
Chapter 1 

Introduction 

In this chapter we provide a broad overview of GWs including the formalisms that provide 

the basic inputs for the calculations presented in this thesis. This biased and incomplete 

overview is based very heavily on many review articles. In particular Section 1.1 on [I], 
Section 1.2 on [2], Section 1.3 on [3, 11, Section 1.4 on [I,  21, Sections 1.5-1.6 on [4], 

Sections 1.8-1.9 on [5, 61, Sections 1.12-1.17 on [7], Section 1.20 on [8], and finally 

Section 1.21 on [9]. 

1.1 What are gravitational waves? 

General relativity (GR) and electrodynamics display deep and profound similarities and yet 

there exist fundamental differences between them. Let us take a look at some of the historical 

similarities between the two fields. 

Maxwell's equations together with the Lorentz force equation successfully incorporate 

all the laws of electricity and magnetism. Using them, Maxwell was able to predict the 

existence of a solution consisting of electric and magnetic fields changing with time. This 

solution transfers energy and propagates with speed c in vacuum. These are electromagnetic 

waves (EMW). Distinguished physicists, such as Lord Kelvin, had serious doubts about the 

existence of such waves. However, in just eight years after Maxwell's death, Heinrich Hertz 

generated and detected electromagnetic waves in the laboratory. In 1901 electromagnetic 

signals were transmitted and received across the Atlantic Ocean. 

Our view of the universe comes from the EMWs observed from it. Radio waves re- 

vealed for instance, quasars, jets from galactic nuclei, rapidly rotating pulsars and cosmic 

microwave background, the relic of the hot big bang. X-rays revealed accretion disks about 

neutron stars (NS) and black holes (BH). Infrared and ultraviolet observations and gamma 

ray burst observations have opened new windows to the universe going beyond conventional 

optical astronomy. 
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Einstein's field equations of general relativity describe the gravitational interaction via 

the space-time curvature generated by mass-energy. General relativity is a theory of gravity 

that is consistent with special relativity. In particular, with the principle that nothing travels 

faster than light. This means that the gravitational field must propagate with speed not larger 

than c .  On the basis of his field equations Albert Einstein showed that the changes (curvature 

perturbations) propagate at exactly the same speed as vacuum electromagnetic waves, "the 

speed of light c". These propagating changes are called gravitational waves. 

General relativity is a nonlinear theory and there is, in general, no sharp distinction be- 

tween the part of the metric that represents the waves and the rest of the metric. Only in 

certain approximations can we clearly define gravitational radiation. They include: 

Linearized theory: It is a weak-field approximation to general relativity (first used by 

Einstein), where the equations are written and solved in a nearly flat space-time. The 

static and wave parts of the field cleanly separate. Gravitational waves are idealized 

as a 'ripple' propagating through a flat and empty universe. This picture is a simple 

case of the more general 'short-wave approximation', in which waves appear as small 

perturbations of a smooth background that is time dependent and whose radius of 

curvature is much larger than the wavelength of the waves. 

Perturbation theory: This is a generalization of linearized theory which studies lin- 

ear perturbations but about a given smooth, time-independent background metric. By 

studying the tensor perturbations in Schwarzschild and Kerr spacetimes one can com- 

pute GWs to very high accuracy. 

Einstein's treatment of gravitational wave theory was based on a linearized theory treating 

weak waves as weak perturbations of a flat background. Similar to what happened in the case 

of EMWs many physicists had serious doubt about their existence. The linearized theory of 

GWs had its limits because the linear approximation is not valid for sources where gravita- 

tional self- energy is not negligible. In 1941 Landau and Lishitz analysed the emission of 

GWs by a self-gravitating system of slowly moving bodies and showed that at leading order, 

Einstein's quadrupole formula was indeed correct. A mathematically rigorous treatment of 

asymptotics using global methods in GR was necessary to show that GW indeed carry en- 

ergy. The strongest evidence for the existence of GWs comes from the observation of the 

energy loss from the binary pulsar system PSR 1913+16, discovered in 1974 by Hulse and 

Taylor. Though impressive, the evidence is indirect and one would like to accomplish a di- 

rect detection of GWs on the earth. This is why today GWs, both theory and experiment, 

is one of the main topics of research in general relativity and gravitation. The detection of 

GWs will eventually lead to GW Astronomy which in turn is expected to bring a revolution 

in our knowledge of the universe. 
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1.2 Why study gravitational waves? 

Gravitational radiation is today one of the last unopened windows into the Universe. There 

are many reasons motivating scientists to work towards gravitational wave astronomy. The 

main reasons are: 

Gravitational waves arrive unaffected by any intervening matter and carry uncorrupted 

information even if they come from the most distant parts or most hidden regions of 

the Universe. 

Since the gravitational waves are emitted by the bulk motions of massive sources and 

not by individual atoms or electrons as in the case of electromagnetic waves, they carry 

a completely different kind of information about their sources. 

