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Quantum walk models have been used as an algorithmic tool for quantum computation and to describe
various physical processes. This article revisits the relationship between relativistic quantum mechanics and
the quantum walks. We show the similarities of the mathematical structure of the decoupled and coupled
forms of the discrete-time quantum walk to that of the Klein-Gordon and Dirac equations, respectively. In
the latter case, the coin emerges as an analog of the spinor degree of freedom. Discrete-time quantum walk
as a coupled form of the continuous-time quantum walk is also shown by transforming the decoupled form
of the discrete-time quantum walk to the Schrödinger form. By showing the coin to be a means to make the
walk reversible and that the Dirac-like structure is a consequence of the coin use, our work suggests that the
relativistic causal structure is a consequence of conservation of information. However, decoherence (modeled
by projective measurements on position space) generates entropy that increases with time, making the walk
irreversible and thereby producing an arrow of time. The Lieb-Robinson bound is used to highlight the causal
structure of the quantum walk to put in perspective the relativistic structure of the quantum walk, the maximum
speed of walk propagation, and earlier findings related to the finite spread of the walk probability distribution.
We also present a two-dimensional quantum walk model on a two-state system to which the study can be
extended.
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I. INTRODUCTION

Quantum walks are the quantum analog of the classical
random walks [1–3] developed using the aspects of quantum
mechanics such as interference and superposition. Like their
classical counterpart, quantum walks are also widely studied
in two forms: continuous-time quantum walk [4] and discrete-
time quantum walk [3,5–7]. In the continuous-time quantum
walk, one can directly define the walk on the position Hilbert
space Hp, whereas in the discrete-time quantum walk, it
is necessary to introduce a quantum coin operation, an
additional coin Hilbert space Hc to define the direction in
which the particle has to evolve in position space. The results
from the continuous-time quantum walk and the discrete-
time quantum walk are often similar, but because of the
coin degree of freedom, the discrete-time variant has been
shown to be more powerful than the other in some contexts
[8].

Quantum walks have emerged as a powerful tool in the
development of quantum algorithms [9–11]. Furthermore, it
has been used to demonstrate the coherent quantum control
over atoms, quantum phase transition [12], to explain phenom-
ena such as breakdown of an electric-field driven system [13]
and direct experimental evidence for wavelike energy transfer
within photosynthetic systems [14,15]. Experimental imple-
mentation of the quantum walk has been reported with samples
in nuclear magnetic resonance systems [16,17]; in the contin-
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uous tunneling of light fields through waveguide lattices [18];
in the phase space of trapped ions [19,20] based on the scheme
proposed by [21], with single optically trapped atoms [22]; and
with single photon [23]. Various other schemes have been pro-
posed for its physical realization in different physical systems
[24–27].

The relationship between the idea of quantum walk and
relativistic quantum mechanics goes back to the discrete
version of the one-dimensional Dirac equation propagator
considered by Feynman and Hibbs [2]. Later, similarities of the
relativistic wave equations and unitary cellular and quantum
lattice gas automata were observed by Bialynicki-Birula [28]
and Meyer [5]. Recently, that is, after the extensive studies of
the one-dimensional discrete-time quantum walk, the relation-
ship between quantum walk models and relativistic quantum
mechanics has become a topic of interest [29–34]. In Ref. [29],
the one-dimensional quantum walk is mapped to the three-
dimensional Weyl equation. In different continuum limits, the
discrete-time quantum walk was shown to be equivalent to
the one-dimensional Dirac equation and the continuous-time
quantum walk, respectively [30,32]. In Ref. [31], the evolved
probability density for the Dirac particle was obtained from
the asymptotic form of the probability distribution of the
quantum walk. The effects similar to the relativistic effects,
namely, Zitterbewegung and Klein’s paradox, were shown to
be present in the discrete-time quantum walk [33], and in
Ref. [34], the Dirac equation with ultraviolet cutoff is shown
to provide a discrete-time quantum walk in three dimensions
on a four-component qubit [34].

The main focus of this article is to present in detail the
dynamics of the discrete-time quantum walk and the similarity
of its mathematical structure to that of the relativistic quantum
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mechanical evolution. We compare the similarities of the
mathematical structures of the decoupled and coupled forms of
the discrete-time quantum walk to those of the relativistic free
spin-0 particle Klein-Gordon and free spin-1/2 particle Dirac
equations, respectively. In the latter case, the coin emerges as
an analog of the spinor degree of freedom. By showing the
coin to be a means to make the walk reversible, and that
the Dirac-like structure is a consequence of the coin use,
our work suggests that the relativistic causal structure is a
consequence of conservation of information. We also discuss
the origin of time asymmetry in the projective measurement
on position space producing the arrow of time and making the
walk irreversible. The arrow of time in the quantum walk
also been discussed recently [35]. Discrete-time quantum
walk as a coupled form of the continuous-time quantum
walk is also shown by transforming the decoupled form of
the discrete-time quantum walk to the Schrödinger form.
The probability distribution for discrete-time quantum walk
evolution spreads in time, but this spreading is controlled by
the coin operation used during the evolution. The presence of
a speed limit in a discrete-time quantum walk dynamics is, in
fact, an instance of a much more general phenomenon know
as the Lieb-Robinson bound. Two-dimensional quantum walk
using a two-state particle is presented, to which the study can
be extended.

