organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Decylphenyl 4-benzyloxy-3-methylbenzoate

H. K. Arun Kashi,^a B. S. Palakshamurthy,^a M. VinduVahini,^b H. T. Srinivasa^c and H. C. Devarajegowda^a*

^aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, ^bDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, and ^cRaman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, Karnataka, India

Correspondence e-mail: devarajegowda@yahoo.com

Received 24 May 2010; accepted 20 July 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.183; data-to-parameter ratio = 21.9.

In the title compound, C₃₁H₃₈O₃, the central benzene ring makes dihedral angles of 66.06 (9) and 65.21 (8) $^{\circ}$, respectively, with the benzyl and 4-decylphenyl rings.

Related literature

For general background to benzyloxybenzoate, see: Laschat (2009); Meter & Klanderman (1973); Young et al. (1974); Tinn et al. (1982). For the synthesis, see: Sadashiva & Subba (1975); Sadashiva (1979); Hari et al. (2009). For related structures, see: Blake et al. (1996); Chin & Goodby (1986).

Experimental

Crystal data C31H38O3

 $M_r = 458.61$

Triclinic, $P\overline{1}$	V = 1338.3 (4) Å ³
a = 9.3684 (16) Å	Z = 2
b = 11.168 (2) Å	Mo $K\alpha$ radiation
c = 15.204 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\alpha = 68.588 \ (11)^{\circ}$	T = 295 K
$\beta = 87.274 \ (11)^{\circ}$	$0.22\times0.15\times0.12$ mm
$\gamma = 65.578 \ (10)^{\circ}$	
Data collection	
Bruker SMART CCD area-detector	23986 measured reflections
diffractometer	6737 independent reflections

diffractometer Absorption correction: ψ scan (SADABS: Sheldrick, 2004) $T_{\min} = 0.987, \ T_{\max} = 0.992$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	6 restraints
$wR(F^2) = 0.183$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
6737 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
308 parameters	

3840 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.034$

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank Dr Gunasekaran and Dr Karthik, Department of Crystallography and Bio-Chemistry, University of Madras Guindy Campus, Chennai, India, for their help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2084).

References

- Blake, A. J., Fallis, I. A., Parsons, S., Schröder, M. & Bruce, D. W. (1996). Acta Cryst. C52, 194-197.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Chin, E. & Goodby, J. W. (1986). Mol. Cryst. Lig. Cryst. 141, 311-320.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Hari, K., Srinivasa, H. T. & Sandeep, K. (2009). Beilstein J. Org. Chem. 5, 1-5. Laschat, S. (2009). Beilstein J. Org. Chem. 5, 48.

- Meter, J. P. V. & Klanderman, B. H. (1973). Mol. Cryst. Liq. Cryst. 22, 285-299.
- Sadashiva, B. K. (1979). Mol. Cryst. Liq. Cryst. 53, 253-261. Sadashiva, B. K. & Subba, G. S. R. (1975). Curr. Sci. 44, 222-224.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tinn, N. H., Hardouin, F. & Destrade, C. (1982). J. Phys. (Paris), 43, 1127-1131.
- Young, W. R. & Green, D. C. (1974). Mol. Cryst. Liq. Cryst. 26, 7-9.

Acta Cryst. (2010). E66, o2126 [doi:10.1107/S1600536810028965]

4-Decylphenyl 4-benzyloxy-3-methylbenzoate

H. K. A. Kashi, B. S. Palakshamurthy, M. VinduVahini, H. T. Srinivasa and H. C. Devarajegowda

Comment

Liquid crystals are unique functional soft materials that possess both order and mobility at the molecular and supramolecular level. One of the major issues in liquid crystal research today is still the poor knowledge of structure-property relationships and thus the synthesis of whole series of structurally related compounds is required in order to allow the design of liquid crystalline and other physical properties (Laschat, 2009) Several benzyloxy derivative liquid crystals were reported with terminal alkyl and alkoxy chains (Meter *et al.*, 1973), and these compounds were shown to be of nematic mesophases (Young *et al.*, 1974; Tinn *et al.*, 1982). Terminal carbonitrile group containing liquid crystals were also synthesized and studied for their positive dielectric anisotropy (Sadashiva *et al.*, 1975; Sadashiva, 1979). In our study a novel rod shaped liquid crystal having a decyloxy chain has been synthesized and characterized using single-crystal X-ray diffraction study. 4-decylphenyl 4-(benzyloxy)-3- methylbenzoate is the study compound showing monotropic nematic mesophase at 305 K.