Gravitational waves provide the only way to make direct observations of black holes. 

Since there is now strong indirect evidence that giant black holes inhabit the centers of 

many (or even most) galaxies, and since smaller ones are common in the Galaxy, there 

is great interest in making direct observations of them. 

Gravitational waves can come from extraordinarily early epochs in the history of the 

Universe. Observations of the cosmic microwave background, the electromagnetic 

relic radiation from the big bang, describes the Universe as it was at about lo5 years 

after the Big Bang. If a cosmological background of gravitational waves is detected 

it would provide a picture of the Universe much earlier on, just at the end of inflation 

(about 1 0-24 seconds old). 

Gravitational radiation is the last fundamental prediction of Einstein's general relativ- 

ity that has not yet been directly verified. 

1.3 Linearized theory 

The metric in special relativity is1 

where Vab denotes the matrix diag(- l,1,1,1). Linearized gravity is an adequate approxima- 

tion to general relativity when the spacetime metric, gab, may be treated as deviating only 

'we choose units in which c = G = 1; a, b, c, ... h indices run from 0 lo 3 and i, j, k, ... n indices run from 
1 to 3. Repeated indices are summed. The metric has positive signature. 
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slightly from a flat metric, qab: 

gab = qab + hab, llhabll << 1 . (1.2) 

Here (lhab(l means "the magnitude of a typical non-zero component of hab9'. The condition 

llhabll << 1 needs both the gravitational field to be weak, and in addition constrains the co- 

ordinate system to be approximately Cartesian. In linearized gravity, the smallness of the 

deviation means that we only keep terms which are linear in hab - higher order terms are 

discarded. As a consequence, indices are raised and lowered using the flat metric q,b. The 

metric perturbation h,b transforms as a tensor under Lorentz transformations, but not under 
general coordinate transformations. In the Lorentz gauge dahab = 0, Einstein's equations 

reduce to: 

The linearized Einstein equation is therefore 

which in vacuum, reduces to 
- 

ahab = 0 .  

Just as in electromagnetism, the equation (1.4) admits a class of homogeneous solutions 

which are superpositions of plane waves: 

Here, w = (kl. The complex coefficients Aab(k) depend on the wavevector k but are inde- 

pendent of x and t. They are subject to the constraint PAab = 0 (which follows from the 

Lorentz gauge condition), with P = (w, k), but are otherwise arbitrary. These solutions are 

gravitational waves. 

Linearized theory describes the classical gravitational field by a massless spin 2 field. It 

thus propagates at the speed of light and is expected to have only two independent degrees 

of freedom (polarizations in classical terms). To see this, we recall that hob is symmetric, 

so it has ten independent components, and that the Lorentz gauge applies four independent 

conditions to these, reducing the freedom to six. However, the Lorentz gauge does not fully 

fix the coordinates. In fact if we perform another infinitesimal coordinate transformation 

(X + X + 5" with d b F  = O(h)) and impose 05" = 0, we remain in Lorentz gauge. We can 
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use this freedom to demand: 

Aou = 0 * ~~j k j  = 0 (transverse wave), 

A: = 0 (traceless wave). (1.7) 

These conditions can only be applied outside a sphere surrounding the source. Together they 

put the metric into the transverse-traceless (TT) gauge. 

Using the TT gauge leaves only two independent polarizations out of the original ten, 

and it ensures that Lab = hub. In order to understand the polarization degrees of freedom, let 

us lake the wave to be moving in the z-direction, so that k, = w, kO = w, kx = 0, k, = 0. 

The TT gauge conditions in equations Eq. (1.7) lead to Aoa = A, = 0 and A, = -A,,. This 

leaves only two independent components of the polarization tensor, A, and A,. 
A wave for which Ax, = 0 produces a metric of the form: 

where h: = - h r  = h+ Such a metric produces opposite effects on proper distance along 

the two transverse axes, contracting one while expanding the other. 

Figure 1.1 : Two independent polarisations of a plane gravitational wave are illustrated by 
their actions on a ring of free particles in empty space. The waves act transversely, so in this 
figure the waves approach perpendicular to the paper. The waves distort the ring into ellipses 
with alternating major and minor axes [2]. 
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If A, = 0 we have pure cross polarization h, = h:: = h a  which can be obtained from the 
previous case by a simple 45 rotation (See Fig. [ l  .I]). 

z z 

X Polarization 

Figure 1.2: The lines of force associated with the two polarizations of a gravitational wave. 
(From Ref. [ 101 .) 

1.4 Effect of a gravitational wave on a system of particles 

Tidal forces show the action of the gravitational wave independently of the coordinates. 