In Sec. II, we will first review the continuous-time quantum
walk which follows the Schrödinger form of evolution. In
Sec. III, we will review the discrete-time quantum walk
model: In Sec. III A, the dynamic structure of the discrete-time
quantum walk is discussed, followed by the consequence
of the projective measurement on the system, that is, the
arrow of time, in Sec. III B. In Sec. IV, we will study
the mathematical structure of the one-dimensional discrete-
time quantum walk: its decoupled form and similarities to the
free spin-0 particle relativistic form, that is, the Klein-Gordon
form (Sec. IV A) and Schrödinger form (Sec. IV B), and its
coupled form and similarities to the Dirac form (Sec. IV C).
In Sec. V, we present the Lieb-Robinson bound-like effect
in quantum walk evolution. In Sec. VI, a two-dimensional
discrete-time quantum walk model using a two-state particle,
to which the study can be extended, is presented before
concluding in Sec. VII.

II. CONTINUOUS-TIME QUANTUM WALK

To define the continuous-time quantum walk, it is easier
first to define the continuous-time classical random walk and
quantize it by introducing quantum amplitudes in place of
classical probabilities.

The continuous-time classical random walk takes place
entirely in the position space. To illustrate, let us define a
continuous-time classical random walk on the position space
Hp spanned by a vertex set V of a graph G with edge set
E,G = (V,E). A step of the random walk can be described
by an adjacency matrix A which transforms the probability
distribution over V ; that is,

Aj,k =
{

1 (j,k) ∈ E,

0 (j,k) /∈ E,
(1)

for every pair j,k ∈ V . The other important matrix associated
with the graph G is the generator matrix H given by

Hj,k =
⎧⎨
⎩

djγ j = k,

−γ (j,k) ∈ E,

0 otherwise,
(2)

where dj is the degree of the vertex j and γ is the probability
of transition between neighboring nodes per unit time.

If pj (t) denotes the probability of being at vertex j at time
t , then the transition on graph G is defined as the solution of
the differential equation

d

dt
pj (t) = −

∑
k∈V

Hj,kpk(t). (3)

The solution of the differential equation is given by

p(t) = e−Htp(0). (4)

By replacing the probabilities pj by quantum amplitudes
aj (t) = 〈j |ψ(t)〉, where |j 〉 is spanned by the orthogonal basis
of the position Hilbert space Hp, and introducing a factor of
i, we obtain

i
d

dt
aj (t) =

∑
k∈V

Hj,kak(t). (5)

We can see that Eq. (5) is the Schrödinger equation

i
d

dt
|ψ〉 = H|ψ〉. (6)

Since the generator matrix is an Hermitian operator, the
normalization is preserved during the dynamics. The solution
of the differential equation can be written in the form

|ψ(t)〉 = e−iHt |ψ(0)〉. (7)

Therefore the continuous-time quantum walk is of the form of
the Schrödinger equation, a nonrelativistic quantum evolution.

To implement the continuous-time quantum walk on a line,
the position Hilbert space Hp can be written as a state spanned
by the basis states |ψj 〉, where j ∈ Z. The Hamiltonian H is
defined such that

H|ψj 〉 = −γ |ψj−1〉 + 2γ |ψj 〉 − γ |ψj+1〉 (8)

and evolves the system through time t via the transformation

U (t) = exp(−iHt). (9)

The Hamiltonian H of the process acts as the generator matrix
which will transform the probability amplitude at the rate of
γ to the neighboring sites, where γ is a time-independent
constant.

III. ONE-DIMENSIONAL DISCRETE-TIME
QUANTUM WALK

We will first define the structure of the one-dimensional
discrete-time classical random walk. The discrete-time classi-
cal random walk takes place on the position Hilbert space Hp

with instruction from the coin operation. A coin flip defines
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the direction in which the particle moves, and a subsequent
position shift operation moves the particle in position space.
For a walk on a line, a two-sided coin with a head and
a tail defines the movements to the left and right side,
respectively.

The one-dimensional discrete-time quantum walk also has
a very similar structure to that of its classical counterpart. The
coin flip is replaced by the quantum coin operation which
defines the superposition of direction in which the amplitude
of the particle evolves simultaneously. The quantum coin
operation followed by the unitary shift operation is iterated
without resorting to intermediate measurement to implement
a large number of steps. During the walk on a line, interference
between the left- and the right-propagating amplitude results
in the quadratic growth of variance with the number of
steps.

