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Linear-response formula for finite-frequency thermal conductance of open systems
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An exact linear-response expression is obtained for the heat current in a classical Hamiltonian system coupled
to heat baths with time-dependent temperatures. The expression is equally valid at zero and finite frequencies.
We present numerical results on the frequency dependence of the response function for three different one-
dimensional models of coupled oscillators connected to Langevin baths with oscillating temperatures. For
momentum conserving systems, a low-frequency peak is seen that is higher than the zero-frequency response
for large systems. For momentum nonconserving systems, there is no low-frequency peak. The momentum
nonconserving system is expected to satisfy Fourier’s law; however, at the single bond level, we do not see any
clear agreement with the predictions of the diffusion equation even at low frequencies. We also derive an exact
analytical expression for the response of a chain of harmonic oscillators to a (not necessarily small) temperature
difference; the agreement with the linear-response simulation results for the same system is excellent.
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I. INTRODUCTION

In many low-dimensional systems, heat transport unexpect-
edly violates Fourier’s law of heat conduction [1–3]. This can
be because of integrability or proximity to integrability, which
is more common in low dimensions, as recognized starting
from the Fermi-Pasta-Ulam (FPU) model [4]. Alternatively,
even ergodic low-dimensional systems can show anomalous
heat conduction, with the conductivity diverging with system
size, if they conserve momentum. Apart from the theoretical
interest, understanding heat transport in such systems is of
relevance to heat conduction in carbon nanotubes [5].

Most of the recent activity [2,3] in this field has dealt
with the zero-frequency conductivity. But time-dependent
temperature sources have been discussed in experimental
situations in the context of measuring the frequency-dependent
thermal conductivity [6,7] and specific heat [8] of glassy
systems. Theoretically, there have been a few studies on
the frequency-dependent thermal current response using a
microscopic approach, based on Luttinger’s derivation of the
Green-Kubo formula and a hypothesis about the equality of
certain transport coefficients [9], and using a phenomenolog-
ical approach [10]. A recent paper studied thermal ratchet
effects in an inhomogeneous anharmonic chain coupled to
baths with time-dependent temperatures [11,12].

In this paper, we adopt a different approach: we find the
linear heat conductance of a system placed in contact with two
heat reservoirs with time-dependent temperatures, TL(t) and
TR(t), respectively. Physically the notion of bath temperatures
oscillating in time make sense if we assume that the frequency
of oscillation is much smaller compared to time scales for local
thermal equilibration in the reservoirs. An exact expression (in
the linear-response regime) for the heat current due to a small
oscillating temperature difference between the reservoirs is
obtained.

Our earlier result [13] obtained the zero-frequency con-
ductance of a finite system rather than the conductivity in
the infinite system limit. Thus the thermodynamic limit was
not taken first (in fact, not at all), in contrast to the standard

Green-Kubo formula [14], which cannot be applied when
the infinite system conductivity diverges. Our expression for
the zero-frequency conductance involved the heat current
autocorrelation function for an open system. The extension
to finite frequencies in this paper follows the same approach,
with the response now depending on the position inside the
system where the current is measured.

We also show results of numerical simulations for the
frequency-dependent response function by measuring the
appropriate correlation function. For one-dimensional mo-
mentum conserving anharmonic crystals, we find a resonant
response at a frequency of ω ∼ 1/N for a chain of N particles
due to sound waves propagating from one end of the system
to the other. As N increases, the resonance gets broader and
its height decreases slightly. However, its height relative to
the zero-frequency response increases, and for large N this
resonance is stronger than the zero-frequency response.

We find that the low-frequency peak disappears for systems
where momentum is not conserved. Fourier’s law is known to
be valid for such systems, so that the heat current should satisfy
the diffusion equation. If one compares the numerical results
for the frequency-dependent heat current with the prediction
from the diffusion equation at the single bond level, there
seem to be substantial discrepancies. This suggests that the
hydrodynamic limit is somewhat subtle and may require study
of larger system sizes with appropriate spatial and temporal
coarse graining.

Numerical simulations for the frequency-dependent re-
sponse function of a one-dimensional harmonic crystal, and an
exact analytical expression for the full response (for finite �T )
of the same, are also presented. For a harmonic system the full
response is also linear and hence we expect the linear-response
result to agree with the exact-response function. Indeed we
find excellent agreement between the numerical simulations
of the expression of the linear-response and the numerically
evaluated exact-response expression.