Let us consider the equation of geodesic deviation, which governs the separation of two 

neighbouring freely-falling test particles A and B. If the particle is initially at rest, then as 

the wave passes it produces an oscillating curvature tensor, and the separation l of the two 

particles is: 

To calculate the component Rhj0 of the Riemann tensor in Eq. (1.9), we can use the metric 

in the 'lT gauge, because the Riemann tensor is gauge-invariant at linear order. Therefore, 

we can replace Rbj0 by 

and write 

This equation, with an initial condition (j(O)= constant, describes the oscillations of B's 

location as measured in the proper reference frame of A. The validity of Eq. (1.1 1) is the same 

as that of the geodesic deviation equation: geodesics have to be close to one another, in a 

neighbourhood where the change in curvature is small. In this approximation a gravitational 
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wave is like an extra force, called a tidal force, perturbing the proper distance between two 

test particles. If there are other forces on the particles, so that they are not free, then as long 

as the gravitational field is weak, one can just add the tidal forces to the other forces and 

work as if the particle were in special relativity. 

The T T  gauge is a special coordinate system in which the polarization tensor of a plane 

gravitational wave assumes a very simple form. This gauge is comoving for freely-falling 

particles and so it is not the locally Minkowskian coordinate system that would be used by 

an experimenter to analyse an experiment. In GR one must always be aware of how one's 

coordinate system is defined. We shall face two typical situations: 

a The detector is small compared to the wavelength of the gravitational waves it is mea- 

suring. In this case the geodesic deviation equation Eq. (1.9) represents the wave as 

a simple extra force on the equipment. Bars detectors can always be analysed in this 

way. Laser interferometers on the Earth can be treated this way too. In these cases a 

gravitational wave simply produces a force to be measured. 

a The detector is comparable to or larger than that wavelength. Here the geodesic devia- 

tion equation is not useful because we have to abandon the 'local 'discussion in terms 

of the geodesic deviation and use instead a more 'global' treatment in terms of the lT 
gauge and metric components hTLb. Space-based interferometers like laser interfer- 

ometers space antenna (LISA), accurate ranging to solar-system spacecraft and pulsar 

timing are all in this class. 

We conclude this section with an order of magnitude estimate of the effects we are dis- 

cussing. The amplitude of GWs from a stellar mass source that emits a small fraction of its 

total mass as GWs over a time scale of a few milliseconds would be 

' I2  5 ms ' I 2  200 Hz 40 kpc - 
(lo-:Ado) (T) (7) (7) * 

Thus two masses separated by a distance of & = 1 km will be tidally distorted by no more 

than 4 x 10-l8 m by such a wave. This leads to a phase change of order 5 x 10-lo radians in 

an interferometer that uses 0.1 micron laser and whose arms are 4 km long. 
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1.5 Gravitational wave detectors 

1.5.1 Ground-based detectors 

There are two types of GW detectors that are currently in operation taking sensitive data: 

1. Bar detectors: Resonant bars operate in a narrow band of 10-50 Hz at a frequency of 

about 950 Hz. In a bar detector the vibrations induced in a seismically isolated, cryo- 

genic Alumninium or Niobium cylindrical bar is amplified using a transducer. There 

are currently five such detectors operating around the world, one in Australia (NIOBE), 

three in Italy (NAUTILUS [I 11, AURIGA [12], ~ x ~ l o r e r ~ )  and one in the US (AL- 

LEGRO). Bar detectors are limited by background noises caused by internal thermal 

noise and the quantum uncertainty principle. Current detectors have a strain sensitivity 

of about Hz-lI2 and are mainly sensitive to supernovae in the neighbourhood of 

the Milky Way and in-band continuous wave sources. 

2. Inte$erometers: Interferometers operate in a broad band (1 kHz) at a central frequency 

of 150 Hz. In a laser interferometric antenna the tidal deformation caused in the two 

arms of a Michelson interferometer is sensed as a shift in the fringe pattern at the out- 

put port of the interferometer. The sensitivity of such a detector is limited at low fre- 

quencies (10-40 Hz) by seismic disturbances and noises caused by human activities, 

at intermediate frequencies (40-300 Hz) by thermal noise of optical and suspended 

components, and at high frequencies (> 300 Hz) by photon shot noise. 

Three key technologies have made it possible to achieve the current level of sensitivi- 

ties details of which we do not mention here: 

(a) Signal recycling is particularly useful for observing long-lived continuous wave 

sources. 

(b) Multiple suspension systems that filter the ground motion and keep the mirrors 

essentially free from seismic disturbances. 

(c) Monolithic suspensions that help isolate the thermal noise to a narrow frequency 

band. 

There are currently six long baseline detectors in operation: The American Laser Inter- 

ferometer Gravitational-Wave Observatory (LIGO) [13], which is a network of three 

detectors, two with 4 km arms and one with 2 km arms, at two sites (Hanford, Wash- 

ington and Livingstone, Louisiana), the French-Italian VIRGO detector with 3 km 

arms at Pisa [14], the British-German GEO 600 [15] with 600 m arms at Hannover 

2 ~ h e  Explorer detector is operated by an Italian group but located in CERN 
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and the Japanese TAMA with 100 m arms in Tokyo [16]. Australia has built a 100 m 

test facility with a plan to build a km-size detector sometime in the future. 

