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General relativity has very specific predictions for the gravitational waveforms from inspiralling

compact binaries obtained using the post-Newtonian (PN) approximation. We investigate the extent to

which the measurement of the PN coefficients, possible with the second generation gravitational-wave

detectors such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the

third generation gravitational-wave detectors such as the Einstein Telescope (ET), could be used to test

post-Newtonian theory and to put bounds on a subclass of parametrized-post-Einstein theories which

differ from general relativity in a parametrized sense. We demonstrate this possibility by employing the

best inspiralling waveform model for nonspinning compact binaries which is 3.5PN accurate in phase and

3PN in amplitude. Within the class of theories considered, Advanced LIGO can test the theory at 1.5PN

and thus the leading tail term. Future observations of stellar mass black hole binaries by ET can test the

consistency between the various PN coefficients in the gravitational-wave phasing over the mass range of

11–44M�. The choice of the lower frequency cutoff is important for testing post-Newtonian theory using

the ET. The bias in the test arising from the assumption of nonspinning binaries is indicated.
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I. INTRODUCTION

General relativity is tested to unprecedented accuracies
in the weak-field and strong-field regimes (see Ref. [1] for
a review). From a theoretical perspective, tests of this
nature were possible due to physically motivated but struc-
turally simple parametrizations of the observable quanti-
ties which could have different values in different theories
of gravity. In the weak-field regime, solar system bounds
were largely assisted by the parametrized post-Newtonian
(PPN) framework (see, for example, Ref. [2]). PPN formal-
ism parametrizes the deviation of a general metric theory
of gravity (with symmetric metric) from the Newtonian
theory in the weak-field limit in terms of 10 free parame-
ters up to order v=c, where v is the characteristic velocity
of the object. General relativity (GR) is a special case of
this class with specific values of these parameters.

Binary pulsar tests, which dealt with stronger gravita-
tional fields involving compact objects but typical veloc-
ities of order v� 10�3c, probed GR in the strong-field
radiative regime. The binary pulsar tests were performed
effectively with the use of the parametrized post-Keplerian
(PPK) [3–6] formulation of the pulsar timing formula.
The timing formula can be expressed as a function of
Keplerian and post-Keplerian parameters, each one of
which is a function of the component masses of the binary.
A measurement of two of these parameters enabled the

determination of the individual masses. The measurement
of a third parameter would constitute a test of the theory, by
requiring a consistency of the component masses in the
m1-m2 plane. Depending on the number of these PPK
parameters that can be measured from the timing data of
a binary pulsar, it enables many tests of GR (measuring n
parameters allow n� 2 tests). Binary pulsar observations
also confirmed the quadrupole formula for the generation
of gravitational waves.

A. Gravitational waves and tests of GR

The detection of gravitational waves (GWs) would be
the first direct test of the consistency of gravitation with the
principles of special relativity and would probe general
relativity beyond the quadrupole formula [7]. A subsequent
detailed study of the properties of GW would next allow
one to assess the validity of GR in the strong-field radiative
regime. A prominent class of GW sources is compact
binaries: neutron stars (NS) and/or black holes (BH) mov-
ing in circular orbit with velocities v� 0:2c. Within GR,
using different analytical and numerical schemes, gravita-
tional waveforms from these systems can be computed with
very high accuracy [8]. Availability of such high-accuracy
waveforms will allow the application of matched filtering
techniques to search for these signals in the data from the
GW interferometers such as LIGO [9] and Virgo [10].
Beyond the detection of GWs, one would like to know

whether one can perform tests of GR with the detected
signals. Despite the use of GR waveforms in matched
filtering (which essentially assumes that GR is the correct
theory of gravity), several authors have argued that GW
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observations can be used to test GR and put bounds on
various parameters in alternative theories of gravity. One of
the first proposals toward testing nonlinear aspects of GR
using GWs was due to Blanchet and Sathyaprakash, who
discussed the possibility of measuring the ‘‘tail’’ effect in
the GW phasing formula [11,12]. Ryan proposed a method
to measure various multipole moments of a binary system
[13] from the Laser Interferometer Space Antenna (LISA)
observations of extreme mass ratio inspirals. Will obtained
the additional contributions to the GW phasing formula in
Brans-Dicke theories [14] and massive graviton theories
[15] as a one-parameter deviation from GR and discussed
the bounds possible on these corresponding parameters
from GW observations. These ideas were elaborated on
in greater detail in a series of papers [16–21], studying how
various physical effects in the binary affect the bounds. It is
worth noting that these bounds possible on massive gravi-
ton theories will be complementary to those which are
obtained by binary pulsar observations (see e.g. [22]).

The basic idea of our proposal can be viewed as a
generalization of some of the existing proposals to test
specific theories of gravity like Brans-Dicke or massive
graviton theories. General relativity and any of its parame-
trized variants have different predictions for the PN coef-
ficients c i in the phasing formula (for details see Sec. II C).
Hence the accuracies with which the PN coefficients of GR
can be measured translates into bounds on the values of
these coefficients in any other theory. This leads to the
question of how well can these coefficients be measured?

One way to answer this question is to rephrase it as a
parameter estimation problem and measure each of the PN
coefficients, treating them all as independent of one an-
other. Recall that, for nonspinning binaries, each one of
them is a function of only the two component masses and
hence just two parameters are enough to describe the
phasing formula up to any PN order. Hence, if we want
to treat each one of them (8 in all for the restricted
waveform (RWF) at 3.5PN order) independently, there
will be large correlations among the parameters. Our ear-
lier work [23] has shown that this method works well only
for a narrow range of masses for which the signal-to-noise
ratio (SNR) is high enough to discriminate these terms.
The masses are typically of a million solar mass and hence
detectable by the LISA [23,24].

Since the high correlations among the PN parameters are
responsible for the ineffectiveness of the above test, we
explored other possibilities which, though less generic, are
viable, interesting and capture the essential features of the
test. One possibility is to use a smaller set of parameters
comprised of the PN coefficient to be tested together with
any two of the remaining PN coefficients chosen as basic
variables (to reexpress and parametrize the rest of the PN
coefficients) [25].

While all these were based on inspiral waveforms,
there are proposed tests based on merger and ringdown

waveforms of the binary as well by measuring very accu-
rately the various ringdown modes of the GW spectrum
[26–28]. Keppel and Ajith [29] revisited the bounds on
massive graviton theories including the merger and ring-
down contributions. Alexander et al. pointed out that the
GW observations can be used as a probe of effective
quantum gravity which predict amplitude birefringence
of the spacetime for the propagation of the GW signals
[30]. Molina et al. investigated the possible imprints of
Chern-Simon theory of gravity in the GW ringdown sig-
nals and its detectability with GW interferometers [31]. In
brief, GW measurements can lead to interesting tests of
various strong-field aspects of gravity.
Recently, Yunes and Pretorius discussed a generalized

framework called the parametrized post-Einsteinian (ppE)
framework to describe various fundamental biases in theo-
retical modeling of GWand express them in a parametrized
manner [32]. They used the existing knowledge about
various alternative theories of gravity such as Brans-
Dicke, massive graviton theories, and Chern-Simon theory
to write down a generic Fourier domain gravitational
waveform, which is parametrized in terms of a set of
amplitude and phase variables. They also considered the
contribution from merger and ringdown phases of the
binary evolution beyond the inspiral. This parametrization
in the inspiral regime can be considered as a generalization
of our earlier proposal in Ref. [23] but including the
possibility that amplitude of the waveform may also, in
general, be different in an alternative theory.
In the present work, our aim is to set up a general

parametrization of the gravitational-wave signal in a sub-
class of ppE theories that will enable tests of GR in the
radiative regime from GWobservations, similar to the PPN
and PPK formalisms mentioned earlier. This is an exten-
sion of our previous work [25] using more complete in-
spiral waveforms, called full waveforms (see Sec. I C for a
detailed discussion). From the ppE perspective, the model
we have presented in this paper would correspond to the
case where there are no amplitude deviations and only one
phasing coefficient (corresponding to the test parameter)
different from GR. In the future the more general ppE class
of meta models must be investigated to provide more
generic results than those obtained from the subclass we
deal with in this paper.