All three systems mentioned previously also show a high-
frequency peak in the response function, whose location is
independent of N. One can loosely ascribe this to the fact that
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the dynamics in the interior of the system are underdamped
(actually, undamped), so that particles approaching each other
recoil, and the heat current autocorrelation function shows
rapid oscillations in the temporal domain. Such high-frequency
oscillations are not seen in hard particle models, such as the
Random Collision Model [15]. This is discussed further when
we derive the analytical expression for the harmonic oscillator.
However, a quantitative understanding of the high-frequency
peak is lacking.

II. OSCILLATOR CHAINS WITH LANGEVIN BATHS

We follow the derivation of Ref. [13] to obtain the
finite-frequency heat conductance of an oscillator chain with
Langevin baths at the ends; more detail is provided in Ref. [13].
Consider the motion of N particles on a one-dimensional
lattice, described by the following Hamiltonian:

H = 1

2

N∑
l=1

mlv
2
l +

N∑
l=1

U (xl − xl+1) +
N∑

l=1

V (xl), (1)

where x = {xl} and v = {vl}, with l = 1,2, . . . ,N , are the
displacements of the particles about their equilibrium positions
and their velocities and {ml} are their masses. We assume
fixed boundary conditions, x0 = xN+1 = 0. The particles 1
and N are connected to white noise Langevin heat baths at
time-varying temperatures TL(t) and TR(t). Thus the equations
of motion are

mlv̇l = − ∂

∂xl

[U (xl−1 − xl) + U (xl − xl+1) + V (xl)]

+ δl,1[ηL(t) − γLv1] + δl,N [ηR(t) − γRvN ], (2)

for l = 1,2, . . . ,N. Here ηL,R(t) are uncorrelated zero mean
Gaussian noise terms satisfying the fluctuation dissipation
relations

〈ηL,R(t)ηL,R(t ′)〉η = 2γL,RkBTL,Rδ(t − t ′), (3)

where 〈· · ·〉η denotes an average over the noise.
The derivation of the linear-response theory starts with the

Fokker-Planck equation for the full phase space distribution
function P (x; v; t). If TL = TR = T , the steady state solution
to the equation is the equilibrium Boltzmann distribution. The
perturbation approach described here can be carried through
for small but arbitrary temperature variations of the baths about
the equilibrium value, with the general forms TL(t) = T +
�TL(t) and TR(t) = T + �TR(t). For simplicity, and for ease
of comparision with the study in Ref. [13], we here consider
the case where the temperatures at the two ends are oscillating
in time as TL,R = T ± �T (t)/2. We will obtain a perturbative
solution about the equilibrium solution. The steps are very
similar to the standard derivation of the fluctuation dissipa-
tion theorem. The Fokker-Planck equation corresponding to
Eq. (2) is

∂P

∂t
= −

∑
l

∂

∂xl

(vlP ) −
∑

l

∂

∂vl

(flP/ml) + O1P + ONP,

(4)

where fl = −∂H/∂xl is the force acting on the lth particle.
The operators O1 and ON come from the Langevin damping
and noise on the terminal particles:

O1P = γL

m1

∂

∂v1
(v1P ) + γLkBTL

m2
1

∂2

∂v2
1

P,

(5)

ONP = γR

mN

∂

∂vN

(vNP ) + γRkBTR

m2
N

∂2

∂v2
N

P.

With TL,R = T ± �T (t)/2, we can group terms according to
their power of �T to obtain

∂P

∂t
= L̂P + L̂�T P, (6)

where

L̂�T = kB�T

2

[
γL

m2
1

∂2

∂v2
1

− γR

m2
N

∂2

∂v2
N

]
. (7)

For �T = 0, the steady state solution of the Fokker-Planck
equation is the equilibrium Boltzmann distribution P0 =
exp[−βH ]/Z, where Z is the canonical partition function
and β = 1/(kBT ). For �T �= 0, we start with the equilibrium
distribution at time t = t0 and then let the system evolve
under the full Fokker-Planck operator. Writing P (x,v,t) =
P0 + p(x,v,t) and retaining terms to O(�T ),

∂p

∂t
= L̂p + L̂�T P0. (8)

Setting t0 → −∞ we get the formal solution to the above
equation:

p(x; v; t) =
∫ t

−∞
e(t−t ′)L̂�β(t ′)Jfp(v)P0(x,v) dt ′, (9)

where Jfp(v) is defined by

∂P

∂t

∣∣∣∣
P=P0

= L̂�T P0 = (�β)JfpP0 (10)

from which

Jfp = γR

2mN

[
mNv2

N − kBT
] − γL

2m1

[
m1v

2
1 − kBT

]
. (11)

