 (PRPb)αβ](P βγ

L a
γ

2 ub2 + P
βγ

R a
γ

1 ub1). We find

〈Nb 〉 = ūb1 ub1 (PRPbPR)αβ
〈
a
†α
1 a

β

1

〉
+ ūb2 ub2 (PLPbPL)αβ

〈
a
†α
2 a

β

2

〉
. (2)

From the thermal nature of the sources, 〈 a
†α
1 a

β

1 〉 = 〈 a
†α
2 a

β

2 〉 =
δαβ nB where nB is the Bose function [exp(βh̄ω) − 1]−1

and β the inverse temperature. And we arrive at 〈N3〉 =
〈N4〉 = nB/l2. The computation of 〈 : N3N4 : 〉 is slightly more
involved but straightforward. The product N3N4 is a product
of four brackets each of which has two terms. When the four
brackets are expanded, there are sixteen terms, of which ten
vanish. The six nonzero terms combine to give

〈 : N3N4 : 〉 = n2
B

(
3

2 l4
+ ū32 u31 ū41 u42 Tr(PLP3PRP4PL)

+ ū31 u32 ū42 u41 Tr (PRP3PLP4PR)

)
. (3)

Only the second and third terms in Eq. (3) contain the propa-
gation and geometric phases. The sequence of projections can
be viewed as a series of closed-loop quantum collapses [7,8]
given by 〈R|3〉〈3|L〉〈L|4〉〈4|R〉,

Tr (PRP3PLP4PR) = 1

4
exp

(
i
�

2

)
, (4)

where � is the solid angle subtended by the geodesic path
|R〉 → |3〉 → |L〉 → |4〉 → |R〉 at the center of the Poincaré
sphere. Apart from the phase, the projections also result in an
amplitude factor of 1/4 [6] since projections are nonunitary
operations leading to a loss in intensity. The final theoretical
expression for C in the limit l � dS,dD is

C = 3

2
+ 1

2
cos

(
�dD · (�k2 − �k1) + �

2

)
, (5)

1For any general operator Ô, 〈Ô〉 = Tr(	 Ô) where 	 is the
normalized thermal density matrix 	 = exp(−βH )/Z with Z =
Tr[exp(−βH )] and H = (a†a + 1/2)ω.
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where �ki = kr̂i is the wave vector of light seen in the ith
detector. [The propagation phases in Eq. (5) can also be
written in an equivalent form with the sources and detectors
exchanged.] It is also easily seen that the self-correlation
〈 : N3N3 : 〉 (〈 : N4N4 : 〉) can be obtained by replacing 4 by
3 (3 by 4) in Eq. (3) above. In this case, the sequence of
projections Tr (PRP3PLP3PR) [Tr (PRP4PLP4PR)] subtends
a zero solid angle and the geometric contribution to the
phase vanishes. Thus neither the photon counts 〈N3〉,〈N4〉
in individual detectors nor the self-correlations 〈 : N3N3 : 〉,
〈 : N4N4 : 〉 reveal the geometric phase. This supports our
claim that the effect described here is present only in the cross
correlations and not in the self-correlations.

C depends on the experimentally tunable parameters dD and
ϕ34. The geometric part is achromatic and depends only on ϕ34.
The propagation part in the phase carries the dependence on
dD as well as on the wavelength. By changing the angle ϕ34

between the axes of the two polaroids, we can conveniently
modulate the geometric component �. If the propagation and
geometric phases are set to zero, we find that the correlation C
takes the value 2, just as in the original HBT interferometry.

We have proposed a simple generalization of the HBT
experiment which uses the vector nature of light to produce a
geometric phase. The only difference between the proposed
experiment and the HBT experiment is the presence of
polarizers at the sources and detectors. These polarizers cause
a geometric phase to appear in the coincidence counts of two
detectors which receive linearly polarized light. Neither the
count rates nor the self-correlations of individual detectors
show any geometric phase effects. These appear solely in
the cross correlations in the count rates of the detectors.
The appearance of the geometric phase cannot be attributed
or localized to any single segment joining a source (S1,S2)
to a detector (D3,D4). It appears only when one considers
the two-photon path (Fig. 2) on the Poincaré sphere in its
entirety. Our experiment brings out a result of a conceptual
nature, which may not have been guessed without our present
understanding of the Pancharatnam phase. The experiment
proposed here would be a good demonstration of a purely
multiparticle and nonlocal geometric phase in optics. We
hope to interest experimentalists in this endeavor. Apart from
verifying the theoretical expectation, our proposed experiment
suggests further lines of thought concerning multiparticle and
nonlocal effects which may be stimulating to research in this
area. We mention two of these, the first an application of our
ideas to generating controlled entanglement and the second of
a more conceptual nature regarding the role of probabilities in
quantum mechanics.