The structure of decylphenyl 4-(benzyloxy) -3-methylbenzoate contains one independent molecule in the asymmetric unit. The ring systems and alkyl chain are non coplanar with each other. The dihedral angle between the aromatic rings A–B, B–C and A–C are 66.06 (9)°, 65.21 (8)° and 12.89 (10)° respectively. The alkyl chain and ring C together makes a dihedral angle of 10.73 (12)°. The packing of the molecules is stabilized by C7–H7B…O2 hydrogen bond and Van der Waal's forces(Figure 2).

Experimental

A mixture of 3-methyl-4-benzyloxybenzoic acid(0.41 mol) and 4-decylphenol(0.41 mol), a catalytic quantity of 4-(*N*,*N*-Dimethylamino) pyridine (DMAP) and dry dichloromethane(10 ml) were stirred for 10 min. To this *N*, *N'*dicyclohexylcarbodiimide(DCC,0.49 mol) was added and the mixture stirred overnight at room temperature. The precipitated *N*,*N'*-dicyclohexylurea was filtered off; the filterate was diluted with dichloromethane(30 ml) and washed successively with 5% acetic acid(10 ml *x* 2), 5% ice-cold sodium hydroxide solution(10 ml *x* 2) and water(20 ml *x* 3), then dried over anhydrous sodium sulfate.Removal of solvent gave a product which was chromatographed on silica gel using dichloromethane as eluent. Removal of solvent from the eluate afforded a white product which was recrystallized with analytical grade methanol. Yield was about 90%. m.p. 339 K. Spectral data IR (KBr) cm⁻¹: 2951 & 2891(CH₂ aliphatic), 1728(C=O ester),1602(aromatic C=C), 1469(CH aromatic). ¹H NMR(CDCl₃): 8.01(d, 2H, Ar—H), 7.43(m, 5H, Ar—H), 7.33(d, 1H, Ar—H),7.20(d, 2H, Ar—H), 7.10(d, 2H, Ar—H), 5.20(s, 2H, Ar—CH₂—O–), 2.56(t, 2H, Ar—CH₂–), 2.30(s, 3H, Ar—CH₃), 1.56(m,2*H*, Ar—CH₂—CH₂–), 1.30(m, 14H, aliphatic-CH₂–),0.9 (t, 3H, –CH₃). Elemental analysis: Molecular Weight, 458.63 for C₃₁ H₃₈O₃requires C 81.18%, H 8.35%. Found, C 80.71% H 8.50%.

Refinement

All H atoms were positioned at calculated positions with C—H = 0.93Å for aromatic H, 0.97Å for methylene H and 0.96Å for methyl H and refined using a riding model with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $1.2U_{eq}(C)$ for other.

Figures

Crystal data

Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Packing of the molecules with dotted line weak intermolecular hydrogen bond.

4-Decylphenyl 4-benzyloxy-3-methylbenzoate

$C_{31}H_{38}O_3$	Z = 2
$M_r = 458.61$	F(000) = 496
Triclinic, PT	$D_{\rm x} = 1.138 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Melting point: 339 K
a = 9.3684 (16) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 11.168 (2) Å	Cell parameters from 6737 reflections
c = 15.204 (3) Å	$\theta = 1.5 - 28.5^{\circ}$
$\alpha = 68.588 \ (11)^{\circ}$	$\mu = 0.07 \text{ mm}^{-1}$
$\beta = 87.274 \ (11)^{\circ}$	T = 295 K
$\gamma = 65.578 \ (10)^{\circ}$	Plate, colourless
$V = 1338.3 (4) \text{ Å}^3$	$0.22\times0.15\times0.12~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	6737 independent reflections
Radiation source: fine-focus sealed tube	3840 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.034$
ω and ϕ scans	$\theta_{\text{max}} = 28.5^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
Absorption correction: ψ scan (<i>SADABS</i> ; Sheldrick, 2004)	$h = -12 \rightarrow 12$
$T_{\min} = 0.987, T_{\max} = 0.992$	$k = -14 \rightarrow 14$
23986 measured reflections	$l = -19 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.183$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0834P)^{2} + 0.1711P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$