The change in the expectation value of any observable
A(x; v) is given by 〈�A〉�T = 〈A〉 − 〈A〉0, where 〈A〉 =∫

dx
∫

dvA(x; v)P (x; v,t) and 〈A〉0 = ∫
dx

∫
dvA(x; v)

P0(x; v). This then takes the form

〈�A(t)〉�T = − 1

kBT 2

∫ ∞

0
〈A(τ )Jfp(0)〉�T (t − τ )dτ, (12)

where we have defined the equilibrium average 〈A(t)Jfp(0)〉 =∫
dx

∫
dvAeL̂tJfpP0 and we have used the time translational

invariance of the equilibrium correlation function. In partic-
ular, we are interested in the energy current between two
adjacent particles. The instantaneous current from the lth to
the l + 1-th site is given by jl+1,l = 1

2 (vl + vl+1)fl+1,l , where
fl+1,l = −∂U (xl − xl+1)/∂xl+1 is the force on the l + 1-th
particle due to the lth particle. We get the average heat current
flowing between any bond on the chain by

〈jl+1,l(t)〉�T = − 1

kBT 2

∫ ∞

0
〈jl+1,l(τ )Jfp(0)〉�T (t − τ )dτ.

(13)

011101-2



LINEAR-RESPONSE FORMULA FOR FINITE-FREQUENCY . . . PHYSICAL REVIEW E 83, 011101 (2011)

For an oscillating temperature given by �T (t) = �T (ω)eiωt

this gives

〈jl+1,l(ω)〉
�T (ω)eiωt

= Gl(ω)e−iφl (ω)

= − 1

kBT 2

∫ ∞

0
〈jl+1,l(τ )Jfp(0)〉e−iωτ dτ, (14)

where Gl(ω) is the magnitude of the response—computed
numerically in Sec. III—and φl is the phase. The correlation
function 〈jl+1,l(τ )Jfp(0)〉 on the right-hand side of this equation
is for a system in equilibrium at temperature T .

A few comments are appropriate here. First, as shown in
Ref. [13], for ω → 0 it is possible to manipulate the integrand
on the right and make it proportional to the autocorrelation
function of the heat current integrated over the entire chain,∑

l jl+1,l(τ ), yielding a result resembling the standard Green-
Kubo formula (but without the thermodynamic limit). This
manipulation is not possible for ω �= 0. Thus the current
response depends on l, the position inside the chain where
the response is measured, as one would expect. Moreover, the
correlation function involves Jfp, which is different from the
heat current.

Second, although we have assumed that �TL = −�TR to
resemble the zero-frequency calculations of Ref. [13] where
such an assumption is appropriate, at ω �= 0 there is no reason
why one cannot treat �TL and �TR as independent variables.
It is straightforward to extend the aforementioned derivation
and obtain the response to �TR and �TL, with Jfp in Eq. (14)
replaced by the first and second part of Eq. (11), respectively.
For large N, one expects that the response to a oscillatory
temperature perturbation at one end of the chain should only
depend on the distance from that end and be the same as for a
semi-infinite chain.

Finally, expressions similar to Eq. (13) can be obtained for
any quantity that depends on the phase space variables of the
system, not just jl+1,l(τ ). It does not apply to the heat current
flowing into the system from the reservoirs, since they involve
the Langevin noise ηL and ηR , and these have to be obtained
indirectly. Thus Eq. (13) is valid for l = 1, and one also has

〈dε1(t)/dt〉�T = − 1

kBT 2

d

dt

∫ ∞

0
〈ε1(τ )Jfp(0)〉�T (t − τ )dτ.

(15)

Replacing the d/dt with a −d/dτ acting on �T and
integrating by parts, adding this to Eq. (13), and using the
fact that j21(t) + dε1(t)/dt = j1,L(t) (where j1,L is the heat
current flowing in from the left reservoir), we have

〈j1,L(t)〉�T = − 1

kBT 2

∫ ∞

0
〈j1,L(τ )Jfp(0)〉�T (t − τ )dτ

− 1

kBT 2
�T (t)〈ε1(0)Jfp(0)〉. (16)

Fourier transforming, for �T (t) = �T (ω)eiωt , the heat cur-
rent flowing from the left reservoir is〈

j1,L(ω)

�T (ω)

〉
= − 1

kBT 2

∫ ∞

0
〈j1,L(τ )Jfp(0)〉e−iωτ dτ + γL

m1
kB.