B. Choice of PN parametrization

The suggestion to use a smaller set of parameters com-
prised of the PN coefficient to be tested together with any
two of the remaining PN coefficients selected as basic
variables (to reexpress and parametrize the rest of the PN
coefficients) [25] immediately raises the following ques-
tion. Which two parameters should be chosen as the basic
variables? The most natural choice is the two lowest-order
0PN and 1PN coefficients since they are measured most
accurately. Furthermore, within GR at higher PN order
there are spin-orbit and spin-spin terms etc., so that not
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only the choice of higher-order coefficients as basic pa-
rameters appears less convenient but the use of the lowest-
order PN coefficients as basic variables may be expected to
reduce systematic effects due to spins. Once the basic
variables are decided, the test parameter can be any of
the higher PN order coefficients, chosen one at a time.

The weakness of this version of the test vis-à-vis, the
version where all PN parameters are treated as independent
parameters, may be worrying at first. Unlike in the latter
version where the discrepant PN order will be explicit in
the test, in the former version the failure of GR at a par-
ticular PN order may not necessarily imply the correspond-
ing PN term to be different from GR. However, we believe
in the robustness of the test itself due to the following chain
of plausibility arguments: It is not unreasonable to assume
that if an alternative theory of gravitation is consistent with
GR at some PN order it would be normally consistent with
GR at lower PN orders but it may disagree with GR at some
higher PN order. In view of this argument, if one is testing a
particular order PN coefficient then parametrizing the
lower-order PN coefficients by the basic PN coefficients
(at 0PN and 1PN orders) is reasonable.

What then do we hope to achieve by our choice of
expressing the PN coefficients of order higher than the
tested PN coefficient by the basic PN coefficients? To
answer this question, we make the reasonable assumption
that if a theory differs fromGR at some PN order, it is likely
to differ from GR at higher PN orders too. Thus by parame-
trizing PN coefficients of orders higher than the tested PN
coefficient by the basic PN coefficients, we naturally take
into account effects in GR coming from higher-order PN
terms and reduce the corresponding systematic errors aris-
ing from the higher-order PN coefficients in the estimation
of the test parameter. In consequence, only departures of the
correct theory of gravity from GR would remain and con-
tribute dominantly to the estimate of the PN parameter
tested in the analysis. To investigate this question explicitly,
we computed the error in the estimation of a particular PN
coefficient both at the 3.5PN accuracy and by truncating the
expansion at the PN order of the test parameter. As ex-
pected, the two choices gave different results, with the full
phasing yielding a more accurate estimation of parameters
(for more details, see Sec. III B 3). Given the possibly small
differences we are trying to explore any reduction in sys-
tematic errors is indeed to be taken advantage of.

It is interesting to note that, as pointed out in Ref. [33],
the errors in the various PN coefficients we quote here can
be translated into measurement of three- and four-graviton
vertices. Keeping these caveats in view, let us consider
some hypothetical theory of gravity which shows deviation
from GR starting from 2PN order.1 In our proposed test,

this deviation would not show up when c 3 is used as test
parameter, as in this case the deviations are only from the
fact that the functional dependences of higher-order phas-
ing coefficients on c 0 and c 2 are not the same as in GR.
This seems less important than a lower PN order test
parameter itself deviating from its GR value. On the other
hand, when c 4 or higher PN order phasing coefficients are
used as test parameters, this deviation should be evident.
Thus, proceeding systematically to higher PN orders, one
can ascertain the PN order where the new theory begins to
deviate from GR.

C. Scope of the current work and a summary of results

In this work we revisit the problem in the context of the
second generation ground-based GW interferometer such
as Advanced LIGO and a third generation ground-based
GW interferometer called Einstein Telescope (ET) that is
currently under design study in Europe. Since ET is
envisaged to have far better low-frequency sensitivity
than Advanced LIGO (a lower frequency cutoff of about
1–5 Hz), one of the aims of the present investigation is to
evaluate the possible gains in going from a lower cutoff of
10 to 1 Hz. A further new ingredient in the present version
of the above test is that we use not just the 3.5PN RWF but
also the amplitude-corrected full waveforms (FWF) which
are 3PN accurate in amplitude (thus having seven harmon-
ics other than just the leading quadrupolar one) and 3.5PN
accurate in phase. For nonspinning binaries, the amplitude
corrections are functions of the two masses and the incli-
nation angle of the binary. The amplitude corrections at
every PN order bring new dependences on the binary
masses and hence could improve the estimation of the
phasing coefficients. With our previous insight in the
weakening of the test due to the use of more parameters
[23], in the first instance, we make the reasonable assump-
tion that since matched filtering procedure is more sensi-
tive to the phase rather than amplitude, one can skip
parametrizing the amplitude independently in the present
work. Thus the deviations in the amplitude corrections of
the waveform are not independently parametrized even
though they have been taken account of in the present
work to reduce systematic effects. We rewrite the mass
dependences in the PN amplitude terms in terms of c 0 and
c 2, just as in the case of the phase terms.
An obvious limitation in regard to the present analysis

concerns the generality of the parametrization that we
employ. Indeed, in the strong-field regime, alternative
theories may so qualitatively deviate from GR that the
structure of the waveform used here for the parametrization
may not be generic enough to capture those features and
one may need to redo the present analysis within a more
general class of models like the ppE framework. It is worth
mentioning that at present very accurate high PN order GW
phasing results are available only for GR. Most results for
alternative theories of gravitation are available only for

1There are theories which show deviation from GR starting
from 2PN order. See, for example, Ref. [34] which considers one
such example, though for spinning BHs.
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leading or next to leading PN orders and hence more work
is required before they are comparable in performance to
the GR waveforms used presently for GW data analysis.
Given these circumstances, our purpose is to explore what
best we can extract from a subclass of PN models close to
GR and leave to future works a more complete investiga-
tion using e.g. ppE models.

Based on the above analysis, within the subclass of ppE
theories that we consider, we find that GWobservations by
advanced LIGO of binary black holes (BBHs) in the range
11–110M� and at a luminosity distance of 300 Mpc would
allow the measurement of the PN coefficient c 3 with
fractional accuracies better that 6% when the FWF is
used. On the other hand using the FWF as a waveform
model and a low-frequency cutoff of 1 Hz, observations of
stellar mass BBHs in ET would allow the measurement of
all PN parameters, except c 4, with accuracies better than
2% when the total mass of the binary is in the range
11–44M�. ET observations of intermediate mass BBHs
would allow only two of the seven PN coefficients (c 3

and c 5l) to be measured with fractional accuracies better
than 10% in the mass range 55–400M�.

The choice of a low-frequency cutoff of 1 Hz, as com-
pared to 10 Hz, reduces the relative errors in various
parameters roughly by factors of order 2 to 10 for stellar
mass black hole binaries. For intermediate mass binaries,
which coalesce at smaller frequencies, though a lower
cutoff helps improve the parameter estimation, the errors
associated with the measurement of various parameters is
so large that the test is not very interesting. Although the
use of FWF has no particular advantage in the case of
stellar mass black hole binaries, their use in the case of
intermediate mass black hole binaries improves parameter
estimation by a factor of a few to almost 80. Large im-
provements are obtained for binaries that are more massive
than �100M�. Error in the estimation of the various PN
parameters for such systems is already so great that the
improvement brought about by the use of FWF is not
useful for the type of tests discussed in this study. For
reasonable detection rates, intermediate mass BH binaries
are at distances greater than 3 Gpc as opposed to 300 Mpc
in the stellar mass case (see, e.g., Ref. [35]): The gain due
to the use of FWF is offset by an order-of-magnitude loss
since sources are farther away.