6737 reflections	$\Delta \rho_{\text{max}} = 0.37 \text{ e } \text{\AA}^{-3}$
308 parameters	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
6 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.009 (2)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	1.29391 (13)	0.71764 (13)	0.39798 (8)	0.0596 (3)
O2	0.76009 (16)	0.85364 (16)	0.66658 (10)	0.0782 (4)
O3	0.66987 (13)	0.76081 (12)	0.58579 (8)	0.0587 (3)
C1	1.7436 (2)	0.6890 (3)	0.21401 (16)	0.0773 (6)
H1	1.8161	0.6725	0.1710	0.093*
C2	1.7328 (2)	0.5776 (2)	0.28609 (18)	0.0808 (6)
H2	1.7987	0.4849	0.2926	0.097*
C3	1.6246 (2)	0.6016 (2)	0.34940 (15)	0.0734 (5)
Н3	1.6178	0.5249	0.3983	0.088*
C4	1.52641 (19)	0.73813 (19)	0.34098 (13)	0.0563 (4)
C5	1.5386 (2)	0.85005 (19)	0.26763 (14)	0.0654 (5)
H5	1.4728	0.9431	0.2605	0.078*
C6	1.6476 (2)	0.8246 (2)	0.20518 (15)	0.0770 (6)
H6	1.6560	0.9006	0.1565	0.092*
C8	1.16997 (18)	0.74083 (16)	0.45050 (11)	0.0493 (4)
C7	1.4092 (2)	0.7663 (2)	0.40939 (14)	0.0703 (5)
H7A	1.4619	0.7163	0.4741	0.084*
H7B	1.3582	0.8672	0.3967	0.084*
C9	1.05899 (18)	0.69493 (15)	0.43409 (11)	0.0478 (4)
C10	0.93050 (18)	0.71552 (16)	0.48486 (11)	0.0490 (4)
H10	0.8552	0.6864	0.4746	0.059*
C11	0.91080 (18)	0.77889 (16)	0.55122 (11)	0.0493 (4)
C12	1.0225 (2)	0.82287 (19)	0.56523 (12)	0.0578 (4)
H12	1.0102	0.8657	0.6090	0.069*
C13	1.1519 (2)	0.80452 (19)	0.51555 (12)	0.0589 (4)
H13	1.2262	0.8347	0.5257	0.071*

C14	1.0830 (2)	0.6250 (2)	0.36370 (14)	0.0680 (5)
H14A	1.1784	0.6208	0.3362	0.102*
H14B	0.9950	0.6789	0.3144	0.102*
H14C	1.0908	0.5304	0.3955	0.102*
C15	0.77674 (19)	0.80247 (17)	0.60752 (12)	0.0538 (4)
C16	0.53999 (18)	0.77559 (18)	0.63921 (11)	0.0512 (4)
C17	0.5292 (2)	0.65529 (18)	0.70043 (13)	0.0611 (5)
H17	0.6060	0.5660	0.7067	0.073*
C18	0.4030 (2)	0.66829 (18)	0.75268 (13)	0.0604 (4)
H18	0.3958	0.5864	0.7943	0.072*
C19	0.28666 (19)	0.79952 (17)	0.74503 (11)	0.0501 (4)
C20	0.30000 (19)	0.91846 (17)	0.68052 (12)	0.0561 (4)
H20	0.2225	1.0082	0.6727	0.067*
C21	0.42535 (19)	0.90750 (18)	0.62747 (12)	0.0553 (4)
H21	0.4318	0.9888	0.5843	0.066*
C22	0.1539 (2)	0.80822 (18)	0.80631 (13)	0.0608 (4)
H22A	0.0896	0.7711	0.7865	0.073*
H22B	0.1997	0.7462	0.8716	0.073*
C23	0.0474 (2)	0.95323 (19)	0.80478 (13)	0.0612 (5)
H23A	-0.0087	1.0130	0.7413	0.073*
H23B	0.1116	0.9952	0.8184	0.073*
C24	-0.0723 (2)	0.9519 (2)	0.87570 (13)	0.0650 (5)
H24A	-0.1399	0.9143	0.8601	0.078*
H24B	-0.0164	0.8883	0.9388	0.078*
C25	-0.1748 (2)	1.0969 (2)	0.87793 (13)	0.0634 (5)
H25A	-0.2347	1.1594	0.8157	0.076*
H25B	-0.1073	1.1365	0.8908	0.076*
C26	-0.2886 (2)	1.0926 (2)	0.95230 (13)	0.0632 (5)
H26A	-0.3508	1.0468	0.9419	0.076*
H26B	-0.2280	1.0347	1.0147	0.076*
C27	-0.4000 (2)	1.23739 (19)	0.95192 (13)	0.0639 (5)
H27A	-0.3383	1.2817	0.9654	0.077*
H27B	-0.4578	1.2970	0.8889	0.077*
C28	-0.5169 (2)	1.23037 (19)	1.02399 (13)	0.0641 (5)
H28A	-0.5745	1.1819	1.0119	0.077*
H28B	-0.4582	1.1731	1.0870	0.077*
C29	-0.6347 (2)	1.3720 (2)	1.02406 (14)	0.0687 (5)
H29A	-0.5781	1.4193	1.0389	0.082*
H29B	-0.6917	1.4310	0.9607	0.082*
C30	-0.7516 (2)	1.3592 (2)	1.09440 (16)	0.0803 (6)
H30A	-0.6939	1.2939	1.1567	0.096*
H30B	-0.8133	1.3183	1.0764	0.096*
C31	-0.8634 (3)	1.4982 (3)	1.1015 (2)	0.1154 (9)
H31A	-0.9338	1.4814	1.1475	0.173*
H31B	-0.9235	1.5629	1.0406	0.173*
H31C	-0.8039	1 5386	1 1210	0.173*
	0.0007			·····