(17)

This response function has a nonzero ω → ∞ limit from the
second term on the right-hand side. This is reasonable: if �T

oscillates at a very high frequency, the effect on (x,v) should
be negligible, but the current flowing from the left reservoir
should oscillate because 〈ηL(t)v1(t)〉η = γLkBTL(t)/m1 is
proportional to the instantaneous temperature of the reservoir.
The instantaneous response of Eq. (17) is a peculiarity of white
noise stochastic baths and is not seen for Nose-Hoover baths,
where even the heat current at the boundary is in terms of
the extended phase space variables, or for a fluid system with
Maxwell boundary conditions, where continuity requires that
the heat current at the boundary and just inside the system
should be the same. Therefore, hereafter we work with j21 and
jN,N−1 when we want the current at the boundaries.

Although the derivation given previously is for a one-
dimensional chain, it is straightforward to see that it is valid for
any system that is connected to only two reservoirs, regardless
of its dimensionality.

III. NUMERICAL RESULTS

Numerical simulations to obtain the correlation function
on the right-hand side of Eq. (14) were performed on three
different systems, which differ in the potential of each particle.
From these correlation functions we obtained Gl(ω) using
Eq. (14). The velocity-Verlet algorithm was used, with a time
step δt = 0.005. We verified that doubling δt does not change
our results. For the largest systems, the initial equilibration
time was teq = 64 × 106, after which the dynamical equations
were evolved for a time t = 5 × 108. All the particle masses
were set to 1, γL = γR = 1, and the reservoirs were at
temperature T = 2.0. Figure 1 shows G1(ω) as a function
of ω, as defined by Eq. (14), for FPU chains of different
lengths. The potential used was U (x) = x2/2 + x4/4, with
V (x) = 0. An N -independent high-frequency peak and a
low-frequency peak at ω ∼ 1/N are seen. Higher harmonics
of the low-frequency peak can be barely discerned. As the
system size is increased, the low-frequency peak broadens and
decreases slightly in height, but the zero-frequency response
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N=32
N=64
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FIG. 1. (Color online) Plot of magnitude of the response function,
G1(ω), for FPU chains of different lengths. The inset shows the
correlation function C1(t), which has the same information in the
time domain.

011101-3



DHAR, NARAYAN, KUNDU, AND SAITO PHYSICAL REVIEW E 83, 011101 (2011)

0.01 0.1 10
ω

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

G
2(ω

)

N=16
N=32
N=64

0 2 4 6 8
ω

0

0.05

0.1

0.15

0.2

G
1
(ω)

G
2
(ω)

G
4
(ω)

1/ω6

1

FIG. 2. (Color online) Plot of the magnitude of the response
function, G2(ω), for FPU chains of different lengths. The inset shows
Gl(ω) for various N = 64 and various l.

drops much faster. Thus by N = 128, the ω ∼ 1/N resonance
is clearly stronger than the zero-frequency response. Note that
Eq. (14) gives the conductance, not the conductivity; the
ω = 0 conductance decreases as ∼1/N1−α . It is expected
that α = 1/3 [3] for large N but this would require much
larger system sizes to verify. The inset in Fig. 1 shows
C1(t) = 〈j21(t)Jfp(0)〉, that is, the same information in the time
domain. N -independent short time oscillations that decay to
(approximately) zero are seen. An “echo” of the oscillation
is seen at a time τN that is approximately N/v, where v is
possibly related to the velocity of effective phonons [16]. At
high frequencies, G1(ω) is approximately independent of N as
one would expect, with a high-frequency peak. As ω → ∞,

G1(ω) ∼ 1/ω2.

Figure 2 shows G2(ω), the magnitude of the response
function at a distance l = 2 from the left boundary. The low-
frequency peak (and its harmonics) is still present, but much
more irregular in shape. However, from a device perspective, it
is the currents flowing into the boundaries that are important.
The high-frequency behavior is independent of N, and as seen
in the inset, the peak in Gl(ω) shifts to smaller ω as l is
increased. It is not clear if G2(ω ∼ ∞) ∼ 1/ω6 as is seen for
the harmonic chain (discussed later in this paper).