The discrete-time quantum walk on a line is defined on a
Hilbert space

H = Hc ⊗ Hp, (10)

where Hc is the coin Hilbert space and Hp is the position
Hilbert space. For a discrete-time quantum walk in one
dimension, Hc is spanned by the basis state (internal state)
of the particle |0〉 and |1〉, and Hp is spanned by the basis
state of the position |ψj 〉, where j ∈ Z. To implement the
discrete-time quantum walk on a particle at origin in state

|�in〉 = [cos(δ)|0〉 + eiη sin(δ)|1〉] ⊗ |ψ0〉, (11)

the quantum coin toss operation B ∈ U (2), which in general
can be written as

Bζ,α,β,γ = eiζ eiασx eiβσy eiγ σz , (12)

is applied, where σx,σy , and σz are the Pauli spin operators.
Parameters of the coin operations ζ,α,β,γ can be varied
to get different superposition states of the particle; that is,
quantum coin operation Bζ,α,β,γ is used to evolve the particle
to superposition of its basis states such that it can serve as
an instruction to simultaneously evolve the particle to the left
and right of its initial position. The quantum coin operation
is followed by the conditional unitary shift operation S

given by

S = e−i(|0〉〈0|−|1〉〈1|)⊗P̂ l = (|0〉〈0| ⊗ e−iP̂ l) + (|1〉〈1| ⊗ eiP̂ l),

(13)

where P̂ is the momentum operator, l is the step length, and
|0〉 and |1〉 are the basis states of the particle. Therefore the
operator S, which delocalizes the wave packet in different
basis states |0〉 and |1〉 over the position (j − 1) and (j + 1)
when step length l = 1, can also be written as

S = |0〉〈0| ⊗
∑
j∈Z

|ψj−1〉〈ψj | + |1〉〈1| ⊗
∑
j∈Z

|ψj+1〉〈ψj |.

(14)

The states in the new position are again evolved into the
superposition of its basis state, and the process of quantum
coin toss operation Bζ,α,β,γ followed by the conditional unitary
shift operation S,

Wζ,α,β,γ = S(Bζ,α,β,γ ⊗ 1), (15)

is iterated without resorting to intermediate measurement, to
realize a large number of steps of the discrete-time quantum
walk. The four variable parameters of the quantum coin,
ζ,α,β, and γ in Eq. (12) can be varied to change and
control the probability amplitude distribution in the position
space.

The most widely studied form of the discrete-time quantum
walk is the Hadamard walk, using the Hadamard operation

H = 1√
2

(
1 1
1 −1

)

as a quantum coin operation, and the role of the coin
operation and initial state to control the probability amplitude
distribution has been discussed in earlier studies [6,36]. It has
been demonstrated that a three-parameter SU (2) quantum coin
operation,

Bξ,θ,ζ ≡
[

eiξ cos(θ ) eiζ sin(θ )
−e−iζ sin(θ ) e−iξ cos(θ )

]
, (16)

is sufficient to describe the most general form of the discrete-
time quantum walk [37].

A. Dynamic structure of discrete-time quantum walk

The standard symmetric discrete-time classical random
walk leads to

p(j,t + 1) = 1
2 [p(j − 1,t) + p(j + 1,t)], (17)

where p(j,t) denotes the probability of finding the particle
at position j at discrete time t . This equation expresses the
fact that all the probability at a given site is transmitted out at
each time step so that the probability available at it in the next
time step is that received in equal measure from its immediate
neighbors. Subtracting p(j,t) from both sides of Eq. (17) leads
to the difference equation which corresponds to differential
equation

∂

∂t
p(j,t) = ∂2

∂2j
p(j,t), (18)

which is the standard classical diffusion equation. The pre-
ceding equation is irreversible because the coin is effectively
thrown away after each toss. It is also nonrelativistic in the
sense that it is not symmetric in time and space and leads
to a dispersion relation that is nonrelativistic [32]. On the
contrary, in the discrete-time quantum walk, the information
of the state of the quantum coin in the previous step is retained
and carried over to the next step. This makes the quantum walk
reversible.

To illustrate this, we consider the wave function describing
the position of a particle and analyze how it evolves with
time t . Let t be the time required to implement t steps of
the quantum walk. The two-component vector of amplitudes
of the particle, being at position j , at time t , with left-
moving (L) and right-moving (R) components, is given
by

�(j,t) =
[
�L(j,t)
�R(j,t)

]
. (19)
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A single-variable parameter quantum coin operation of the
form

B0,θ,− π
2

=
[

cos(θ ) −i sin(θ )
−i sin(θ ) cos(θ )

]
(20)

is used to drive the dynamics for �(j,t). The coin parameters
(0,θ,−π/2) have been used here to achieve a symmetrical
form of the coin operation on the particle. The quantum coin
operation is followed by the conditional shift operator S; that is,
S(B0,θ,− π