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0546 (7)	0.0750 (8)	0.0666 (7)	-0.0390 (6)	0.0209 (6)	-0.0339 (6)
02	0.0796 (9)	0.1107 (11)	0.0799 (9)	-0.0556 (8)	0.0335 (7)	-0.0593 (9)
03	0.0524 (7)	0.0696 (7)	0.0669 (7)	-0.0305 (6)	0.0233 (6)	-0.0365 (6)
C1	0.0557 (11)	0.0991 (17)	0.0911 (15)	-0.0335 (11)	0.0254 (10)	-0.0522 (14)
C2	0.0535 (11)	0.0668 (13)	0.1176 (18)	-0.0144 (10)	0.0078 (12)	-0.0426 (13)
C3	0.0661 (12)	0.0579 (11)	0.0869 (14)	-0.0293 (10)	0.0077 (11)	-0.0141 (10)
C4	0.0497 (9)	0.0661 (11)	0.0632 (10)	-0.0336 (8)	0.0118 (8)	-0.0257 (9)
C5	0.0630 (11)	0.0566 (10)	0.0798 (12)	-0.0285 (9)	0.0197 (10)	-0.0272 (10)
C6	0.0774 (13)	0.0784 (14)	0.0781 (13)	-0.0423 (11)	0.0282 (11)	-0.0246 (11)
C8	0.0475 (8)	0.0491 (9)	0.0492 (9)	-0.0228 (7)	0.0098 (7)	-0.0143 (7)
C7	0.0669 (11)	0.0982 (15)	0.0767 (12)	-0.0548 (11)	0.0256 (10)	-0.0456 (11)
C9	0.0482 (8)	0.0435 (8)	0.0505 (9)	-0.0206 (7)	0.0084 (7)	-0.0156 (7)
C10	0.0464 (8)	0.0461 (8)	0.0543 (9)	-0.0219 (7)	0.0086 (7)	-0.0167 (7)
C11	0.0470 (8)	0.0468 (9)	0.0483 (9)	-0.0183 (7)	0.0071 (7)	-0.0138 (7)
C12	0.0614 (10)	0.0672 (11)	0.0534 (9)	-0.0313 (9)	0.0119 (8)	-0.0283 (8)
C13	0.0579 (10)	0.0720 (11)	0.0612 (10)	-0.0376 (9)	0.0123 (8)	-0.0297 (9)
C14	0.0688 (11)	0.0793 (12)	0.0822 (13)	-0.0439 (10)	0.0274 (10)	-0.0466 (11)
C15	0.0533 (9)	0.0544 (10)	0.0533 (9)	-0.0239 (8)	0.0114 (8)	-0.0193 (8)
C16	0.0487 (9)	0.0589 (10)	0.0524 (9)	-0.0245 (8)	0.0147 (7)	-0.0272 (8)
C17	0.0562 (10)	0.0496 (10)	0.0747 (12)	-0.0189 (8)	0.0180 (9)	-0.0260 (9)
C18	0.0635 (11)	0.0488 (9)	0.0668 (11)	-0.0254 (8)	0.0186 (9)	-0.0191 (8)
C19	0.0526 (9)	0.0529 (9)	0.0463 (8)	-0.0235 (8)	0.0113 (7)	-0.0200 (7)
C20	0.0555 (10)	0.0482 (9)	0.0569 (10)	-0.0177 (8)	0.0141 (8)	-0.0176 (8)
C21	0.0565 (10)	0.0521 (9)	0.0539 (9)	-0.0239 (8)	0.0157 (8)	-0.0165 (8)
C22	0.0629 (10)	0.0609 (10)	0.0570 (10)	-0.0274 (9)	0.0208 (8)	-0.0212 (8)
C23	0.0589 (10)	0.0642 (11)	0.0607 (10)	-0.0265 (9)	0.0209 (8)	-0.0252 (9)
C24	0.0634 (11)	0.0686 (12)	0.0645 (11)	-0.0301 (9)	0.0266 (9)	-0.0268 (9)
C25	0.0613 (10)	0.0698 (12)	0.0623 (10)	-0.0303 (9)	0.0229 (9)	-0.0275 (9)
C26	0.0605 (10)	0.0658 (11)	0.0616 (10)	-0.0261 (9)	0.0214 (9)	-0.0249 (9)
C27	0.0634 (11)	0.0632 (11)	0.0679 (11)	-0.0285 (9)	0.0213 (9)	-0.0275 (9)
C28	0.0654 (11)	0.0616 (11)	0.0658 (11)	-0.0271 (9)	0.0217 (9)	-0.0261 (9)
C29	0.0682 (12)	0.0637 (11)	0.0731 (12)	-0.0270 (9)	0.0228 (10)	-0.0279 (10)
C30	0.0715 (12)	0.0821 (14)	0.0890 (14)	-0.0307 (11)	0.0319 (11)	-0.0393 (12)
C31	0.0906 (17)	0.108 (2)	0.138 (2)	-0.0207 (15)	0.0451 (16)	-0.0656 (18)
Geometric	parameters (Å, °)					