Figure 3 shows G1(ω) for chains of different lengths with
an onsite potential V (x) = x4/4. The interparticle potential
is harmonic, U (x) = x2/2. The dynamics are not momentum
conserving, and the zero-frequency conductance should be
inversely proportional to N. This is not seen in the data for
two reasons: direct measurement of the zero-frequency con-
ductance by applying a small temperature difference between
the reservoirs shows that one needs N � 256 to see the ∼1/N

dependence, and the curves for the two larger systems (more
noticeably N = 128) have not reached their ω → 0 limit in
the figure. The low-frequency resonance is gone, replaced by
a broad N -independent plateau. This is presumably because
at finite temperature the effective phonons are optical instead
of acoustic. The N -independent high-frequency peak is also
present. The response in the interior of the chain, shown in
Fig. 4 is similar, except that the low-frequency plateau extends
down to ω = 0 (or to very small ω). As for the FPU chains, we
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G
1(ω
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C
1(t

) N=16
N=64
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1/ω2

1

FIG. 3. (Color online) Plot of the magnitude of the response
function, G1(ω), for φ4 chains of different lengths. The inset shows
C1(t).

fit G1(ω ∼ ∞) to ∼1/ω2 and—less successfully—G2(ω →
∞) to ∼1/ω6. From the inset in Fig. 4, there is no significant
l dependence to the location of the high-frequency peak in
Gl(ω), unlike what we saw for FPU chains.

Beyond the ∼1/N dependence of the zero-frequency
conductance, one expects that heat transport in systems that
are not momentum conserving should be diffusive, and the
temperature field will satisfy ∂Tl/∂t = D(Tl+1 − 2Tl + Tl−1),
where D = κ/C is the diffusion constant. With an ∼eiωt time
dependence, the resultant difference equation can be solved
with TL(ω) and TR(ω) specified, and then the heat current
jl+1,l = κ(Tl − Tl+1) can be calculated. Some features of the
solution are Gdiff

l (ω = 0) ∝ 1/N, Gdiff
l (ω) is independent of

N for N → ∞, Gdiff
l (ω → 0) ∼ ω1/2 exp[−(ω/2D)1/2l], and

Gdiff
l (ω → ∞) ∼ 1/ωl. In Fig. 5 we plot the responses Gdiff

1
together with the linear-response results G1 for the φ4 model.
For each system size we fix the diffusion constant D so that
the ω = 0 results for the two responses match. One expects
that the low-frequency agreement between the two sets should
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FIG. 4. (Color online) Plot of G2(ω) for φ4 chains of different
lengths. A fit to ∼1/ω6 in the asymptotic high-frequency regime is
shown. The inset has Gl(ω) for various l and N = 64.
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FIG. 5. (Color online) Plot of G1(ω) for φ4 chains of different
lengths (LR) and Gdiff

1 (ω) from the diffusion equation (DE).

become better with increasing system size. However this is
not clear from our data. At high frequencies, the expectation
Gdiff

1 (ω) ∼ 1/ω is definitely not borne out. Since the diffusion
equation is not expected to be valid at microscopic time or
length scales, and the fact that ∼1/N scaling of the zero-
frequency heat conductance is only seen for N � 256 suggests
that “microscopic” length scales are quite large here, the lack
of agreement at the single bond level and high frequencies is
perhaps not surprising. A clear understanding of this requires
further work.

Finally, we show the results for a harmonic chain, with
V (x) = 0 and U (x) = x2/2. In this case we show in the next
section (Sec. IV) that the response Gl(ω) can be obtained
exactly and expressed in terms of a single integral over
frequencies. Here we give numerical results for Gl(ω) obtained
using this exact formula [Eq. (21)] and also compare it with
the linear-response result [Eq. (14)]. We show G1(ω) in Fig. 6,
with results from numerical simulations of the linear-response
formula also shown for N = 64. We see excellent agreement
between the analytical and linear-response result. One can
see that G1(ω = 0) is almost N independent as expected,
and the low-frequency resonance and its harmonics are more
pronounced than those for the FPU chain, which is not
surprising since there is no dispersion or damping in the
interior of the chain. The high-frequency peak seems to be
present but is difficult to cleanly separate from the low-
frequency structure. As was the case for the FPU and φ4 chains,
G1(ω → ∞) is N independent and ∼1/ω2. In Sec. IV, the
asymptotic form Gl(ω → ∞) ∼ 1/ω4l−2 is obtained. Figure 7
shows G2(ω) for various system sizes, with all features as
expected.