The rest of this paper is organized in the following way:
In Sec. II we have introduced the noise curves that are
employed for Advanced LIGO and ET and the waveform
model used in the present work. This is followed by a brief
description of the Fisher matrix formalism that will be used
to perform parameter estimation, our proposal for testing
GR, the physical systems investigated, and the implemen-
tation of the test. In Sec. III, we discuss our results and
various issues related to the present work like the system-
atics due to higher-order PN terms, choice of parametriza-
tion used in the test, and the effect of choice of source

location on the results. Finally, in Sec. IV we give a
summary of our findings and future directions.

II. TEST OF GRWITH ADVANCED LIGOAND THE
EINSTEIN TELESCOPE

In this work we shall focus on the measurement of
various PN coefficients in the context of Advanced LIGO
and the Einstein Telescope. One would like to investigate
whether the observations of stellar mass black hole binaries
in Advanced LIGO (with SNR �30) and observations of
stellar mass (with SNR of a few hundreds) as well as
intermediate mass (with SNR�40) BBHs in ET, will allow
us to measure some of the PN coefficients (if not all) with
good accuracies.
The first generation of long baseline interferometric

gravitational-wave detectors (GEO600, LIGO, and Virgo)
have more or less reached their design sensitivity and have
operated for a number of years taking good science quality
data. They have shown that it is possible to build, control,
and operate highly sensitive instruments. All of these
projects are now on the path toward building advanced
versions with strain sensitivities of a factor of 10 better
than their current versions. This is made possible with
research and technology in high power lasers, ultrahigh
seismic isolation systems, improved control systems, etc.,
that has been developed over the past decade. When com-
pleted around 2015–2017, advanced detectors are expected
to make routine observation of gravitational waves—the
most promising of all sources being the coalescence of
binaries consisting of compact objects (see Sec. II E for
expected binary coalescence rates).
While advanced detectors will open the gravitational

window for astronomical observations, the expected
signal-to-noise ratios will not be routinely large enough
to carry out strong-field tests of GR or high precision
measurements of cosmological measurements. The world-
wide gravitational-wave community has already begun to
explore the technological development that is necessary to
build detectors that are an order of magnitude better than
the advanced instruments. The Einstein Telescope is a
three-year conceptual design study funded by the
European Commission with the goal to identify the chal-
lenges to mitigate gravity gradient and seismic noise in the
low-frequency region to make it possible to observe in the
1–10 Hz band. ET will be designed to also make an order-
of-magnitude improvement in strain sensitivity in the 10–
1000 Hz band. Such a detector will be capable of making
routine observation of high-SNR events that will be useful
for carrying out precisions tests of general relativity.

A. Advanced LIGO

For the studies related to Advanced LIGO we use the
Advanced LIGO sensitivity curve [36]. The analytical fit
of the noise curve for Advanced LIGO is given by the
expression,
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ShðfÞ ¼ S0

�
1016�4ðf�7:9Þ2 þ 2:4� 10�62x�50 þ 0:08x�4:69 þ 123:35

�
1� 0:23x2 þ 0:0764x4

1þ 0:17x2

��
; f � fs;

¼ 1; f < fs: (2.1)

where x ¼ f=f0, f0 ¼ 215 Hz, S0 ¼ 10�49 Hz�1, and fs
is a low-frequency cutoff below which ShðfÞ can be con-
sidered infinite for all practical purposes. We have chosen
it to be 20 Hz. The amplitude spectrum of Advanced LIGO
is plotted in Fig. 1.

B. Einstein Telescope

The ET design study has come up with a number of
possible sensitivity curves [37]. Examples include a single
detector that operates with an improved sensitivity over the
whole band of 1 Hz to 1 kHz and a xylophone configuration
consisting of a pair of detectors, one tuned for best low-
frequency (i.e., 1–100 Hz) sensitivity and a second detector
tuned for optimal performance at higher frequencies of
100 Hz to a few kHz. In our studies in this paper, we will
use the ET-B sensitivity curve [37], which is also the
official sensitivity curve for ET.

An analytical fit to the ET sensitivity curve is given by

S1=2h ðfÞ ¼ S1=20 ½a1xb1 þ a2x
b2 þ a3x

b3 þa4x
b4�; f� fs;

¼1; f <fs; (2.2)

where x ¼ f=f0, f0 ¼ 100 Hz, S0 ¼ 10�50 Hz�1, and fs
is a low-frequency cutoff below which ShðfÞ can be con-
sidered infinite for all practical purposes. Also one has

a1 ¼ 2:39� 10�27; b1 ¼ �15:64;

a2 ¼ 0:349; b2 ¼ �2:145;

a3 ¼ 1:76; b3 ¼ �0:12;

a4 ¼ 0:409; b4 ¼ 1:10: (2.3)

The amplitude spectrum of ET is plotted in Fig. 1. In
connection with the ET design study one of the issues to
be looked into is the science case for going down to as low
a frequency as 1 Hz versus a more modest choice of 10 Hz.

C. The waveform model

The earlier papers which discussed the tests of GR,
including our own papers [23,25], assumed the so-called
restricted post-Newtonian waveform (RWF) for quasicir-
cular, adiabatic inspiral, which contains the dominant har-
monic at twice the orbital frequency and no corrections to
the amplitude. In the present study, we include the effects
of subdominant harmonics in the waveforms. Such a wave-
form, as mentioned earlier, is called the FWF and includes
harmonics other than the dominant one, each having PN
corrections to their amplitudes. At present the most accu-
rate waveforms available include PN corrections in ampli-
tude to 3PN order and in phase to 3.5PN order [38–40]. To
see how one might test GR or, more precisely, the structure
of the PN theory, let us begin by considering the waveform
from a binary in the frequency domain. The full signal in
its general form reads as

~hðfÞ¼2M�

DL

X8
k¼1

X6
n¼0

Aðk;n=2ÞðtðfkÞÞxðn=2Þþ1ðtðfkÞÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k _FðtðfkÞÞ

p
�exp½�i�ðk;n=2ÞðtðfkÞÞþ2�iftc� i�=4þ ik�ðfkÞ�;

(2.4)

where fk ¼ f=k, and the Fourier phase �ðfÞ is given by

�ðfÞ ¼ ��c þ
X7
j¼0

½c j þ c jl lnf�fðj�5Þ=3: (2.5)

Here tc and �c are the fiducial epoch of merger and the
phase of the signal at that epoch, respectively. Quantities
appearing in Eq. (2.4) with argument tðfkÞ denote their
values at the time when the instantaneous orbital frequency
FðtÞ sweeps past the value f=k, and xðtÞ is the PN parame-

ter given by xðtÞ ¼ ½2�MFðtÞ�2=3. Aðk;n=2ÞðtÞ and �ðk;n=2ÞðtÞ
are the polarization amplitudes and phases of the kth
harmonic at n=2th PN order in amplitude. The coefficients
in the PN expansion of the Fourier phase are given by

c j ¼ 3

256�
ð2�MÞðj�5Þ=3�j;

c jl ¼ 3

256�
ð2�MÞðj�5Þ=3�jl;

(2.6)

where

10
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10
4

f(Hz)
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2 (f
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H
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/2
)

Advanced LIGO
ET-B

FIG. 1 (color online). Amplitude spectrum of Advanced LIGO
and ET.
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�0 ¼ 1; �1 ¼ 0; �2 ¼ 3715

756
þ 55

9
�; �3 ¼ �16�; �4 ¼ 15 293 365

508 032
þ 27 145

504
�þ 3085

72
�2;

�jl ¼ 0; j ¼ 0; 1; 2; 3; 4; 7�5 ¼ �

�
38 645

756
� 65

9
�

�
½1þ lnð263=2�MÞ�; �5l ¼ �

�
38 645

756
� 65

9
�

�
;

�6 ¼ 11 583 231 236 531

4 694 215 680
� 640

3
�2 � 6848

21
Cþ

�
� 15 737 765 635

3 048 192
þ 2255

12
�2

�
�þ 76 055

1728
�2 � 127 825

1296
�3

� 6848

63
lnð128�MÞ;

�6l ¼ � 6848

63
; �7 ¼ �

�
77 096 675

254 016
þ 378 515

1512
�� 74 045

756
�2

�
: (2.7)

The constant C ¼ 0:577 � � � , appearing in the expression
for �6, is Euler’s constant.