O1—C8	1.3664 (18)	C18—C19	1.384 (2)
O1—C7	1.436 (2)	C18—H18	0.9300
O2—C15	1.2021 (19)	C19—C20	1.384 (2)
O3—C15	1.363 (2)	C19—C22	1.510(2)
O3—C16	1.4161 (18)	C20—C21	1.381 (2)
C1—C6	1.362 (3)	C20—H20	0.9300
C1—C2	1.363 (3)	C21—H21	0.9300
C1—H1	0.9300	C22—C23	1.502 (2)

C2—C3	1.377 (3)	C22—H22A	0.9700
С2—Н2	0.9300	C22—H22B	0.9700
C3—C4	1.377 (3)	C23—C24	1.519 (2)
С3—Н3	0.9300	С23—Н23А	0.9700
C4—C5	1.381 (2)	С23—Н23В	0.9700
C4—C7	1.494 (2)	C24—C25	1.515 (2)
C5—C6	1.375 (3)	C24—H24A	0.9700
С5—Н5	0.9300	C24—H24B	0.9700
С6—Н6	0.9300	C25—C26	1.518 (2)
C8—C13	1.382 (2)	C25—H25A	0.9700
C8—C9	1.402 (2)	C25—H25B	0.9700
С7—Н7А	0.9700	C26—C27	1.517 (2)
С7—Н7В	0.9700	C26—H26A	0.9700
C9—C10	1.382 (2)	С26—Н26В	0.9700
C9—C14	1.500 (2)	C27—C28	1.517 (2)
C10—C11	1.396 (2)	С27—Н27А	0.9700
C10—H10	0.9300	С27—Н27В	0.9700
C11—C12	1.380 (2)	C28—C29	1.509 (2)
C11—C15	1.472 (2)	C28—H28A	0.9700
C12—C13	1.380 (2)	C28—H28B	0.9700
C12—H12	0.9300	C29—C30	1.507 (2)
С13—Н13	0.9300	С29—Н29А	0.9700
C14—H14A	0.9600	С29—Н29В	0.9700
C14—H14B	0.9600	C30—C31	1.512 (3)
C14—H14C	0.9600	C30—H30A	0.9700
C16—C17	1.368 (2)	С30—Н30В	0.9700
C16—C21	1.369 (2)	C31—H31A	0.9600
C17—C18	1.380 (2)	C31—H31B	0.9600
С17—Н17	0.9300	С31—Н31С	0.9600
C8—O1—C7	117.75 (13)	C21—C20—H20	119.1
C15—O3—C16	116.52 (12)	С19—С20—Н20	119.1
C6—C1—C2	119.72 (19)	C16—C21—C20	119.21 (15)
С6—С1—Н1	120.1	C16—C21—H21	120.4
C2—C1—H1	120.1	C20—C21—H21	120.4
C1—C2—C3	120.29 (19)	C23—C22—C19	116.47 (14)
C1—C2—H2	119.9	C23—C22—H22A	108.2
С3—С2—Н2	119.9	C19—C22—H22A	108.2
C2—C3—C4	120.56 (18)	С23—С22—Н22В	108.2
С2—С3—Н3	119.7	С19—С22—Н22В	108.2
С4—С3—Н3	119.7	H22A—C22—H22B	107.3
C3—C4—C5	118.56 (16)	C22—C23—C24	113.59 (14)
C3—C4—C7	121.33 (17)	С22—С23—Н23А	108.8
C5—C4—C7	120.12 (17)	C24—C23—H23A	108.8
C6—C5—C4	120.29 (17)	С22—С23—Н23В	108.8
С6—С5—Н5	119.9	С24—С23—Н23В	108.8
С4—С5—Н5	119.9	H23A—C23—H23B	107.7
C1—C6—C5	120.58 (19)	C25—C24—C23	113.85 (15)
С1—С6—Н6	119.7	C25—C24—H24A	108.8
С5—С6—Н6	119.7	C23—C24—H24A	108.8