Plans are well underway both in Europe and the USA to build, by 2008, the next 

generation of interferometers that are 10-15 times more sensitive than the initial inter- 

ferometers. With a peak sensitivity of h - HZ-"~ these advanced detectors will 

be able to detect NS ellipticities as small as in our Galaxy, BH-BH binaries at a 

redshift of z - 0.5, stochastic background at the level of QGW - An important 

step towards this is the planned European gravitational observatory (EGO) which is 

a 3rd generation GW antenna. From the above discussion it should be clear that due 

to the seismic noise interferometers on the earth will not be able to detect GWs with 

frequencies below 1 Hz. Many known astrophysical sources radiate in this frequency 

band and to look for them the only alternative at present is to go to space. We discuss 

it next. 

1.5.2 Space-based interferometers 

The Laser Interferometer Space Antenna (LISA) is scheduled to fly in 2015. A joint mission 

of ESA and NASA, it consists of three spacecraft in heliocentric orbit, 60 degrees behind 

the Earth, in an equilateral triangular formation of size 5 million km [17]. LISA'S sensi- 

tivity is limited by difficulties with long time-scale (< Hz) stability, photon shot-noise 

(- Hz) and large size (> lo-' Hz). LISA will be able to observe galactic, extra-galactic 
and cosmological point sources as well as stochastic backgrounds from different astrophys- 

ical populations and perhaps from certain primordial processes. In addition to LISA there 

have been proposals to build an antenna in the frequency gap of LISA and ground-based de- 

tectors. The Deci-Hertz Inteferometer Gravitational- Wave Observatory (DECIGO) [18] by 

the Japanese team and the Big-Bang Observer (BBO), a possible follow-up of LISA [19], are 

aimed as instruments to observe the primordial GW background and to answer cosmological 

questions on the expansion rate of the Universe and dark energy. 

Fig. 1.3 shows in solid lines the design sensitivity goals of the ground-based interferome- 

ters, Initial LIGO and Advanced LIGO. The inset shows the same for the space-based LISA. 

Also plotted in Fig. 1.3 are source strengths to be discussed in Sec. 1.6 
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Figure 1.3: Noise PSD (in Hz-'/2) of space-based LISA and four generations of ground- 
based interferometers, initial LIGO, %go, advanced LIGO and EGO respectively. Also 
plotted on the same graph are the source strengths for archetypal binary, continuous and 
stochastic radiation in the same units. A source will be visible in a network of 4 interferom- 
eters if it is roughly 5 times above the noise PSD. This figure is adapted from [4] 

1.6 Gravitational wave astronomy: 

Sources and event rates 

Gravitational wave detectors could reveal hidden secrets of the Universe by helping us L 
study sources in extreme physical situations: seong non-linear gravity, relativistic motion, 
extremely high density, temperature or magnetic fields. Important among them are compact 

objects (in isolation or in binaries) and stochastic backgrounds. 
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1.6.1 Compact binaries 

Compact binaries, consisting of a pair of neutron stars or black holes are good standard can- 

dles for astronomy [20]. Its chirp mass M z T,~~/~M, completely fixes the absolute luminosity 

of the system. By observations of the GWs from a binary, we can measure the luminosity dis- 

tance to the source provided the source chirps, in other words, the orbital frequency changes 

significantly (as much as 1 /T) during an observational period T. This feature allows one to 

accurately measure cosmological parameters and their variation as a function of red-shift. 

The dynamics of a compact binary consists of three phases: 

1. Early inspiral: In this phase, the system spends 100's of millions of years but the 

power emitted in GW is relatively low. This phase can be treated using linearized 

Einstein's equations, post-Newtonian theory and energy balance between the binding 

energy and the emitted radiation. The emitted GW signal is a characteristic chirp 

waveform with its amplitude and frequency slowly increasing with time. The inspiral 

phase is calculationally terminated at the last stable orbit (LSO) when the effective 

potential of the system undergoes a transition from having a well-defined minimum 

to the one without a minimum. This roughly occurs when the frequency of GW is 

fLso = 4400 (Mo/M) Hz. For M 5 IOM,, only the inspiral phase is sensed by the 

interferometers. The phase evolution of the signal is well modelled during this epoch 

and matched filtering technique can be used to enhance the visibility of the signal by 

roughly the square root of the number of signal cycles. Since a large number of cycles 

are available it is possible to discriminate different signals and accurately measure the 

parameters of the source such as its location [21], mass and spin [22]. 

2. Late inspiral, plunge and merger: In this phase the two stars orbit each other at 

speed v = c/3 and experience strong gravitational fields (gravitational potential 

cp = GM/Rc2 - 0.1.). This phase requires for its description the full non-linear struc- 

ture of Einstein's equations as it involves strong relativistic gravity, tidal deformation 

(in the case of BH-BH or BH-NS) and disruption (in the case of BH-NS and NS-NS). 