We have total nine post-Newtonian parameters; seven
of these are the coefficients of vn terms for n ¼ 0, 2, 3, 4,
5, 6, 7 and two are coefficients of vn lnv terms for n ¼ 5, 6.
These are PN coefficients in Einstein’s theory and are
functions of just two mass parameters chosen to be the
total mass M and symmetric mass ratio �.

In addition to mass dependence, the amplitude correc-
tions also depend on the luminosity distance of the source
to the observer and four additional angular parameters
ðcos�;�; c ; cos�Þ related to the source location and orien-
tation [41,42]: � and� determine the sources location, c is
the polarization angle, and � is the inclination angle. Once
the mass dependences in amplitude corrections are re-
placed by our fundamental pair of c 0 and c 2, the whole
waveform can be characterized by a total ten parameters

p � ðlnDL; tc; �c; c 0; c 2; c T; cos�;�; c ; cos�Þ (2.8)

D. Fisher matrix and statistical errors

We employ the Fisher matrix approach [43,44] to see
how well we can measure these parameters. Below we
briefly list the basic equations of the Fisher matrix ap-
proach that we subsequently need.

Let ~�a denote the ‘‘true values’’ of the parameters and let
~�a þ ��a be the best-fit parameters in the presence of
some realization of the noise. Then for large SNR, error
in the estimation of parameters ��a obeys a Gaussian
probability distribution [43–46] of the form

pð��aÞ ¼ pð0Þ exp½�1
2�bc��

b��c�; (2.9)

where pð0Þ is a normalization constant. The quantity �ab

appearing in Eq. (2.9) is the Fisher information matrix and
is given by

�ab ¼ ðhajhbÞ; (2.10)

where ha � @h=@�a. Here, ð j Þ denotes the noise weighted
inner product. Given any two functions g and h their inner
product is defined as

ðgjhÞ � 4Re
Z fmax

fmin

df
~g	ðfÞ~hðfÞ
ShðfÞ : (2.11)

The integration limit ½fmin; fmax� is determined by both the
detector and by the nature of the signal. Each harmonic in
~hðfÞ is assumed to vanish outside a certain frequency
range. The simplest physical choice is to set the contribu-
tion from the kth harmonic to the waveform zero above the
frequency kflso, where flso is the orbital frequency at the
last stable orbit [47]. Since the amplitude-corrected wave-
form we are using in this work has eight harmonics, we set
the upper cutoff to be 8flso when we use the FWF in the
analysis. For lower cutoff, as power spectral densities
ShðfÞ tend to rise very quickly below a certain frequency
fs where they can be considered infinite for all practical
purposes, we may set it to be fs. Using the definition of the
inner product one can reexpress �ab more explicitly as

�ab ¼ 4
Z kflso

fs

Reð~h	aðfÞ~hbðfÞÞ
ShðfÞ df: (2.12)

The covariance matrix, defined as the inverse of the Fisher
matrix, is given by

�ab � h��a��bi ¼ ð��1Þab; (2.13)

where h�i denotes an average over the probability distribu-
tion function in Eq. (2.9). The root-mean-square error�a in
the estimation of the parameters �a is

�a ¼ hð��aÞ2i1=2 ¼
ffiffiffiffiffiffiffiffi
�aa

p
: (2.14)

In the present work we deal with inspiralling compact
binaries as seen by Earth bound detectors. For such burst
sources, one can approximate the detector’s beam pattern
functions as being constant over the duration of the signal
and thus we can assume that angular parameters ( cos�, �,
and c ) as well as the luminosity distance (DL) are fixed
and thus can be excluded from the analysis. With this
restriction, the large 10-dimensional parameter space re-
duces to a smaller 6-dimensional parameter space given by

p � ðtc; �c; c 0; c 2; c T; cos�Þ: (2.15)

In order to test the PN structure, one should be able to
measure various PN coefficients with good accuracy. In the

MISHRA et al. PHYSICAL REVIEW D 82, 064010 (2010)

064010-6



present work we have assumed that the relative error in the
measurement of a parameter should be less than 10%, i.e.
�c j=c j 
 0:1, where �c j is the error in the estimation

of the parameter c j, in order to estimate its value in the PN

series with confidence.

E. Systems investigated

The first detection of gravitational radiation in ground-
based interferometric detectors is generally expected to be
from the coalescence of compact binary systems with
neutron star and black hole components [48]. Among
these, binary neutron stars (BNS) are arguably the most
promising ones with expected rates of about 40 mergers
per year in Advanced LIGO and millions of them in ET.
While very interesting for other proposed tests of GR, BNS
systems are not useful for the tests proposed in this study.
For our purposes a compact binary in which one or both the
components is a stellar mass (� 2–30M�) or intermediate
mass (� 50–1000M�) black hole (the other being a neu-
tron star) would be most interesting. For our studies related
to Advanced LIGO, we have chosen binary black holes in
the mass range 11–110M� and their distance from the
Earth to be 300 Mpc.

For the analysis using ET we have discussed separately
stellar mass and intermediate mass BBHs. For stellar mass
BBHs, we have again chosen their luminosity distance
from the Earth to be 300 Mpc and the range of the total
mass to be 11–44M�. Coalescence rate of stellar mass
BBHs is highly uncertain. The predicted rate of coales-
cence within a distance of 300 Mpc varies between one
event per 10 years to several per year [49]. However, it is
with such rare high-SNR events that one expects to per-
form precision tests of GR. For intermediate mass black
holes, we have chosen the distance to be 3 Gpc (z ¼ 0:55),
and their total mass to be in the range 55–1100M�. The
evolutionary history of intermediate mass BBHs and their
rate of coalescence is still not well understood. The main
motivation to study these systems comes from the models
that invoke them as seeds of massive black holes at galactic
nuclei. In a recent study, it has been suggested that only
few coalescence events of intermediate mass BBHs could
be expected within a redshift of z ¼ 2. Also depending on
what triggered seed galaxies there may be a few events
within a redshift of z ¼ 1 [35,49–51].