O1—C8—C13	123.80 (14)	C25—C24—H24B	108.8
01—C8—C9	115.06 (14)	C23—C24—H24B	108.8
C13—C8—C9	121.13 (14)	H24A—C24—H24B	107.7
O1—C7—C4	108.23 (14)	C24—C25—C26	113.16 (15)
O1—C7—H7A	110.1	С24—С25—Н25А	108.9
С4—С7—Н7А	110.1	С26—С25—Н25А	108.9
O1—C7—H7B	110.1	С24—С25—Н25В	108.9
С4—С7—Н7В	110.1	С26—С25—Н25В	108.9
H7A—C7—H7B	108.4	H25A—C25—H25B	107.8
C10-C9-C8	117.95 (14)	C27—C26—C25	114.33 (15)
C10-C9-C14	122.26 (14)	С27—С26—Н26А	108.7
C8—C9—C14	119.78 (14)	C25—C26—H26A	108.7
C9—C10—C11	121.69 (15)	С27—С26—Н26В	108.7
С9—С10—Н10	119.2	С25—С26—Н26В	108.7
C11—C10—H10	119.2	H26A—C26—H26B	107.6
C12-C11-C10	118.62 (14)	C28—C27—C26	113.14 (15)
C12—C11—C15	117.55 (14)	С28—С27—Н27А	109.0
C10-C11-C15	123.83 (15)	С26—С27—Н27А	109.0
C13—C12—C11	121.27 (15)	С28—С27—Н27В	109.0
C13—C12—H12	119.4	С26—С27—Н27В	109.0
C11—C12—H12	119.4	H27A—C27—H27B	107.8
C12—C13—C8	119.34 (16)	C29—C28—C27	115.36 (16)
С12—С13—Н13	120.3	C29—C28—H28A	108.4
C8—C13—H13	120.3	C27—C28—H28A	108.4
C9—C14—H14A	109.5	C29—C28—H28B	108.4
C9—C14—H14B	109.5	C27—C28—H28B	108.4
H14A—C14—H14B	109.5	H28A—C28—H28B	107.5
C9—C14—H14C	109.5	C30—C29—C28	113.17 (16)
H14A—C14—H14C	109.5	С30—С29—Н29А	108.9
H14B—C14—H14C	109.5	C28—C29—H29A	108.9
O2—C15—O3	122.27 (15)	С30—С29—Н29В	108.9
O2—C15—C11	124.65 (16)	С28—С29—Н29В	108.9
O3—C15—C11	113.08 (14)	H29A—C29—H29B	107.8
C17—C16—C21	120.86 (14)	C29—C30—C31	114.4 (2)
C17—C16—O3	118.55 (14)	С29—С30—Н30А	108.7
C21—C16—O3	120.56 (14)	С31—С30—Н30А	108.7
C16—C17—C18	119.10 (15)	С29—С30—Н30В	108.7
С16—С17—Н17	120.5	С31—С30—Н30В	108.7
C18—C17—H17	120.5	H30A—C30—H30B	107.6
C17—C18—C19	121.97 (16)	C30—C31—H31A	109.5
C17—C18—H18	119.0	C30—C31—H31B	109.5
C19—C18—H18	119.0	H31A—C31—H31B	109.5
C18—C19—C20	117.03 (14)	C30—C31—H31C	109.5
C18—C19—C22	119.99 (15)	H31A—C31—H31C	109.5
C20—C19—C22	122.97 (14)	H31B—C31—H31C	109.5
C21—C20—C19	121.78 (15)		
C6—C1—C2—C3	0.5 (3)	C16—O3—C15—C11	177.94 (13)
C1—C2—C3—C4	-0.2 (3)	C12—C11—C15—O2	-2.2 (3)
C2—C3—C4—C5	0.2 (3)	C10-C11-C15-O2	178.07 (17)