2
⊗ 1) in terms of left-moving (L) and right-moving

(R) components at a given position j and time t + 1 is given
by[

�L(j,t + 1)
�R(j,t + 1)

]
=

[
cos(θ )a −i sin(θ )a†

−i sin(θ )a† cos(θ )a

] [
�L(j,t)
�R(j,t)

]
,

(21)

where action of operator a and a† on �(j,t) is given by

a�(j,t) = �(j + 1,t), (22a)

a†�(j,t) = �(j − 1,t). (22b)

Therefore

�L(j,t + 1) = cos(θ )�L(j + 1,t) − i sin(θ )�R(j − 1,t),

(23a)

�R(j,t + 1) = cos(θ )�R(j − 1,t) − i sin(θ )�L(j + 1,t).

(23b)

We thus find that the coin degree of freedom is carried
over during the dynamics of the discrete-time quantum walk,
making it reversible.

B. Projective measurement, irreversibility, and arrow of time

From Eqs. (23a) and (23b), we noted that the coin degree
of freedom is carried over during the dynamics of the
discrete-time quantum walk, making walk reversible; that
is, the information is stored during the evolution so that
it can be used to reverse the dynamics. However, upon
projective measurement on the position space, the informa-
tion of the coin is lost, making the walk irreversible. The
projective measurement produces the arrow of time since
its description is time asymmetric. Therefore an increase in
measurement entropy of the system can be seen as an arrow of
time.

This projective measurement of position happening with
step time 1 can be understood as an interaction with the
environment. Quantum diffusion via walk by itself does
not generate entropy (being unitary); rather, interaction with
the environment generates entropy that increases with time.
Figure 1 depicts the increase in measurement entropy with
the increase in time. Measurement entropy is calculated by
considering the Shannon entropy of the particle position
probability distribution pj obtained by tracing over the coin
basis:

H (j ) = −
+t∑

j=−t

pj log pj , (24)

where j is spanned over the position space at time t . This
time dependence can be understood as follows: the position
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FIG. 1. (Color online) Increase in measurement entropy [H (j )]
with time when unit time is required to implement each step of
the quantum walk. Increase in entropy indicates the arrow of time.
Measurement entropy was calculated for a quantum walk for up to
500 units in time using B0,45◦,0, B0,30◦,0, and B0,60◦,0 as quantum coin
operations.

measurement generates entropy, which in each instance of
measurement is translated into a classical record. That large
record of information is needed if the system is measured at
a later rather than an earlier time, to reconstruct the original
state. This can be construed as giving the direction of time.
Following Ref. [38], we may say that if the record for some
process actually diminished along a direction of a time, there
would be no objective knowledge of the process (here the
walk) having happened.

IV. RELATIVISTIC FEATURES IN DISCRETE-TIME
QUANTUM WALK

A. Decoupled discrete-time quantum walk equation
in Klein-Gordon form

The discrete-time quantum walk can be written in a free
spin-0 particle relativistic form, that is, in the Klein-Gordon
form, by decoupling the components �L and �R in Eqs. (23a)
and (23b) (Appendix A):

�R(j,t + 1) + �R(j,t − 1)

= cos(θ )[�R(j + 1,t) + �R(j − 1,t)], (25a)

�L(j,t + 1) + �L(j,t − 1)

= cos(θ )[�L(j + 1,t) + �L(j − 1,t)]. (25b)

Subtracting 2�R(j,t) + 2 cos(θ )�R(j,t) from both sides in
Eq. (25a), we obtain a difference equation which corresponds
to differential equation[

cos(θ )
∂2

∂j 2
− ∂2

∂t2

]
�R(j,t) = 2[1 − cos(θ )]�R(j,t), (26)

by setting the timestep and spatialstep to 1; see Appendix B
for intermediate steps. A similar expression can be obtained
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for �L(j,t). This shows that each component follows a
Klein-Gordon equation of the form(

∇2 − 1

c2

∂2

∂t2

)
φ − µ2φ = 0, (27)

showing essentially the free spin-0 particle relativistic charac-
ter of each component of the discrete-time quantum walk.

We obtain from Eq. (26) the equivalent of light speed c and
mass m of each component �R and �L of the discrete-time
quantum walk dynamics:

c ≡ √
cos(θ ), (28)

µ = mc

h̄
≡

√
2[sec(θ ) − 1]. (29)

Considering h̄ = 1, we can write

m ≡
√

2[sec(θ ) − 1]

cos(θ )
. (30)

Note that the maximum velocity is given by c = 1, corre-
sponding to θ = 0 and m = 0, which is in agreement with the
relativistic requirement that the rest mass of light vanishes.
This is also in agreement with the quantum walk dynamics
that θ = 0 corresponds to state |0〉 and |1〉 moving away from
each other without any interference, resulting in maximum
variance [37]. The relativistic nature of the quantum walk thus
arises as a natural consequence of employing the coin. Since,
as noted earlier, the coin makes the walk reversible, we have
the interesting scenario that the relativistic causal structure is
fundamentally a consequence of conservation of information.
This is in accordance with some recent works that have studied
possible information theoretical bases for the mathematical
structure of quantum mechanics [39–42].