It has been a frontier area of research for numerical relativists [23] for more than 

two decades. Partial insights have been gained by the application of resurnmation 

and effective-one-body techniques aimed at accelerating the convergence properties of 

post-Newtonian expansions of the energy and flux required in constructing the phas- 

ing of GW [24, 25, 261. This is the most interesting phase from the point of view of 

testing non-linear gravity. Even the total amount of energy radiated during this phase 

is highly uncertain, with estimates in the range 10% [27] to 0.07% '0251. Since the 

phase is not well-modelled, it is necessary to employ sub-optimal techniques, such as 

time-frequency analysis, to detect this phase. 
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3 .  Late merger: This is the phase when the two systems have merged to form either a 

single NS or a BH, settling down to a quiet state by radiating the deformations induced 

during the merger. The emitted radiation can be studied using perturbation theory and 

computing the quasi-normal modes (QNM). The QNMs carry a unique signature that 

depends only on the mass and spin angular momentum in the case of BH, but depends 

also on the equation-of-state (EOS) of the material in the case of NS. This should allow 

one to test whether or not the resultant remanent is a BH or NS. Flanagan and Hughes 

[27] argue that during the late stages of merger the energy emitted in the form of QNM 

might be as large as 3% of the system's total mass [27]. The corresponding estimate 

by Buonanno and Damour is only 0.7% of the system's total mass [25]. Matched 

filtering, should allow one to detect the QNM resulting from binary mergers of mass 

in the range 60-lo3 M, at a distance of 200 Mpc in initial LIGO and from z - 2 in 

advanced LIGO. 

1.6.2 Event rates 

1.6.2.1 NS-NS binaries 

Double NS can be seen in advanced LIGO to a distance of 300 Mpc (see Fig. 1.3). Based on 

the observed small population of double NS binaries which merge within the Hubble time 

Kalogera et al. [28] conclude that the galactic coalescence rate is - 1.8 x yr-'. This 

implies an event rate of NS-NS coalescences of 0.25 and 1500 yr-', in initial and advanced 

LIGO, respectively. An event rate as large as in advanced LIGO and EGO will provide a 

valuable catalogue to test astronomical paradigms, like for example whether y-ray bursts are 

associated with NS-NS or NS-BH mergers [29]. 

1.6.2.2 NS-BH binaries 

Advanced interferometers will be sensitive to NS-BH binaries out to a distance of about 

650 Mpc. The rate of coalescence of such systems is not known empirically as there have 

been no astrophysical NS-BH binary identifications. Event rates are derived from population 

synthesis models which give [30] a galactic coalescence rate in the range 3 x 10-7-5 x 
yr-'. The event rate of NS-BH binaries will be worse than that of the BH-BH of the 

same total mass by a factor of (4v)312 just due to the fact that the SNR scales down as fi. 
Taking these factors into account we get an optimistic detection rate of NS-BH of 1 to 1500 
in initial and advanced LIGO, respectively. 
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1.6.2.3 BH-BH binaries 

Black hole mergers are the most promising candidate sources for a first direct detection 

of GW. The reach of the interferometers for BH-BH binaries varies from 100 Mpc (with 

the inspiral signal only) to 150 Mpc (inspiral plus merger signal) in initial LIGO, to a red- 

shift of z = 0.4-0.55 in advanced LIGO (cf. Fig. 1.3). As for NS-BH binaries, there is no 

empirical estimate of the event rate. Population synthesis models are highly uncertain about 

the galactic rate of BH-BH coalescences and predict [30] a range of 3 x 10-8-10-5 yr-', 

smaller than the predicted rate of NS-NS coalescences. Yet, owing to their greater masses, 

BH-BH event rate in GW detectors is larger than the NS-NS event rate by a factor M ~ / *  for 

M 5 100 M,. The predicted event rate is a maximum of 1 yr-l in initial LIGO and 500 yr-l 

to 20 day-' in advanced LIGO. 

1.6.2.4 Massive black hole binaries 

The mergers of MBHs in LISA will be the most spectacular events (see SNR's figures in 

chapter 5) requiring no templates for signal identification, although good models would be 

needed to extract source parameters. Mergers can be seen to z - 30 and, therefore, one 

could study the merger-history of galaxies throughout the Universe and address astrophysical 

questions about the origin, growth and population of MBH. 

The predicted rate for MBH mergers is the same as the rate at which galaxies merge, 

about 1 yr-' out to a red-shift of z = 5 [3 11. 

1.6.3 Stochastic background 

A population of unresolved background sources [30] or quantum processes in the early 

Universe produce stochastic GW signals. By detecting such a stochastic background one can 

learn more about the underlying population distribution and operative physical processes in 

the early universe. A network of antennas can be used to discover stochastic signals buried 

in the instrumental noise backgrounds since it is expected that the instrumental backgrounds 

will be different in two geographically well-separated antennas. By cross-correlating the data 

from two detectors one can eliminate the background and extract the interesting stochastic 

signal. For non co-located detectors, the SNR builds only over GW wavelengths longer than 

twice the distance between antennas. For the two LIGO antennas at Lousiana and Hanford 

this means only over frequencies below about 40 Hz [32]. 
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1.6.3.1 Astronomical backgrounds 

There are thousands of white dwarf binaries in our galaxy and their period ranges from a 

few hours to 100 seconds. Though each binary will emit radiation at a single frequency, 

over an observation period T each frequency bin of width A f = 1/T will be populated by 

many sources. Unless the source is close by it will not be possible to detect it amongst the 

confusion background created by the underlying population. 