F. Implementation of the test

As mentioned earlier, in Einstein’s theory (and thus in
theories ‘‘close’’ to GR) each PN coefficient for a non-
spinning compact binary is a function of the two mass
parameters, the total massM and the symmetric mass ratio
�. In other words, we can say that each c i is a function of
the masses ðm1; m2Þ of the components constituting the
binary, i.e. c i � c iðm1; m2Þ. With high-SNR GW obser-
vations of stellar and intermediate mass BBHs in
Advanced LIGO and ET, it would be possible to measure

the individual masses constituting the binary with good
accuracies. Thus, once the (statistical) error in the parame-
ter is estimated using the Fisher matrix, we can represent
the region it spans in the space of masses by inverting the
relation c i � c iðm1; m2Þ to get say m2 � m2ðc i; m1Þ.
Given the measured value c meas

i and the errors �c i in
the estimation of c i, the region in the mass plane corre-
sponding to m2 is given by m2 � m2ðc meas

i � �c i; m1Þ.
For each c i, there would be an allowed region in the
m1-m2 plane and if Einstein’s theory of gravity, or, more
precisely, the PN approximation to it, is a correct theory
then the three parameters c 0, c 2, and c T (the test pa-
rameter) should have a common nonempty intersection in
the m1-m2 plane. Proceeding in this way, for six test
parameters we shall have six different tests of the theory.
In the present work, we shall only discuss asymmetric
binaries with component mass ratio qm ¼ 0:1. Since the
different PN coefficients are symmetric with respect to the
exchange ofm1 andm2, we expect plots in them1-m2 plane
to have two symmetric branches. Figures 2, 6, and 8 show
one branch of the full plot.
Figure 2 schematically demonstrates how the test works

by using c 0 and c 2 as basic variables and c 5l as a test
parameter. The plot on the left uses PN coefficients pre-
dicted by GR, assuming GR is a correct theory of gravity.
Clearly, this shows that all three parameters, c 0, c 2, and
c 5l, have a common nonempty intersection in the plane of
masses and this is what we expect if GR is the correct
theory of gravity.
In contrast, consider the possibility that the correct

theory of gravity is a hypothetical non-GR theory in which
the phasing coefficient c 5l and all higher PN coefficients
differ from the GR values by 1%.We have assumed here, in
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FIG. 2 (color online). Plots showing the regions in the m1-m2

plane that correspond to 1-� uncertainties in c 0, c 2, and c 5l

(left panel) and those in c 0, c 2, and c 5lmod (right panel) for a
ð2; 20ÞM� BBH at a luminosity distance of DL ¼ 300 Mpc
observed by ET. The low-frequency cutoff is 1 Hz and RWF
has been used. For the curves in the right panel we have assumed
that the correct theory of gravity is a hypothetical non-GR theory
in which the phasing coefficient c 5l and all higher PN coef-
ficients differ from the GR values by 1%.
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an ad hoc manner, that the deviation of the PN terms at
higher orders above the 2.5PN term (which is put to test) to
be a simple scaling, i.e., c k ! 1:01c k for k � 5. As we
shall show later, there is a range of binary masses for which
the observation of the GW signal by ET could estimate this
coefficient with an accuracy much better than 1%. In this
scenario, if we interpret the c 5l obtained by fitting to the
observed GW signal, as a GR coefficient, there will defi-
nitely be an inconsistency in the m1-m2 plane. This can
clearly be seen in the right panel of Fig. 2 where there is no
overlapping region between the three parameters in ques-
tion in them1-m2 plane, thus demonstrating the spirit of the
proposed test.

Figure 3 shows a similar exercise for the ð10; 100ÞM�
BBH located at a luminosity distance of DL ¼ 3 Gpc
observed by ET. The low-frequency cutoff is 1 Hz and
RWF has been used. The left panel in Fig. 3 assumes that
GR is the correct theory of gravity, whereas the middle and
right panels assume that the correct theory of gravity is a
hypothetical non-GR theory in which the PN coefficients at
2.5PN (i.e., c 5l) and all higher orders differ from their GR
values by 1% and 10%, respectively. The 2.5PN coefficient
in GR and in the above two hypothetical theories can be
measured with fractional accuracies of 5.6%, 5.5%, and
5.1%, respectively, for the system under consideration.

As in the previous case (cf., Fig. 2), we notice the
departures from GR. However, these departures are not
very clear in the middle panel where the 2.5PN coefficient
and other higher-order terms differ from their GR values by
only 1%. As a result one would not be able to discriminate
between the two theories by using GW observations of
such sources in ET, even though the parameter can be
measured accurately. The right panel of Fig. 3, which
corresponds to a theory in which the values of 2.5PN and
higher-order coefficients differ from their GR values by

10%, brings such significant departures from GR that
despite the larger errors in the estimation of the test
parameter, one can distinguish between the two theories
using the test we are proposing here. One should bear in
mind that the model we have used is the simplest possible
way in which a deviation could occur. But our purpose here
is to have a proof of principle demonstration of the power
of the proposed test, given the lack of knowledge of the
exact manner in which such deviations could occur.
To summarize, assuming that GR is correct, our proposal

gives the accuracy with which three of the PN parameters
can be measured. How does that test GR? For e.g. if GR is
not correct and differs at, say 1.5 PN level onward, then our
claim is that we would begin to see inconsistencies in the
estimated parameter values beyond the accuracy of mea-
surement provided deviations from GR are large enough.
One may be concerned about the extent to which the
departure of higher-order terms from their GR values
would penalize the estimation of lower-order terms. As
evidenced by our examples above, they induce bias in the
estimation of parameters but do not lead to greater errors in
the estimation of parameters. In other words, the 1.5PN and
higher-order PN coefficients not agreeing with GR might
shift the mean of the distribution of ðM;�Þ but the width
should remain more or less the same. Put differently, if
the PN expansion differs from GR slightly then the error
in the estimation of parameters will not change to first
order.

III. THE RESULTS

A. Advanced LIGO

In this section we investigate the possibility of the test
using GW observations of BBHs in Advanced LIGO. As
discussed earlier, the range of total mass explored is
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FIG. 3 (color online). Plots showing the regions in the m1-m2 plane that correspond to 1-� uncertainties in Newtonian, 1PN, and
2.5PN coefficients in the PN series for a ð10; 100ÞM� BBH at a luminosity distance of DL ¼ 3 Gpc observed by ET. The low-
frequency cutoff is 1 Hz and RWF has been used. The left panel corresponds to GR as the correct theory of gravity while the middle
and right panels correspond to hypothetical non-GR theories of gravity which have phasing coefficients c 5l (2.5PN) and higher
differing from the GR values by 1% and 10%, respectively.
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11–110M� and we assume that binaries are located at a
luminosity distance of 300 Mpc. Plots in Fig. 4 show the
variation of relative accuracies with which two of the PN
coefficients, c 3 and c 5l, can be measured by Advanced
LIGO using the restricted and the full waveform. The
components of the binary have the mass ratio of 0.1.

It is evident from the plots that when the FWF is used,
c 3 and c 5l can be measured with fractional accuracies
better than 6% and 23%, respectively, in the whole mass
range under consideration. We shall require (rather arbi-
trarily) that the relative error in the measurement of a PN
coefficient be less than 10% in order for the test to be
effective. Clearly, c 3 can be estimated quite accurately and
thus it can be used to test the theory. On the other hand,
since c 5l is not so well determined, it can still provide a
less stringent test of the theory. The measurement of other
PN coefficients is not accurate enough to lead to a mean-
ingful test of GR.

The plots clearly show the benefits of bringing higher
harmonics into the analysis. The use of the FWF typically
improves the estimation by a factor of 3 to almost 100.

B. Einstein Telescope

In the previous section we have seen that with Advanced
LIGO one can only test PN theory up to 1.5PN. Can one do
better with the proposed third generation detector like the
ET? In what follows we investigate the extent to which one
can test the PN theory using GW observations of stellar
mass and intermediate mass BBHs using ET. In addition to

this we will discuss some other key issues influencing the
results such as effects of PN systematics on the test, choice
of parametrization, and dependence of the test on angular
parameters.