The experimental setup described above can be used to
make a source of photon pairs with a controlled degree
of entanglement. Like many other elementary particles, the
photon has spin (polarization) as well as orbital (spacetime)
degrees of freedom. Our idea is to use the polarization degree
of freedom to control the orbital entanglement of photons.
Let us replace the two thermal sources of Fig. 1 by a single
two-photon source producing a pair of oppositely circularly
polarized photons. Each photon is then passed through an
interferometric delay line which consists of a short and a long
arm with time delays tS and tL. The relative amplitudes and
phases of the two paths can be chosen to generate any state in

the two-dimensional Hilbert space spanned by |S〉 and |L〉. By
such means we can arrange for the incident state at PR to be in
a spin state of right circular polarization and in an orbital state
|φ〉1 = α|S〉1 + β|L〉1 and, similarly, the incident state at PL to
be in a spin state of left circular polarization and in an orbital
state |ψ〉2 = α′|S〉2 + β ′|L〉2, where α, β, etc., are complex
numbers. The input state is therefore a direct product of states
at PR and PL: |φ〉1 ⊗ |ψ〉2. By combining the amplitudes for
the two photons to arrive at the detectors via the paths 1–3,2–4
and 1–4,2–3 (direct and exchange) we find that the state at the
output is of the form |φ〉3 ⊗ |ψ〉4 + exp(i�/2)|ψ〉3 ⊗ |φ〉4,
where the geometric phase factor exp(i�/2) is the relative
phase between the direct and exchange processes. This final
two-photon state is entangled as it cannot in general be written
as a direct product |�〉3 ⊗ |〉4 of photon states at 3 and 4. The
entanglement is generated by particle exchange effects rather
than interactions. The degree of entanglement can be tuned
using the polaroid setting ϕ34. The degree of entanglement
can be quantified either using Bell’s inequality or by the
von Neumann entropy of the reduced density matrix after
tracing over one of the subsystems (3 or 4). A straightforward
calculation of the von Neumann entropy shows that it does
depend on the geometric phase. Since the geometric phase
is achromatic, we can apply the same phase over all the
frequencies in the band of interest by tuning ϕ34 and generate
entangled photon pairs with a degree of precision and control.
This setup can be used as a source of entangled photon pairs
for other experiments probing quantum entanglement.

Quantum mechanics is often introduced by a discussion of
the two-slit experiment in which an electron is incident on
an opaque barrier with two slits and then detected when it
falls on a screen. The surprise of the quantum theory is that
the outcome of the two-slit experiment is not determined by
the outcome of one-slit experiments in which one or the other
of the slits is blocked. This is in sharp contrast to classical
random processes like Brownian motion. If one considers the
passage of a Brownian particle through slits A and B, one finds
that2

PAB = PA + PB,

where PAB is the probability of detecting the particle when
both slits are open and PA and PB are the corresponding
detection probabilities in one-slit experiments. Thus classical
probabilities are one-slit separable, but quantum probabilities
are not: the equality above is not satisfied in the two-slit
quantum experiment.

However, if one considers three slits A,B,C, one finds
that, in quantum mechanics, the outcome of the three-slit
experiment is determined by the outcomes of the one- and
two-slit experiments. Mathematically,

PABC = PAB + PBC + PCA − PA − PB − PC,

which follows easily from writing PABC = |ψA + ψB + ψC |2
where ψA,ψB,ψC are the amplitudes for passage through the
slits. Thus quantum mechanics is two-slit separable [15]. This

2Throughout this discussion we neglect single-particle trajectories
that recross the barrier and wind around multiple slits.
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is why we do not find a discussion of the three-slit experiment
in elementary quantum mechanics books: it brings in nothing
new.

The situation changes when one considers multiparticle
and nonlocal processes of the kind exemplified by our
experiment of Fig. 1. Consider a three-slit experiment in
which three incoherent beams of light fall upon three slits
A,B,C which are covered by analyzers PA,PB,PC each of
which allows a single state on the Poincaré sphere to pass.
The light from the analyzers is then allowed to fall on three
unpolarized detectors labeled 4,5,6. By considerations similar
to our analysis of the experiment of Fig. 1, we find that the
number correlations 〈N4N5N6 〉 contain terms involving the
geometric phase (half the solid angle subtended by the three
polarization states A,B,C of the analyzers). Such an effect
is not present in any of the two-slit or one-slit experiments,
since two (or fewer) points on the Poincaré sphere do not
enclose a solid angle. The effect is a genuinely three-slit
effect, not decomposable in terms of two- and one-slit effects.
Thus quantum theory contains effects which are not two-slit
separable because of multiparticle entanglement. Our three-slit
experiment involving the geometric phase brings out this point
forcefully.

The question of whether a single particle crossing a
barrier with slits obeys two-slit separability is ultimately an
experimental one. The theoretical possibility of violations
of two-slit separability in such experiments was noted by
Sorkin [15], who proposed that there may be theories going
beyond quantum mechanics which admit such effects. There
have been attempts [16] to search for such effects in a
three-slit experiment using photons. Since these experiments
are null experiments, one has to be careful to rule out all
possible three-slit effects that are present due to multiparticle
entanglement. Geometric phase effects which involve three
photons are an example of such three-slit effects. The ex-
periment we propose here in Fig. 1 is just the simplest of
a class of phenomena involving multiparticle entanglement,
nonlocality, and the geometric phase. We hope to interest
the quantum optics community in pursuing these ideas
further.

It is a pleasure to thank Urbasi Sinha for discussions
related to the three-slit experiment, Anders Kastberg for
discussions on a possible experimental realization, and
Hema Ramachandran and R. Srikanth for discussions on
entanglement.
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