B. Decoupled discrete-time quantum walk equation
in Schrödinger form

The Klein-Gordon equation can be transformed into the
Schrödinger formulation [43]. Transforming the discrete-time
equation [Eq. (26)]—which is of the second order in the
time coordinate—into a system of two coupled differential
equations that are of first order in time is achieved by the
ansatz

�R = ϕR + χR, ih̄
∂�R

∂t
=

√
2[1 − cos(θ )](ϕR − χR), (31)

in which �R and its time derivative ∂�R/∂t are expressed as
components of two functions ϕR and χR .

Now we can show that the two coupled differential
equations,

ih̄
∂ϕR

∂t
= − h̄2

2
√

2[sec(θ)−1]
cos(θ)

�(ϕR + χR) +
√

2[1 − cos(θ )]ϕR,

(32a)

ih̄
∂χR

∂t
= h̄2

2
√

2[sec(θ)−1]
cos(θ)

�(ϕR + χR) −
√

2[1 − cos(θ )]χR,

(32b)

are equivalent to the discrete-time quantum walk equation in
relativistic form [Eq. (26)] (Appendix C).

The coupled Eqs. (32a) and (32b) may be combined to form
one equation by introducing the column vector

�R =
(

ϕR

χR

)
(33)

and making use of the four 2 × 2 matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
,

(34)

σ3 =
(

1 0
0 −1

)
, 1 =

(
1 0
0 1

)
,

which satisfy the algebraic relations

σ 2
k = 1, σkσl = σlσk = iσm, k,l,m = 1,2,3 − in a cycle.

(35)

Using the preceding relations, we can combine the coupled
Eqs. (32a) and (32b) to form a Schrödinger-type equation,
namely, (

ih̄
∂

∂t
− ĤR

)
�R = 0, (36)

where ĤR is given by

ĤR = (σ3 + iσ2)
P̂ 2√cos(θ )

2
√

2[sec(θ ) − 1]
+ σ3

√
2[1 − cos(θ )].

(37)

Here P̂ = ih̄∇. Similarly, we can obtain a Hamiltonian ĤL
for �L. Hence we have found that the each component of
the discrete-time quantum walk which has a structure similar
to the Klein-Gordon equation can be written in a coupled
Schrödinger equation formulation. Therefore a discrete-time
quantum walk can be described as a coupled form of a
continuous-time quantum walk driven by Hamiltonians ĤR
and ĤL.

C. Discrete-time quantum walk equation
in Dirac equation form

In Sec. IV A, we showed that the decoupled form of the
discrete-time quantum walk equations leads to a Klein-Gordon
form of the relativistic equation. Evolving the discrete-time
quantum walk equations without decoupling, that is, in a
coupled form, leads to a structure similar to 1 + 1-dimensional
Dirac equation:(

ih̄
∂

∂t
− ĤD

)
� =

(
ih̄

∂

∂t
+ ih̄cα̂ · ∂

∂x
− β̂mc2

)
� = 0,

(38)

where m is the rest mass, c is speed of light, ih̄(∂/∂t) is
the momentum operator, and x and t are the space and time
coordinates. The matrices α̂ and β̂ are Hermitian and satisfy

α̂2 = β̂2 = 1, α̂β̂ = −β̂α̂. (39)
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To illustrate this, we write the coupled discrete-time
quantum walk evolution equations [Eqs. (23a) and (23b)] in
matrix form:(

�L(j,t + 1)
�R(j,t + 1)

)
=

[
cos(θ )

(
1 0
0 1

)(
�L(j + 1,t)
�R(j − 1,t)

)]

+
[

sin(θ )

(
0 −i

−i 0

)(
�L(j + 1,t)
�R(j − 1,t)

)]
.

(40)

The action of the coin operation [B0,θ,−(π/2)] and condition sift
operator (S) on the particle commute with each other for the
discrete-time quantum walk model considered in the article.
Therefore the preceding expression can also be written in the
form[

�L(j,t + 1)
�R(j,t + 1)

]
= B0,θ,− π

2

[
�L(j + 1,t)
�R(j − 1,t)

]

= [cos(θ )1 + sin(θ )σ3σ2]

[
�L(j + 1,t)
�R(j − 1,t)

]
.

(41)

Subtracting both sides of the preceding equation by[
�L(j,t)
�R(j,t)

]
+ [cos(θ )1 + sin(θ )σ3σ2]

[
�L(j,t)
�R(j,t)

]
,

we get[
�L(j,t + 1) − �L(j,t)
�R(j,t + 1) − �R(j,t)

]

= [cos(θ )1 + sin(θ )σ3σ2]

[
�L(j + 1,t) − �L(j,t)
�R(j − 1,t) − �R(j,t)

]

−
[
�L(j,t)
�R(j,t)

]
+ [cos(θ )1 + sin(θ )σ3σ2]

[
�L(j,t)
�R(j,t)

]
.