1.6.3.2 Primordial background 

A cosmological GW background can be created in the very early Universe and later amplified 

via parametric amplification, due to coupling to the background gravitational field [30]. 

Observing such a background is of fundamental importance as this is the only way we can 

ever hope to directly witness the birth of the Universe. The cosmic microwave background, 

being strongly coupled to baryons for 300,000 years after the big bang loses the signature 

of the early Universe. The GW background, on the other hand, would de-couple from the 

rest of the matter s after the big bang, and would carry uncorrupted information about 

the origin of the Universe. The strength of stochastic GW background is measured in terms 

of the fraction QGw of the energy density in GW as compared to the critical density needed 

to close the Universe. The amplitude of GW is given by [33]: h = 8 x 10-l9 n:$/ f, for 

Ho = 65 km s-' Mpc. 

In the standard inflationary model of the early Universe, the energy density expected in 

GW is QGW 5 10-15, and this cannot be detected by future ground-based detectors or even 

LISA. Space missions currently being planned (DECIGO/BBO) to exploit the astrophysi- 

cally quiet band of 10-2-1 Hz might detect the primordial GW and offer a glimpse to the 

origin of the Universe. 

1.7 Conventions on source strengths and units 

Prototypical sources for ground based detectors involve neutron stars (NS) and (stellar mass) 

black holes (BH) whose masses are assumed to be M = 1.4M, (radius R = 10 km) and 

M = 10M, respectively. While speaking of the detectability of a source, one assumes that 

a broadband source of known phase evolution is integrated over a bandwidth equal to its 

frequency, for continuous waves an integration time of lo7 s, for stochastic signals an inte- 

gration over lo7 s over a bandwidth f ,  and for quasi-normal modes an integration over one 

e-folding time. With this choice, the raw dimensionless amplitude of GW is re-expressed in 

units of Hz-'I2, allowing one to compare source strengths with the antenna's amplitude noise 

spectral density dm, which is also measured in units of HZ-'/~.  For a 1% false alarm 
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probability during the course of observation it is typically necessary to set signal-to-noise 

ratio (SNR) threshold of about 8 in a single detector. In a network consisting of three equally 

sensitive detectors, in order that the network-SNR is 8, each instrument must register an SNR 

of - 5. Thus a source is considered observable if the SNR it produces is at least 5. The SNR 

achievable for point sources indeed depends on the orientation of the source relative to the 

detector. One assumes that sources occur with random orientations and considers the typical 

source to have an "RMS" orientation. The amplitude of a source with an "RMS" orientation 

is smaller than an optimally oriented source by a factor of 512 [34]. 

Matched filtering 

As seen from the discussions in the earlier sections, the weakness of gravity implies GWs are 

extremely weak. There can be no laboratory sources and one needs to look for astrophysical 

GWs like chirps from inspiralling compact binaries, bursts from supernova or gamma-ray 

bursts, monochromatic periodic sources like pulsars or stochastic background of GWs from 

unresolved populations or the early universe. Even strong sources like NS-NS, BH-BH or 

supernovae represent weak signals buried in noise of terrestrial detectors like LIGO and 

VIRGO. One must use a technique like matched filtering to detect the wave and extract its 

parameters. We briefly summarise the main features of matched filtering next. 

A matched filter compares two signals and outputs a function describing the values at 

which the two signals are most like one another. The comparison is via correlation. Cor- 

relation superposes one function over another function and produces a single value charac- 

terising a level of similarity. It then moves the first function an infinitesimally amount and 

recomputes another value. The final result is a graph which peaks at the point where the two 

images are most similar. correlation in the time domain (the domain in which we would want 

to compare two signals) just happens to be multiplication in the frequency domain. Perform- 

ing two Fast Fourier Transforms (FFI's), multiplying the results, and then performing one 

Inverse FFT (IFFT) is computationally faster than performing one correlation between the 

two signals and provides the same result. 

Let x(t) denote the detector output. If no signal is present then x(t) is just a realisation 

of noise n(t), i.e. x(t) = n(t), while in the presence of a deterministic signal h(t) it takes the 

form, 

x(t) = h(t - ta) + n(t), (1.13) 

where h(t - t,) is a signal that simply shifts the signal relative to the origin of time. ta is 

called time-of-arrival. 
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The correlation c of a template q(t) with the detector output is defined as 

The purpose of the above correlation integral is to improve the visibility of the signal. One 

can work out the optimal filter q(t) that maximises the statistical average of the correlation 

c when a signal h(t) is present in the detector output, very conveniently in the frequency 

domain. Write the correlation integral in the Fourier domain by substituting for x(t) and q(t), 

in the above integral, their Fourier transforms f ( f )  and q ( f ) ,  i.e., 

x(t> = l: ~ ( f )  exp (-2 n i f t )  d f  , 

q(f) - 1; g ( f )  exp (-2 x i f  t )  d f .  