1. Stellar mass black hole binaries

Figure 5 plots the relative errors �c T=c T as a function
of total mass M of the binary at a distance of DL ¼
300 Mpc. We have considered stellar mass BBHs of un-
equal masses and mass ratio 0.1, with the total mass in the
range 11–44M�. Figure 5 also shows two types of com-
parisons: (a) full waveform vs restricted waveform, and
(b) a lower frequency cutoff of 10 vs 1 Hz. The top and
bottom panels correspond to the lower frequency cutoff of
1 and 10 Hz, respectively, while the left and right panels
correspond to the RWF and FWF, respectively. The source
orientations are chosen arbitrarily to be � ¼ � ¼ �=6,
c ¼ �=4, and � ¼ �=3. It should be evident from the
plots that the best estimates of various test parameters are
for the combination using the FWF with a lower cutoff
frequency of 1 Hz. In this case, all c i’s except c 4 can be
measured with fractional accuracies better that 2% for the
total mass in the range 11–44M�. On the other hand when
the lower cutoff is 10 Hz, with the FWF all c i’s except c 4

can be measured with fractional accuracies better than 7%.
It is also evident from the plots that as compared to other
test parameters, c 3 is the most accurately measured pa-
rameter in all cases and best estimated when the lower
frequency cutoff is 1 Hz. On the other hand, c 4 is the worst
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FIG. 4 (color online). Plots showing the variation of relative errors �c T=c T in the test parameters c T ¼ c 3, c 5l as a function of
total mass of binaries in the range 11–110M� (with component masses having mass ratio of 0.1) located at 300 Mpc observed by
Advanced LIGO, using both the RWF and the FWF as a waveform model with the source orientations chosen arbitrarily to be � ¼
� ¼ �=6, c ¼ �=4, and � ¼ �=3. The noise curve corresponds to the one shown in Fig. 1 for the Advanced LIGO case and its
analytical fit is given by Eq. (2.1). It is evident from the plot in the left panel that the fractional accuracies with which c 3 can be
measured are better than 6% for the entire mass range under consideration when FWF is used and thus can be used to test the theory of
gravity. c 5l (right panel) can be measured with fractional accuracies better than 23% for the entire mass range when FWF is used but
being a poorly determined parameter it can provide a much less stringent test of the theory of gravity.

PARAMETRIZED TESTS OF POST-NEWTONIAN THEORY . . . PHYSICAL REVIEW D 82, 064010 (2010)

064010-9



measured parameter of all the test parameters. However,
we see the best improvement in its measurement when
going from the RWF to the FWF.

Figure 6 shows the regions in the m1-m2 plane that
corresponds to 1-� uncertainties in c 0, c 2 and various
test parameters which in turn will be one of the six test
parameters c T ¼ c 3, c 4, c 5l, c 6, c 6l, and c 7, one at a
time, for a ð2; 20ÞM� BBH, at a luminosity distance of
DL ¼ 300 Mpc observed by ET. It is evident from the
plots corresponding to various tests that each test

parameter is consistent with corresponding fundamental
pair ðc 0; c 2Þ.

2. Intermediate mass black hole binaries

Figure 7 plots the relative errors �c T=c T as a func
tion of the total mass M of the binary at a distance of
DL ¼ 3 Gpc. We have considered BBH of unequal masses
with mass ratio 0.1. As in Fig. 5, Fig. 7 also shows two
types of comparisons: (a) the effect of the use of FWF on
parameter estimation against RWF, and (b) the effect of
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FIG. 5 (color online). Plots showing the variation of relative errors �c T=c T in the test parameters c T ¼ c 3, c 4, c 5l, c 6, c 6l, and
c 7 as a function of total mass M for stellar mass black hole binaries (with component masses having mass ratio 0.1) at a luminosity
distance of DL ¼ 300 Mpc observed by ET, using both RWF (left panels) and FWF (right panels) as waveform models. The choice of
the source orientations is the same as quoted in Fig. 4. The noise curve corresponds to the recent ET-B sensitivity curve. Top panels
correspond to the lower frequency cutoff of 1 Hz. By using FWF as the waveform model all c k’s except c 4 can be tested with
fractional accuracy better than 2% in the mass range 11–44M�. Bottom panels correspond to the lower frequency cutoff of 10 Hz.
Using FWF, all c k’s except c 4 can be tested with fractional accuracy better than 7% in the mass range 11–44M�.
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lowering the cutoff frequency from 10 to 1 Hz. As before,
the top and bottom panels correspond to the cutoff fre-
quency of 1 and 10 Hz, respectively, and left and right
panels to RWF and FWF, respectively. The source orienta-
tions are chosen arbitrarily to be � ¼ � ¼ �=6, c ¼ �=4,
and � ¼ �=3.

It is evident from the plots that the least relative errors in
various test parameters are for the combination that uses
the FWF and a lower cutoff of 1 Hz. Unlike the case of
stellar mass BBHs, in the case of intermediate mass BBHs
only two of the test parameters, c 3 and c 5l, can be
measured with fractional accuracies better that 10% for
the total mass in the range 55–400M� with FWF and lower
cutoff frequency as 1 Hz. On the other hand, when the
lower frequency cutoff is 10 Hz the use of the FWF allows
the estimation of c 3 and c 5l with fractional accuracies
better than 10% for the total mass in the range 90–220M�.
As compared to other test parameters, c 3 is the most
accurately measured parameter in all cases and best esti-
mated when the low-frequency cutoff is 1 Hz. Parameters
c 4 and c 6 are poorly measured as compared to the other

test parameters but again we see the best improvement in
the estimate of c 4 when using the FWF.
Figure 8 shows the regions in the m1-m2 plane that

correspond to 1-� uncertainties in c 0, c 2 and the test
parameters c T ¼ c 3, c 4, c 5l, c 6, c 6l, and c 7, one at a
time, for a ð20; 200ÞM� BBH at a luminosity distance of
DL ¼ 3 Gpc observed by ET. It is clear from the plots that
each test parameter is consistent with the corresponding
fundamental pair ðc 0; c 2Þ.

3. Effects of PN systematics on the test

The inability to measure all the PN parameters simulta-
neously led us to propose a more modest procedure to test
the PN parameters one at a time. In parameter estimation, it
seems intuitive not to ignore our knowledge of the known
high PN order phasing. Further, it is natural to assume that
if an alternative theory of gravitation, similar to GR, agrees
with GR at some PN order, it would agree with it at a lower
PN order but may differ from it at some higher PN order.
Thus, when testing a coefficient at some particular PN
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FIG. 6 (color online). Plots showing the regions in the m1-m2 plane that correspond to 1-� uncertainties in c 0, c 2 and various test
parameters, which happen to be one of the six test parameters c T ¼ c 3, c 4; c 5l, c 6, c 6l, and c 7 at one time, for a (2, 20)M� BBH at
a luminosity distance of DL ¼ 300 Mpc observed by ET. In all six plots shown above c 0 and c 2 are chosen as the fundamental
parameters (from which we can measure the masses of the two black holes). Each parameter corresponds to a given region in the
m1-m2 plane and if GR is the correct theory of gravity then all three parameters, c 0, c 2, and c T should have a nonempty intersection
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which the Y axis has been scaled by a factor 10.
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order, expressing a lower-order PN coefficient in terms of
the basic pair of PN variables seems reasonable. However,
expressing the higher PN order coefficients in terms of the
basic pair may appear more disconcerting. Here we look at
the issue in a little more detail and provide our point
of view.

We propose a comparison of the following two schemes:
The first scheme, as before, uses c 0 and c 2 as basic
parameters and all known PN coefficients up to 3.5PN,
except the test parameter, are expressed in terms of c 0 and
c 2. The second scheme is similar but the phase evolution

is truncated at the PN order corresponding to the test
parameter.
Thus, to test c 3 in the second scheme the phasing is

truncated at 1.5PN, to test c 4 at 2PN and so on. Figure 9
compares the two schemes. It should be evident from the
figure that in the first scheme the use of 3.5PN phasing,
rather than a lower PN order (e.g., 1.5PN in testing c 3),
does improve the accuracy with which one can measure
a certain parameter. Conversely, the poorer estimate (i.e.
larger error) in the second scheme is due to the neglect
of higher PN order terms.
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FIG. 7 (color online). Same as Fig. 5 but for intermediate mass black hole binaries (with component masses having mass ratio 0.1) at
a luminosity distance of DL ¼ 3 Gpc. With lower frequency cutoff of 1 Hz, using FWF as the waveform model, c 3 and c 5l can be
tested with fractional accuracy better than 10% for the mass range 55–400M�. On the other hand, with a lower frequency cutoff of
10 Hz, using the FWF, c 3 and c 5l can be tested with fractional accuracy better than 10% for the mass range 90–220M�.
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One can infer, therefore, that what is achieved in the first
scheme is an improvement in parameter estimation arising
from higher-order PN phasing; parametrization of higher-
order PN coefficients in terms the two basic variables is
indeed a reasonable choice if one wants to quantitatively
look at the deviation from standard GR of an alternative
theory of gravitation similar to GR.2 Let us also note that if
a theory of gravity deviates from GR at a particular PN
order, then in our first scheme the test may actually fail at a
lower PN order. As a result, our test will not be able to
conclusively assert the PN order that is inconsistent with
GR. Rather a failure of our test is indicative of the failure of
GR at some PN order. It would then be necessary to carry
out a more powerful test of the theory by treating all the PN
coefficients as independent parameters. Such a test could in
principle help determine at which order(s) the true theory
of gravity is inconsistent with GR.