(42)

The difference form in the preceding expression can be reduced
to the differential equation form

∂

∂t

[
�L(j,t)
�R(j,t)

]
=

{
[cos(θ )1 + sin(θ )σ3σ2]

(
∂
∂j

− ∂
∂j

)

+ [cos(θ )1 + sin(θ )σ3σ2 − 1]

}[
�L(j,t)
�R(j,t)

]
.

(43)

By reordering and multiplying the entire expression by ih̄, we
obtain

ih̄
∂

∂t

[
�L(j,t)
�R(j,t)

]
= ih̄

{
[cos(θ )σ3 − sin(θ )σ2]

∂

∂j
+ [cos(θ )1

+ sin(θ )σ3σ2 − 1]

} [
�L(j,t)
�R(j,t)

]
. (44)

When θ = 0, the expression takes the form[
ih̄

∂

∂t
− ih̄σ3

∂

∂j

]
�(j,t) = 0. (45)

The preceding expression is analogous to the 1 + 1 dimen-
sional Dirac equation of a massless particle m = 0 in Eq. (38).
Note that θ = 0 and m = 0 correspond to maximum velocity
given by c = 1. This is in agreement with both the relativistic
requirement that rest mass of light vanishes and the quantum
walk dynamics with state |0〉 and state |1〉 moving away
from each other without interfering, resulting in maximum
variance [37].

From the Klein-Gordon form of discrete-time quantum
walk discussed in Sec. IV A, we obtained c ≡ √

cos(θ ) and
mc2 ≡ √

2(1 − cos θ ). In this section we have show that at
certain limits, the discrete-time quantum walk structure is
analogous to the Dirac equation of the massless particle.
We note that effects similar to the Zitterbewegung effect and
Klein paradox in the quantum walk have been studied using a
different approach in [33].

V. LIEB-ROBINSON BOUNDS IN QUANTUM WALKS

The probability distribution for discrete-time quantum walk
evolution spreads in time, but this spreading is controlled by
the coin operation used during the evolution. The presence
of a speed limit in a nonrelativistic dynamics is, in fact, an
instance of a much more general phenomenon. Limits to the
speed of information propagation known as Lieb-Robinson
bounds imply that nonrelativistic quantum dynamics has,
at least approximately, the same kind of locality structure
provided in a field theory by the finiteness of the speed of
light. The original work by Lieb and Robinson pertaining to
the bound on the group velocity in quantum spin dynamics
generated by a short-range Hamiltonian dates back to 1972
[44]. Since the work of Hastings [45], there have been a series
of extensions and improvements [46–50] which show that
nonrelativistic quantum mechanics, with evolution governed
by local Hamiltonians, gives rise to an effective light cone
with exponentially decaying tails. This implies an emergence
of causality in a quantitative manner in that the amount of
information exchanged between two regions not connected by
a light cone is exponentially small.

The Lieb-Robinson bound states of the operator norm of
the commutator of any operators OA and OB in regions A and
B at different times are

‖[OB(t),OA(0)]‖ � CNmin‖OA‖‖OB‖ exp

(
−dAB − vt

κ

)
,

(46)

where dAB is the distance between A and B; in graph theoretic
terms, the number of edges in the shortest path connecting
A and B, Nmin = min{|A|,|B|}, is the number of vertices
in the smallest of regions A and B, while C, v, and κ are
positive constants depending upon the details of the governing
Hamiltonian [46,47].

As an application of the Lieb-Robinson bound [Eq. (46)] to
discrete-time quantum walk, let us consider a one-dimensional
quantum walk and take the operators OA and OB to be the
square of the particle position, at the initial point before
implementing quantum walk and at the end of t steps of
quantum walk with unit time required to implement each
step, respectively. Bounds on correlations are found from
bounds on the corresponding commutator, making use of the
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Lieb-Robinson bound by making a spectral decomposition of
the commutator and extracting the correlation as its negative
frequency component [45]. The operator norms on the right-
hand side of Eq. (46), taken as the trace norm, would be the
variance in the position of the particle at the initial point before
starting the walk and at the end of t steps of the walk. This
would involve the probability distribution

p(j,t) = 〈j |Trc
(∣∣�t

B

〉〈
�t

B

∣∣) |j 〉, (47)

where |�t
B〉 = Wt

ξ,θ,ζ |�A〉 is the state of the particle in position
space after t steps of the walk, with |�A〉 referring to the initial
state of the particle in position space [Eq. (11)], Wξ,θ,ζ is as in
Eq. (16), and the trace operation in Eq. (47) is the tracing over
the coin degrees of freedom.