After some routine algebra one obtains 

where i j*(f)  denotes the complex conjugate of qCf). In general, c consists of a sum of a two 

terms, a filtered signal S and filtered noise N: 

w 

where, S I Jm 6(f)q*(f)e2" "d f 9 

00 

and, N = f i ( f )q*( f )df .  

If n is specified by a Gaussian random process with zero mean then c will also be described 

by a Gaussian distribution function, although its mean and variance will, in general, differ 

from those of n. The mean value of c is, clearly, S - the correlation of the template q with 

the signal h, since the mean value of n is zero: 

The variance of c, that is (c - q2, turns out to be, 

where, fi(f)h*(f')  = Sh(f)G(f - f ' )  
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S h ( f )  is the power noise spectral density of the detector. The power SNR is defined as 

The amplitude SNR is p. The form of integrals in Eqs. (1.18) and (1.19a) motivates the 

definition of the scalar product of functions, which could either be templates or waveforms. 

Given two functions a(t )  and b(t)  we define their scalar product (a ,  b )  to be 

(a ,  b)  2 - i r ( f ) p ( f )  + i i*(f )h(f) ]  . LW s:, 
Recall that Sh( f )  is real and positive definite. Consequently, the above scalar product defines 

a positive definite norm: The norm of a,  denoted Ilall, is given by 

The SNR in terms of the above scalar product is 

The scalar product of two functions (a ,  b)  achieves its maximum value when a = b. Applying 

this, one finds that the template q that maximises p, called the optimal template, denoted 

where y is an arbitrary constant. The inverse Fourier transform of Eq.(1.24) gives the optimal 

template qopt(t) in the time-domain. 

q,,(t) is the correlation of the time-translated signal h(t) with the inverse Fourier trans- 

form of l / S h ( f ) .  To achieve the maximum SNR the optimal template has to not only match 

the shape of the signal but also its time-of-arrival t,. The time-of-arrival of the signal will not 

be known before hand and one will have to construct the correlation of the detector output 

for several different relative lags of the template with respect to the detector output. In other 

words, one constructs the correlation function c(t'), 

( t )  = ( t ) ( t  - t )  = i ( f ) ~ * ( f ) e - ' " ~ ~ ' d f ,  (1.25) 

where t' is called the lag parameter. 

The success of matched filtering requires an accurate model of signal. This is what 
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favours sources like ICB (NS-NS, BH-BH, NS-BH) over supernovae. In section 1.10 we 

provide a brief summary of gravitational wave phasing which forms the basis of GW data 

analysis for ICB's. In the following section we discuss elements of parametr estimation that 

we will require to investigate tests of GR using GW observations in the last two chapters. 

1.9 Parameter estimation 

The process of parameter estimation refers to the extraction of parameters which characterize 

the signal. Let the signal be h(@), where $ for different values of k correspond to the 

different parameters. Hence one can view the signal to be a vector whose coordinates are 

0". No estimation of parameters in a measurement process, howsoever accurate, yields the 

actual parameters of the signal. This is because at any finite SNR, the presence of noise alters 

the input signal. In the geometric language, the signal vector is being altered by the noise 

vector and the sum of them, which is what the detector output records, lies outside the signal 

manifold [35, 361. 

Techniques such as matched filtering aim at computing the best projection of this altered 

vector onto the signal space. If p be the dimension of the signal space, the true parameters 

of the signal are expected to lie within an ellipsoid of p dimensions at a certain level of 

confidence - the volume of the ellipsoid increasing with the level of confidence. The axes of 

the ellipsoid are the 1 - c ~  uncertainties in the estimation of parameters. The confidence level 

corresponding to a 1-cr uncertainty is 0.67P, 2-cr uncertainty is 0.95P, and so on [37]. 

This work begins with the assumption that gravitational waves from an inspiralling bi- 

nary have been observed; i.e, that the appropriate detection criterion has been met by the 

detector output. We then discuss how to determine the parameters of an inspiralling binary 

system that best fit the measured signal. The set of all gravitational waveforms from two 

inspiralling bodies can be characterized by some number of parameters. For a given incident 

gravitational wave, different realizations of the noise will give rise to somewhat different 

best-fit parameters. However, for large SNR, the best-fit parameters will have a Gaussian 

distribution centered on the correct values. Specifically, let 8' be the correct values of the 

parameters on which the waveforms depend, and let 8' + ~ 8 '  be the best fit parameters in the 

presence of some realization of the noise. Then for large SNR, the probability that the GW 

signal s( t )  is characterized by a given set of values of the source parameters 8' is 



Introduction 

where T i j  is the so-called Fisher information matrix 

where hi I s, with k(f) being the Fourier transform of h(t). The quantity ShCf)  is the 

one-sided noise power spectral density (PSD) of the detector with units of Hz-'; it is the 

only characteristic of the detector that enters the calculation of the errors in the estimation 

of parameters. N = qdet(r/2 n ) is the appropriate normalization factor. The variance- 

covariance matrix zij is given by 

where (AOiA8j), the average over the probability distribution function, is given in Eq. (1.26). 