4. The choice of basic parametrization
and the accuracy of the test

As discussed in Sec. I, in the present work we have
chosen the lowest-order (and hence the best determined)
PN coefficients c 0 and c 2 to parametrize the waveform.
One might wonder whether the choice of c 0 and c 2 as
basic variables is the most optimal. To investigate this
further, we explored other choices of the basic pair to
parametrize the waveform, e.g. ðc 0; c fÞ, where f can be

one of ð3; 4; 5l; 6; 6l; 7Þ. Table I shows a comparison of the
accuracies of the measurement of the various PN parame-
ters under different choices of the parametrization schemes
for a ð10; 100ÞM� binary, located at a luminosity distance
of 3 Gpc. The comparison uses the RWF, with lower
frequency cutoffs of 1 and 10 Hz, respectively.
From the table the following observations are evident:
(1) A comparison of the values in blocks symmetric

across the principal diagonal one can compare the
errors in the estimation of a particular parameter in
the following two cases: once when the parameter is
one of the basic variables and secondly when it is a
test variable. It is also clear that, in general, a
parameter is determined more precisely when it is
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FIG. 8 (color online). Same as in Fig. 6 but for intermediate black hole binaries in the mass range ð20; 200ÞM� at a luminosity
distance of DL ¼ 3 Gpc observed by ET. Notice that all bottom panels and the top middle panel have the same scaling, whereas the Y
axes of the top left panel and the top right panel have been scaled by a factor of 5. Note that there appears just one boundary for c 4 in
the plot shown in the top middle panel since the other bound does not exist for the range of values on the X axis.

2A variant of the test starting from GW phasing expressions in
a more general meta theory may need to be implemented to
include theories with different PN structure like scalar-tensor
theories with qualitatively different effects like dipole radiation.
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a basic parameter than when it is a test parameter.
This is mainly because the basic variables bring new
functional dependences via the rest of the phasing
terms.

(2) The choice of the lower-order PN coefficient c 2 as a
basic variable leads to a more precise test.

(3) When c 0 is one of the basic variables, the disper-
sion in the relative error of the other basic variable is
least when the lowest-order PN coefficient c 2 is
chosen as the second basic variable.

(4) An interesting case corresponds to the choice of c 4

as the basic variable which seems to allow for the
best determination of c 4.

As a result, although, in principle, one has the freedom of
parametrizing the waveform in terms of any of the two PN
coefficients, the choice of ðc 0; c 2Þ as basic variables is the
optimal one.
The above question may be equivalently investigated by

looking at the volume of the three-dimensional ellipsoid
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FIG. 9 (color online). A comparison of relative errors in the measurement of various PN parameters for binaries with masses in the
range 55–220M� at a luminosity distance of 3 Gpc for two cases: The first is the same as before when c 0 and c 2 are basic parameters
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RWF has been used. The test parameter with truncated phasing is denoted by c it while with full 3.5PN phasing it is denoted by c if .
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corresponding to the three phasing coefficients which are
involved in the test. We find that the smallest volume of the
ellipsoid corresponds to the case where c 0 and c 2 are used
as basic variables as compared to other combinations, for

all test parameters except c 4 and c 6. For these two
parameters the volume is smaller when they are used as
basic variables together with c 0.

5. The choice of angles

In Sec. II we pointed out that the signal depends on four
angular parameters ðcos�;�; c ; cos�Þ related to the source
location and orientation but that they were chosen arbi-
trarily to be � ¼ � ¼ �=6, c ¼ �=4, and � ¼ �=3 in the
present study. This is because for terrestrial detectors and
burst sources the angles could be considered constant. To
quantify the effect of these angular dependences on the test
we computed the relative error in a particular PN parameter
for 100 different realizations of these angular parameters.
The result is plotted in Fig. 10. From Figs. 7 and 10, it is

clear that the value of the relative error in the estimation of
c 3 for a ð10; 100ÞM� binary located at a luminosity dis-
tance of 3 Gpc is a typical value and, as was physically
expected, the weak dependence on angles is a good
approximation.

IV. SUMMARYAND CONCLUDING REMARKS

In this paper we have studied the possibility of testing
the theory of gravity within a well-defined subclass of ppE

TABLE I. Accuracies of the measurement of various PN parameters (using the RWF and 1 Hz low-frequency cutoff) for
ð10; 100ÞM� binary located at a luminosity distance of 3 Gpc, with different choices of parametrization schemes. For each entry,
the number within parentheses is the factor by which the accuracy will be reduced if a lower cutoff of 10 Hz is chosen instead of 1 Hz.
For the fundamental pair we have chosen ðc 0; c fÞ, where f can be any of 2, 3, 4, 5l, 6, 6l, or 7. In each case, the relative error in the

test parameter is listed in the third row.

ðm1; m2Þ ¼ ð10; 100ÞM�; fs ¼ 1 Hz; DL ¼ 3 Gpc; waveform model: RWF

c 0-c 2 c 0-c 3 c 0-c 4 c 0-c 5l c 0-c 6 c 0-c 6l c 0-c 7

�c 0=c 0 � � � 0.001 5 (60) 0.001 5 (60) 0.001 5 (60) 0.001 5 (60) 0.001 5 (60) 0.001 5 (60)

�c f=c f � � � 0.009 2 (15) 0.010 (17) 0.017 (18) 0.043 (17) 0.020 (19) 0.022 (19)

�c 2=c 2 � � � 0.027 (27) 0.027 (27) 0.027 (27) 0.027 (27) 0.027 (27) 0.027 (27)

�c 0=c 0 0.001 0 (55) � � � 0.001 0 (55) 0.0010 (55) 0.001 0 (55) 0.001 0 (55) 0.001 0 (55)

�c f=c f 0.008 9 (13) � � � 0.020 (16) 0.031 (16) 0.082 (16) 0.037 (16) 0.042 (16)

�c 3=c 3 0.005 0 (42) � � � 0.005 0 (42) 0.005 0 (42) 0.005 0 (42) 0.005 0 (42) 0.005 0 (42)

�c 0=c 0 0.001 1 (28) 0.001 1 (28) � � � 0.001 1 (28) 0.001 1 (28) 0.001 1 (28) 0.001 1 (28)

�c f=c f 0.074 (8) 0.15 (8) � � � 0.25 (8) 0.65 (8) 0.29 (8) 0.33 (8)

�c 4=c 4 2.1 (8) 2.1 (8) � � � 2.1 (8) 2.1 (8) 2.1 (8) 2.1 (8)

�c 0=c 0 0.000 59 (77) 0.000 59 (77) 0.000 59 (77) � � � 0.000 59 (77) 0.000 59 (77) 0.000 59 (77)

�c f=c f 0.014 (24) 0.026 (23) 0.029 (23) � � � 0.12 (23) 0.052 (23) 0.058 (23)