C2—C3—C4—C7	-179.54 (17)	C12—C11—C15—O3	177.47 (14)
C3—C4—C5—C6	-0.5 (3)	C10-C11-C15-O3	-2.3 (2)
C7—C4—C5—C6	179.25 (17)	C15—O3—C16—C17	-112.35 (17)
C2—C1—C6—C5	-0.8 (3)	C15—O3—C16—C21	69.6 (2)
C4—C5—C6—C1	0.8 (3)	C21-C16-C17-C18	-1.8 (3)
C7—O1—C8—C13	-1.9 (2)	O3-C16-C17-C18	-179.82 (15)
C7—O1—C8—C9	178.12 (15)	C16—C17—C18—C19	0.0 (3)
C8—O1—C7—C4	-176.37 (14)	C17—C18—C19—C20	1.6 (3)
C3—C4—C7—O1	-65.5 (2)	C17—C18—C19—C22	-177.81 (16)
C5—C4—C7—O1	114.78 (18)	C18—C19—C20—C21	-1.4 (2)
O1-C8-C9-C10	-179.88 (13)	C22-C19-C20-C21	177.94 (16)
C13—C8—C9—C10	0.1 (2)	C17—C16—C21—C20	2.0 (3)
O1—C8—C9—C14	0.6 (2)	O3-C16-C21-C20	179.92 (14)
C13—C8—C9—C14	-179.41 (16)	C19—C20—C21—C16	-0.3 (3)
C8—C9—C10—C11	-0.5 (2)	C18—C19—C22—C23	170.77 (16)
C14—C9—C10—C11	179.02 (16)	C20—C19—C22—C23	-8.6 (3)
C9—C10—C11—C12	0.6 (2)	C19—C22—C23—C24	-173.87 (15)
C9—C10—C11—C15	-179.63 (14)	C22—C23—C24—C25	177.16 (16)
C10-C11-C12-C13	-0.4 (3)	C23—C24—C25—C26	-177.39 (15)
C15-C11-C12-C13	179.87 (15)	C24—C25—C26—C27	-176.29 (16)
C11—C12—C13—C8	0.0 (3)	C25—C26—C27—C28	177.49 (16)
O1—C8—C13—C12	-179.87 (15)	C26—C27—C28—C29	-177.76 (16)
C9—C8—C13—C12	0.1 (3)	C27—C28—C29—C30	177.89 (17)
C16—O3—C15—O2	-2.4 (2)	C28-C29-C30-C31	175.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
С10—Н10…ОЗ	0.93	2.47	2.786 (2)	100
C14—H14A…O1	0.96	2.24	2.726 (3)	110

Fig. 2