IV. RESPONSE OF A HARMONIC CHAIN

Although the integrability of the harmonic oscillator chain
makes its behavior nongeneric, and its applicability to physical
systems limited, the advantage of this model is that its response
can be completely obtained analytically (with some integrals
evaluated numerically) and compared to the simulation results.
We now proceed with the analysis.
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FIG. 6. (Color online) Plot of G1(ω) for harmonic chains of
different lengths, from the analytical expression derived in Sec. IV.
Because of the complicated structure in the figure, N = 128 is not
included. The linear-response simulation results for N = 64 are also
shown (LR). The inset shows C1(t).

In this case both V (x) and U (x) are quadratic and the
Hamiltonian can be written in the form H = ẊMẊ/2 +
X�X/2, where M and � are, respectively, the mass matrix
and the force-constant matrix for the system. We obtain the
solution of the equations of motion in the time-dependent
steady state by using Fourier transforms in the time domain.
The approach is similar to that used in the derivation of
the Landauer-type formula for steady state heat current in
harmonic systems, where the current is expressed in terms
of phonon Green’s functions [17]. Let us introduce the
transforms: x̃l(�) = (1/2π )

∫ ∞
−∞ dtxl(t)ei�t and η̃L,R(�) =

(1/2π )
∫ ∞
−∞ dtηL,R(t)ei�t . Then the Fourier transform solu-

tion of Eq. (2) gives

x̃l(�) = G+
l1(�)η̃L(�) + G+

lN (�)η̃R(�), (18)
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FIG. 7. (Color online) Plot of G2(ω) and G4(ω) for harmonic
chains of various lengths. The fit to the asymptotic form Gl(ω →
∞) ∼ 1/ω4l−2 is shown. The inset shows Gl(ω) for various l and
N = 64.
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where G+(�) = [−M�2 + � − �+(�)]−1 is the phonon
Green’s function [17] and �+, the self-energy correc-
tion due to baths, is a N × N matrix whose only
nonzero elements are �+

11 = i�γL and �+
NN = i�γR . The

noise correlations corresponding to the oscillating tempera-
tures TL = T + �T/2 cos ωt and TR = T − �T/2 cos ωt are
given by

〈η̃L(�1)η̃L(�2)〉 = γLkB

π
{T δ(�1 + �2)

+ (�T/4)[δ(�1 + �2 + ω)

+ δ(�1 + �2 − ω)]},
(19)

〈η̃R(�1)η̃R(�2)〉 = γRkB

π
{T δ(�1 + �2)

− (�T/4)[δ(�1 + �2 + ω)

+ δ(�1 + �2 − ω)]},
and η̃L and η̃R are uncorrelated. The heat current on any bond is
given by the noise average 〈jl+1,l〉 = 〈(1/2)〈k(xl − xl+1)(vl +
vl+1)〉, where k is the force constant of the bonds, and thus
involves evaluating

〈xl(t)vm(t)〉 =
∫ ∞

−∞
d�1

∫ ∞

−∞
d�2(−i�2)e−i(�1+�2)t

× [G+
l1(�1)G+

m1(�2)〈η̃L(�1)η̃L(�2)〉
+G+

lN (�1)G+
mN (�2)〈η̃R(�1)η̃R(�2)〉], (20)

and this is readily evaluated using the noise properties in
Eq. (19). After some simplifications we finally obtain

Gl(ω) =
∣∣∣∣ 1

4π

∫ ∞

−∞
d��[γL{G+

l,1(� − ω) − G+
l+1,1(� − ω)}

× {G+
l,1(−�) + G+

l+1,1(−�)}
− γR{G+

l,N (� − ω) − G+
l+1,N (� − ω)}

× {G+
l,N (−�) + G+

l+1,N (−�)}]
∣∣∣∣. (21)

For nearest-neighbor interactions, the force matrix � is a
tridiagonal matrix. Using the properties of inverse of a
tridiagonal matrix we can explicitly evaluate the Green’s
function elements that are required. For simplicity consider
the case k = 1, no external potentials and γL = γR = γ .
Let us define �l,m as the determinant of the submatrix of
[−M�2 + � − �+] that starts from the l th row and column
and ends in the m th row and column. We also define Dl,m

as the determinant of the submatrix of [−M�2 + �] starting
from the l th row and column and ending in the m th row and
column. In terms of these one has

G+
l,1(�) = �l+1,N

�1,N

, G+
l,N (�) = �1,l−1

�1,N

,

with

�1,l−1 = D1,l−1 − i�γD2,l−1,

�l+1,N = Dl+1,N − i�γDl+1,N−1,

�1,N = D1,N − i�γ (D1,N−1 + D2,N ) − �2γ 2D2,N−1.