For quantum walk using an unbiased coin operation, that is,
Bξ,θ,ζ with ξ = ζ = 0, the variance after t steps of quantum
walk is [1 − sin(θ )]t2 [37]. In Eq. (46), dAB would be of
the order of t, while v would be

√
cos(θ ) as in Eq. (28).

The Lieb-Robinson bound then tells us that the correlation
function of the square of the particle position, for a t-step
walk, is bounded above by t2 and dies out exponentially
beyond a region of the order of t . This is in accordance
with [6,7], where it was shown that for a quantum walk
using a coin operator B0,θ,0, the probability distribution after
t steps is spread over the interval [−t cos(θ ),t cos(θ )] and
quickly shrinks outside this region. The arguments using the
Lieb-Robinson bounds thus put in perspective the preceding
findings and also lend support to the causal structure of the
quantum walk evolution brought out earlier by bringing out
the relativistic features inherent in the quantum walk evolution,
especially the connection to the Klein-Gordon equation and the
identification of the corresponding velocity of quantum walk
propagation [Eq. (28)].

VI. TWO-DIMENSIONAL DISCRETE-TIME
QUANTUM WALK

The description of the discrete-time quantum walk on a line
can be extended to the 2-D plane by considering a two-state
particle. Operations can be defined on a two-state particle
such that the amplitudes evolve in the x direction and y

direction alternatively and show the relativistic structure in
their evolution.

For a two-dimensional discrete-time quantum walk on a
plane using a two-state particle, the coin Hilbert space Hc

is spanned by the basis state (internal state) of the particle
|0〉 and |1〉 and the position Hilbert space Hp is spanned by
the basis state of the position |ψj,k〉, where j,k ∈ Z represent
the two dimensions labeled by j and k elements in position
space.

The initial state of the two-state particle can be written as

|�in〉 = [cos(δ)|0〉 + eiη sin(δ)|1〉] ⊗ |ψ0〉. (48)

It will be in a symmetric superposition state when δ = π/4
and η = π/2.

To realize a two-dimensional quantum walk using a two-
state particle, a shift operator has to be constructed such that
it will evolve the amplitudes of the particle in both the x and

y directions. Therefore we will define the two shift operators
Sx and Sy by

Sx = |0〉〈0| ⊗
∑

j,k∈Z
|ψj−1,k〉〈ψj,k| + |1〉〈1|

⊗
∑

j,k∈Z
|ψj+1,k〉〈ψj,k|, (49)

Sy = |↑〉〈↑| ⊗
∑

j,k∈Z
|ψj,k−1〉〈ψj,k| + |↓〉〈↓|

⊗
∑

j,k∈Z
|ψj,k+1〉〈ψj,k|, (50)

where the relation between |0〉, |1〉, |↑〉, and |↓〉 is given by

|0〉 = |↑〉 + |↓〉
2

, |1〉 = |↑〉 − |↓〉
2

,

(51)

|↑〉 = |0〉 + |1〉, |↓〉 = |0〉 − |1〉.
If the particle is initially in the symmetric superposition state,

|�ins〉 = 1√
2

(|0〉 + i|1〉) ⊗ |ψ0,0〉, (52)

then

Sx |�ins〉 = 1√
2

(|0〉 ⊗ |ψ−1,0〉 + i|1〉 ⊗ |ψ+1,0〉)

= 1

2
√

2
[(|↑〉 + |↓〉) ⊗ |ψ−1,0〉 + i(|↑〉

− |↓〉) ⊗ |ψ+1,0〉],
SySx |�ins〉 = 1

2
√

2
[|↑〉 ⊗ |ψ−1,+1〉 + |↓〉 ⊗ |ψ−1,−1〉

+ i|↑〉 ⊗ |ψ+1,+1〉 − i|↓〉 ⊗ |ψ+1,−1〉]
= 1

2
√

2
[(|0〉 + |1〉) ⊗ |ψ−1,+1〉 + (|0〉 − |1〉)

⊗ |ψ−1,−1〉 + i (|0〉 + |1〉) ⊗ |ψ+1,+1〉
− i (|0〉 − |1〉) ⊗ |ψ+1,−1〉]. (53)

Therefore continuous iteration of SySx evolves amplitudes
in superposition of position space implementing a two-
dimensional quantum walk. During operation Sx , the particle
will evolve in the x direction, and during operation Sy , the
particle will evolve in the y direction; that is, if the order of
operation is Sx followed by Sy , then during every odd step, the
evolution will be in the x direction, and during every even step,
the evolution will evolve the particle in the y direction. The
mathematical structure of the dynamics will be similar to that
of the one-dimensional quantum walk and hence a relativistic
structure similar to that of the one-dimensional quantum
walk can be obtained. In higher dimensions, the expression
describing the evolution of the discrete-time quantum walk in
D dimensions can be decoupled to obtain a 2-D number of
expressions and worked out to be written in the relativistic
forms.

