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Preface 
The extreme weakness of the gravitational interaction implies that in general gravita- 

tional waves (GWs) are extremely weak. Only in astrophysical situations involving strong 

concentrations of mass-energy (strong gravity) or those involving relativistic velocities can 

one hope to find sources of strong GWs. Inspiralling compact binaries (ICBs) consisting 

of neutron stars (NSs) or black holes (BHs) are one of the most promising of such sources. 

However, even such sources represent a weak signal buried in the strong noise of the detec- 

tor and is optimally treated by methods such as matched filtering (MF). The success of MF 

depends crucially on the availability of accurate templates which in turn require an accurate 

computation of GW phasing for ICBs. 

Though the general prototypical ICBs would be in circular orbits towards their late inspi- 

ral, there do exist astrophysical scenarios producing binaries with eccentricities when they 

enter the sensitivity bandwidths of the laser interferometric GW detectors. The construction 

of templates for eccentric binaries is more involved than that for binaries in circular orbits. 

One of the theoretical inputs required to compute GW phasing of eccentric binaries is the 

energy flux from such ICBs moving in general (non-circular) orbits. In this thesis we first 

compute the total energy flux from ICBs moving in general orbits at the third post-Newtonian 

order beyond the leading quadrupolar approximation. 

In addition to energy and angular momentum, GWs also carry away linear momentum 

from the binary system leading to the possibility of GW recoil of the center-of-mass. The 

second set of problems in this thesis is the computation of the second post-Newtonian order 

linear momentum flux for ICBs moving in quasi circular orbits. Employing this linear mo- 

mentum flux the resultant recoil is first computed for inspiral up to the last stable circular 

orbit (ISCO). A more physical estimate including the plunge from the ISCO to the horizon 

is finally provided. 

Though the first mandate of the GW detectors is the direct detection of GWs, the ultimate 

goal of these GW experiments is to inaugurate GW astronomy. The ultimate excitement is 

to unravel new astrophysics and also probe the fundamental physics of gravitation. The test 

of general relativity using gravitational wave phasing in ground-based GW interferometric 

detectors and more importantly, space-based LISA is the third and final theme investigated 

in this thesis. In what follows we provide a brief summary of each chapter. 

In chapter 2 the instantaneous contributions to the 3PN gravitational wave luminosity 

from the inspiral phase of a binary system of compact objects moving in general orbits is 

computed using the Multipolar post-Minkowskian wave generation formalism. The new in- 

puts for this calculation include the mass octupole and current quadrupole at 2PN for general 

orbits and the 3PN accurate mass quadrupole. Using the 3PN quasi-Keplerian representation 

of elliptical orbits obtained recently the flux is averaged over the binary's orbit. The ex- 
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pression for the instantaneous contributions averaged over an orbit is presented in different 

coordinate systems: Standard harmonic coordinates (with logs), modified harmonic coordi- 

nates (without logs) and ADM coordinates. Alternative gauge invariant expressions of the 

energy flux are also provided. 

The far-zone flux of energy contains hereditary contributions that depend on the entire 

past history of the source. In chapter 3, using the Multipolar post-Minkowskian wave gener- 

ation formalism, we have proposed and implemented a semi-analytical method to compute 

the hereditary contributions from the inspiral phase of a binary system of compact objects 

moving in quasi-elliptical orbits up to 3PN order. The method explicitly uses the 1PN quasi- 

Keplerian representation of elliptical orbits and crucially exploits the implicit double period- 

icity of the motion to average the fluxes over the binary's orbit up to 3PN order. Together 

with the instantaneous contributions evaluated in the previous chapter, it provides crucial 

inputs for the construction of ready-to-use templates for binaries moving on quasi-elliptic 

orbits, an interesting class of sources for the ground based gravitational wave detectors and 

especially space based detectors like LISA. 

In chapter 4, the gravitational recoil of non-spinning black-hole binaries (in quasi-circular 

orbits) is calculated at the second post-Newtonian order (2PN) beyond the dominant effect, 

obtaining, for the first time, the 1.5PN correction term due to tails of waves and the next 2PN 

term. The maximum value of the net recoil experienced by the binary due to the inspiral 

phase up to the innermost stable circular orbit (ISCO) is of the order of 22kms-'. The 

kick velocity accumulated during the plunge from the ISCO up to the horizon is estimated 

by integrating the momentum flux using the 2PN formula along a plunge geodesic of the 

Schwarzschild metric. The contribution of the plunge dominates over that of the inspiral. For 

a mass ratio rn;?/rnl = 118, a total recoil velocity (due to both adiabatic and plunge phases) 

of 100 * 20 km s-' is estimated. For a ratio 0.38, the recoil is maximum and estimated to be 

250 * 50 km s-'. In the limit of small mass ratio, V / c  z 0.043 (1 * 20%) (rn2/rn1)2. These 

estimates are consistent with, but span a substantially narrower range than, those of Favata 

et a1 (2004). 

Observations of the supermassive binary black hole mergers in the Laser Interferometer 

Space Antenna (LISA) and stellar mass binary black holes in the European Gravitational- 

Wave Observatory (EGO) offer an unique opportunity to test the non-linear structure of 

general relativity since they will observe events with amplitude signal-to-noise ratio of sev- 

eral thousands and hundreds respectively. For a binary composed of two non-spinning black 

holes, the non-linear general relativistic effects depend only on the masses of the constituents. 

In chapter 5, we investigate the extent to which such observations afford high-precision tests 

of Einstein's gravity by exploring the possibility of a test to determine all the post-Newtonian 

coefficients in the gravitational wave-phasing. We show that LISA provides a unique op- 



portunity to probe the non-linear structure of post-Newtonian theory both in the context of 

general relativity and its alternatives. However, mutual covariances between the various PN 

coefficients dilute the effectiveness of such a test. 

In chapter 6, we propose a more powerful test in which the various post-Newtonian co- 

efficients in the gravitational wave phasing are systematically measured by treating three 

of them as independent parameters and demanding their mutual consistency. LISA (EGO) 

will observe BBHs inspirals with a signal-to-noise ratio of more than 1000 (100) and thereby 

test the self-consistency of each of the nine post-Newtonian coefficients that have so-far been 

computed, by measuring the lower order coefficients to a relative accuracy of - (respec- 

tively, - and the higher order coefficients to a relative accuracy in the range 10-4-0.1 

(respectively, loe3- 1). 
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