For an ordered harmonic chain with all masses equal to 1
it is easy to show that Dl,m = sin(m − l + 2)q/ sin q, where

�2 = 2(1 − cos q). Using this it is easy to numerically evaluate
the response function Gl(ω) in Eq. (21) for given values
of l and N . We show some numerical results in Figs. 6
and 7, where we have also made comparisons with results
from simulations for the linear response. As expected the
exact response and the linear response give almost identical
results. However we have not been able to analytically show
the equivalence of the exact-response and the linear-response
expressions.

For large �, we have q ∼ π + i ln �2; hence

G+
l,1(�) ∼ 1/(−�2)l . (22)

This can also be seen from the equations of motion: when
� >> 0, the dynamical equations become −ml�

2xl = kxl−1.

The boundary condition is −m1�
2x1 = ηL(�), in which

the right-hand sign is effectively unity when calculating
the Green’s function. Combining these equations, we obtain
Eq. (22). But a ∼1/(−�2)l dependence at large frequencies
implies that the 2l th derivative of G+

l,1(t) has a δ function
at the origin; that is, G+

l,1(t) ∼ t2l−1 for t � 0 (This can be
verified directly in the time domain: xl(t) ∝ t2l−1 satisfies
the equations of motion for t � 0.) But then in the time
domain, Eq. (21) is equivalent to Gl(t) ∝ G+

l,1(t)∂tG+
l,1(t) for

t � 0, where we have assumed that l is in the left half of
the chain. Therefore Gl(t � 0) ∝ t4l−3. Since Gl(t < 0) = 0,

the 4l − 2-th derivative of Gl(t) has a δ function at t = 0,

so that

Gl(ω) ∼ 1/ω4l−2, l < N/2, (23)

for large ω.

V. DISCUSSION

In this paper, we have given an exact linear-response
formula for the current in a wire in response to time-dependent
temperatures applied at the boundaries. For a harmonic chain
the full response function has been analytically computed.
We have presented numerical results for the frequency de-
pendence of the current response in oscillator chains. For
a diffusive system we find that the response differs from
what is expected from a solution of the Fourier equation
with oscillating boundary temperatures. It is straightforward
to generalize the derivation to fluid systems, various stochastic
and deterministic baths, and arbitrary system size L and spatial
dimension d. This is discussed in detail in Ref. [13] for the
ω = 0 case.

As shown in Ref. [13] the zero-frequency response can
be expressed in terms of current autocorrelation functions,
CJJ (t) = 〈J (t)J (0)〉, as opposed to the correlations involving
Jfp in Eq. (14), resulting in an expression similar to the standard
Green-Kubo formula but without the thermodynamic limit
being taken. If the integral of the autocorrelation function
remains finite in the thermodynamic limit, the conductance
is ∼1/N for large N, and one can define an N -independent
conductivity in the same regime. The resultant expression
matches the standard Green-Kubo formula, but with the
thermodynamic limit taken after the range of the integral is
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taken to infinity. While it is plausible to assume that the order
of limits commutes and

lim
L→∞

1

L
lim

t0→∞

∫ t0

0
CJJ (t) dt = lim

t0→∞ lim
L→∞

1

L

∫ t0

0
CJJ (t)dt,

(24)

this is by no means trivial: if different boundary conditions
had been employed, with hard wall boundaries instead of
heat baths, the left-hand side of this equation would be zero
but the right-hand side would not. If the left-hand side (with
heat bath boundary conditions) diverges in the thermodynamic
limit, as for integrable systems or low-dimensional momentum

conserving systems, the conductivity also diverges, and one
can only talk about the conductance or an L-dependent
conductivity.

At nonzero frequencies, the integral converges even when
it does not at ω = 0, and changing the order of limits is
more benign. Unfortunately, as we have seen in this paper,
the expression obtained for the finite-frequency conductance
involves the correlation function 〈jl+1,l(τ )Jfp(0)〉, which we
are unable to convert into an autocorrelation function when
ω �= 0. The connection to proposed expressions for the finite-
frequency conductivity [9,10], which involve expressions in
terms of CJJ (t), is thus not clear.
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