�c 5l=c 5l 0.056 (17) 0.056 (17) 0.056 (17) � � � 0.056 (17) 0.056 (17) 0.056 (17)

�c 0=c 0 0.000 54 (64) 0.000 54 (64) 0.000 54 (64) 0.000 54 (64) � � � 0.000 54 (64) 0.000 54 (64)

�c f=c f 0.006 7 (21) 0.013 (20) 0.014 (19) 0.021 (19) � � � 0.025 (19) 0.028 (19)

�c 6=c 6 0.67 (13) 0.67 (13) 0.67 (13) 0.67 (13) � � � 0.67 (13) 0.67 (13)

�c 0=c 0 0.000 51 (62) 0.000 51 (62) 0.000 51 (62) 0.000 51 (62) 0.000 51 (62) � � � 0.000 51 (62)

�c f=c f 0.005 1 (21) 0.009 6 (19) 0.010 (19) 0.016 (19) 0.042 (19) � � � 0.021 (18)

�c 6l=c 6l 0.17 (13) 0.17 (13) 0.17 (13) 0.17 (13) 0.17 (13) � � � 0.17 (13)

�c 0=c 0 0.000 49 (59) 0.000 49 (59) 0.000 49 (59) 0.000 49 (59) 0.000 49 (59) 0.000 49 (59) � � �
�c f=c f 0.004 6 (20) 0.008 7 (18) 0.009 4 (18) 0.014 (17) 0.038 (18) 0.017 (17) � � �
�c 7=c 7 0.19 (10) 0.19 (10) 0.19 (10) 0.19 (10) 0.19 (10) 0.19 (10) � � �
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FIG. 10. Histogram for the relative error in the estimation of
the parameter c 3 using 100 different realizations of angular
parameters for a ð10; 100ÞM� binary located at the luminosity
distance of 3 Gpc. The low-frequency cutoff is 1 Hz and RWF
has been used.
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theories using GW observations of BBHs by a typical
second generation GW interferometer (Advanced LIGO)
and the plausible third generation GW interferometer (ET).
Within this subclass of theories for Advanced LIGO we
have shown that GW observations of BBHs (in the range
11–110M� and at a luminosity distance of 300Mpc) can be
used to estimate only the PN coefficient c 3 with fractional
accuracy better than 6% when the FWF is used (see Fig. 4).
Estimation of a PN coefficient with such an accuracy
suggests that Advanced LIGO could indeed begin the era
of strong-field tests of gravity. We have also compared the
results for the FWF and RWF and shown that FWF reduces
the errors by a factor of 3 to almost 100.

We have also studied in detail the stellar mass and
intermediate mass regimes of the compact binary source
population in the ET sensitivity band, for 1 and 10 Hz
lower cutoff frequencies and compared the advantage of
using the FWF model over the RWF model. We find that
the lower frequency cutoff of 1 Hz plays a crucial role in
testing GR with ET.

For stellar mass binary coalescences (total mass

 44M�) as well as intermediate BH binaries, the lower
cutoff of 1 Hz improves the estimation of all PN parame-
ters in the phasing formula. For stellar mass binaries, the
improvement in the estimation is between a factor of 2 to
almost 20 when the RWF model is used. When the FWF
model is used, the improvements are typically between
factors 2–10 (see Fig. 5).

For intermediate mass binaries, which coalesce at lower
frequencies, though the smaller lower cutoff improves the
parameter estimation, the errors associated with the mea-
surement of various parameters are so large that the tests
are not very interesting (see Fig. 7). However, when total
mass is less than about 100M�, all the c k’s are measured
with relative errors less than unity, the most accurately
determined parameters being c 3 and c 5l, which are de-
termined with accuracies better than 10%. This seems to be
the most interesting mass range for the proposed test in the
ET band. Though the use of the FWF does improve the
estimation of various parameters, the test is less impressive
since for astrophysically realistic event rates, we have to
consider distances as large as 3 Gpc (as opposed to
300 Mpc for the stellar mass case). Thus, only if there is
such an event very close by, can the test be performed very
accurately.

It is worth bearing in mind that in addition to systematic
effects due to higher-order PN terms, various other system-
atic effects could offset the accuracy of the proposed test:

(1) If the components of the binaries have spins, the
phasing coefficients are functions not only of the
individual masses but also the spin parameters.
Further, if the binary is precessing (which would
be the case when the spins are not aligned or anti-
aligned with the orbital angular momentum vector
of the binary), the waveforms will have a very

different structure due to spin-induced modulations.
To get a simple estimate of the effect of spins on the
proposed test, we consider spinning but nonprecess-
ing binaries. For such binaries, the effect of spin is to
introduce additional spin-dependent contributions in
various phasing coefficients at and above 1.5PN.
The 1.5PN phasing coefficient in this case has an
additional spin parameter �, which is a function of
the individual spins of the binary and takes values
0 
 � 
 8:5 [52]. We found that for values of
� � 6, the bias in our estimate could be more than
100%. This means that the presence of spins could
significantly bias the proposed test for large values
of the spin parameter.

(2) Another effect is that of the orbital eccentricity,
which we have ignored by assuming the binary’s
orbit to be quasicircular. As shown in Refs. [16,53],
orbital eccentricity will introduce additional phas-
ing coefficients with completely different frequency
dependences. It will need a careful study to assess
how to incorporate the effect of eccentricity into our
analysis, which we postpone to a future work.

(3) Lastly, since we have used PN inspiral waveforms,
the neglect of merger and ringdown effects could
also lead to further systematic errors. By a proper
choice of the domain of integration of the signal, we
should be able to take care of it to some extent. A
detailed study using some of the analytic parame-
trizations of numerical relativity waveforms (see
Refs. [54–56]) is planned as a followup of this
work.

In this paper we have explored issues and indicated ways to
test a class of theories of gravitation close to GR by using
GW observations in Advanced LIGO and the Einstein
Telescope. The extension of these results within a more
general class of models like the ppE framework can be
expected to provide more general results in the future.
To fully test our proposal one must mimic the whole

exercise with mock data. One has to inject a non-GR signal
into Gaussian background with a signal that differs
from GR at 1.5PN and higher orders by a certain degree.
One would then need to extract, say, the first three parame-
ters by a Markov chain Monte Carlo technique that
employs GR templates, and see if what we expect based
on our toy examples above holds good. We are currently
exploring this exercise but this exercise is quite compute
intensive and goes beyond the scope of the present
paper and so we defer its full discussion to a future
publication.
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APPENDIX: SYSTEMATIC EFFECT DUE TO SPIN

We discuss the typical biases on our estimates due to the
assumption that the binary components are nonspinning.
We demonstrate this, by taking the 1.5PN phasing coeffi-
cient, where the spins first enter the phasing. For conve-
nience, we have assumed the spins of the binary are aligned
with the orbital angular momentum vector, in which case
we can use the direct analytical formula for the phasing
coefficient.

As we mentioned earlier, the nonspinning 1.5PN phasing

coefficient is given by �
nonspin
3 ¼ �16�. The correspond-

ing expression for spinning but nonprecessing binaries is

�
spin
3 ¼ �16�þ 4�, where � is a spin parameter which is

a function of the spins of the individual components of the
binary and whose value lies in the range 0 
 � 
 8:5 [52].
Thus the difference in the value of the 1.5PN coefficient

due to spin is 	�spin
3 ¼ �spin

3 � �nonspin
3 ¼ 4�. The bias in

our estimates of ��3

�
nonspin
3

is given by

��3

�spin
3

� ��3

�
nonspin
3

¼ ��3

�
nonspin
3

� Fð�Þ; (A1)

where Fð�Þ ¼ 4�
ð16��4�Þ quantifies the bias in our estimate.

Figure11 shows the plot of Fð�Þ. As is obvious, the
systematic bias due to spins could offset the estimation
of �3 by more than 100% for � � 6.
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