VII. CONCLUSION

In this article, we have shown the relationship between
the mathematical structure of the discrete-time quantum walk
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and relativistic quantum mechanics. The dynamic structure of
the one-dimensional discrete-time quantum walk using a two-
sided coin quantum operation has been studied. The coupled
structure of the dynamic expression of a discrete-time quantum
walk is decoupled to arrive at an expression analogous to a
free spin-0 particle, relativistic, Klein-Gordon form. We point
out the quantum walk equivalents of the speed of light c

and mass m. We further use the same decoupled quantum
walk expression to arrive at the Schrödinger formulation and
show that the discrete-time quantum walk can be written
as a coupled form of the continuous-time quantum walk.
Furthermore, starting from a coupled form of the discrete-
time quantum walk structure, we arrive at a mathematical
structure analogous to the Dirac equation. We have shown
that the coin is a means to make the walk reversible and
that the Dirac-like structure is a consequence of the coin use.
Our work suggests that the relativistic causal structure is a
consequence of conservation of information. The existence of
a maximum speed of quantum walk propagation similar to the
Lieb-Robinson bound for signal propagation is also shown.
This bound is used to highlight the causal structure of the walk
and puts in perspective our work on the relativistic structure of
quantum walk and earlier findings related to the finite spread
of the walk probability distribution.
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APPENDIX A: DECOUPLING THE COUPLED
EXPRESSIONS

1. Getting Eqs. (25a) and (25b) from Eqs. (23a) and (23b)

From Eq. (23b), solving for �L, we get

�L(j + 1,t) = i

sin(θ )
[�R(j,t + 1) − cos(θ )�R(j − 1,t)],

(A1)

�L(j,t + 1) = i

sin(θ )
[�R(j − 1,t + 2)

− cos(θ )�R(j − 2,t + 1)]. (A2)

Using this to substitution for �L(j + 1,t) and �L(j,t + 1)
in Eq. (23a), we get Eq. (25a).

From Eq. (23a), solving for �R , we get

�R(j − 1,t) = i

sin(θ )
[�L(j,t + 1) − cos(θ )�L(j + 1,t)],

(A3)

�R(j,t + 1) = i

sin(θ )
[�L(j + 1,t + 2)

− cos(θ )�L(j + 2,t + 1)]. (A4)

Using this to substitute for �R(j − 1,t) and �R(j,t + 1) in
Eq. (23b), we get Eq. (25b).

APPENDIX B: GETTING THE DIFFERENCE OPERATOR
THAT CORRESPONDS TO THE DIFFERENTIAL

OPERATORS

The difference operator ∇t that corresponds to the differ-
ential operator ∂/∂t is

∇t = �
(
j,t + h

2

) − �
(
j,t − h

2

)
h

. (B1)

By setting the small incremental time to 1 (h = 1), difference
operator

∇t = �(j,t + 0.5) − �(j,t − 0.5) (B2)

corresponds to the differential operator ∂/∂t . Therefore the
operator ∂2/∂t2 will correspond to applying the difference
operator in each of the preceding two terms, which yields

∇2
t = 1

h
× [�(j,t + 1) − �(j,t)] − [�(j,t) − �(j,t − 1)]

h

= �(j,t + 1) − 2ψ(j,t) + �(j,t − 1)

h2
; (B3)

when the small incremental time step h = 1, it corresponds to
∂2/∂t2. The difference operators ∇j and ∇2

j corresponding to
∂/∂j and ∂2/∂j 2 are also defined analogously for j , keeping t

constant.

APPENDIX C: ARRIVING AT KLEIN-GORDON EQUATION
FROM TWO COUPLED EQUATIONS

This can be shown by subtracting Eq. (32b) from Eq. (32a):

ih̄
∂

∂t
(ϕR − χR) = − h̄2√

2[sec(θ)−1]
cos(θ)

�(ϕR + χR)

+
√

2[1 − cos(θ )](ϕR + χR), (C1)

ih̄
∂

∂t

{
ih̄√

2[1 − cos(θ )]

∂�R

∂t

}

= − h̄2√
2[sec(θ)−1]

cos(θ)

��R +
√

2[1 − cos(θ )]�R, (C2)

1√
2[1 − cos(θ )]

∂2�R

∂t2

= 1√
2[sec(θ)−1]

cos(θ)

��R −
√

2[1 − cos(θ )]�R, (C3)

1√
2[sec(θ ) − 1] cos(θ )

∂2�R

∂t2

=
√

cos(θ )√
2[sec(θ ) − 1]

��R −
√

2[sec(θ ) − 1] cos(θ )�R.

(C4)

Thus we get[
1

cos(θ )

∂2

∂t2
− �

]
�R = −2[sec(θ ) − 1]�R. (C5)

The preceding expression is a recovery of the discrete-time
quantum walk equation in Klein-Gordon form.
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