In terms of Zij, the root-mean- square error in 8' then is 

The correlation coefficient cij between parameters 8' and 8j is given by 

In the above equations, there is no summation over the repeated indices. By the definition of 

the correlation coefficient in Eq. (1.30), it is evident that it lies in the range [-I, I]. A corre- 

lation coefficient value close to 1 (-1) would mean the parameters are completely correlated 

(anti-correlated). When the value is close to 0 then the two parameters are uncorrelated. 

Physically, if the correlation coefficient is close to f l ,  it means that one cannot produce two 

distinct signal shapes by varying both the parameters and varying one would be sufficient. 

Thus correlation coefficients are useful to see the extent to which the parameters are actually 

independent of each other. 

1.10 Newtonian phasing - Adiabatic approximation 

At the Lowest Quadrupolar or Newtonian order, the GW polarisations are given by 

Hi0) = -(1 + c:) cos 24, 

H:) = -2ci sin24, 
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in terms of the invariant Variable x = v2 where 

To study the evolution of the GWF under radiation-reaction, one must compute x(t) and $(t). 

Following [38] in the adiabatic approximation (3 << 1) one begins from E, the CM energy 

at Newtonian order and L ,  GW luminosity or energy flux 

and the heuristic energy balance equation 

From them, one derives 

From the above formula one can get an estimate of the PN order required to successfully 

match filter an ICB. For, the number of GW cycles N left until coalescence starting at some 

frequency w is given by 

cc (V/C)-' (the inverse of (V/C)~ the leading order at which radiation reaction begins). This 

yields - 16000 cycles for NS-NS binaries. Matched filtering requires accuracy to about 

fraction of a cycle. Thus formally one needs to go to relative order 2.5PN or 3PN in L to 

achieve the required accuracy. Detailed work on GW data analysis confirms this [39, 34, 

26,40,41,42]. In the usual notation, nPN means corrections to lowest Newtonian result of 

order; (v2/c2)" = ( u / c ) ~ ~ .  Currently all data analysis based on 2PN templates computed in 

Blanchet, Darnour, BRI, Will and Wiseman [43]. To go beyond Post-Newtonian results one 

can use resummation methods based on Pad6 approximants [39]. To go beyond the adiabatic 

approximation one can use the effective-one-body approach (EOB) [24,25,44] or complete 
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approximants [45]. The extension to elliptical orbits upto 2PN is available in the works of 

Gopakumar and collaborators [46,47]. The spinning case has been discussed in [48]. There 

is an extension of EOB to the spinning case by [49] 

All the above works refer to the general binary case. In the test particle case more accu- 

rate results are available using perturbation methods in black hole spacetimes. In this case 

the exact (rather than a PN expanded) energy function is known. The energy flux is known 

to order 5.5PN analytically for circular orbits and up to 4PN for elliptical orbits. The ex- 

act energy flux is also known numerically for circular orbits in the adiabatic approximation. 

[50, 511. 

1 . 1  GW from ICB - Three modules 

From the discussions above it is clear that the computation of GWs in the adiabatic approxi- 

mation involves three independent modules: 

1. Motion: Given a binary system, iterate Einstein's field equations to discuss conserva- 

tive motion of the system. Compute the conserved energy E. 

2. Generation: Given the motion of the binary system on a fixed orbit, iterate the field 

equations to compute the multipoles of the gravitational field and hence the far-zone 

flux of energy and angular momentum carried by gravitational waves. Compute L. 

3. Radiation Reaction: Given the conserved energy and radiated flux of energy (and AM), 

assume the balance equations to compute the effect of radiation on the orbit. Compute 

x(t) and #(t). 

GW phasing of a binary is similar to the EMW timing of pulsars. The heuristic assumption 

of energy balance circumvents the task of computing the EOM to very high PN order in 

the adiabatic approximation. In the above Newtonian phasing the EOM was required to only 

Newtonian accuracy. The use of the flux formula at 2.5PN leads to a correction to Newtonian 

acceleration of relative order 2.5PN. The complete treatment of the EOM to this order would 

require one to also control the 1PN and 2PN terms which is substantially more difficult as 

known from the binary pulsar analysis. An exact solution is impossible and one must resort 

to approximation methods. 
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1.12 Approximation methods 

The most important approximation methods to compute GWs include: 

1. Linear perturbations about non-flat background: p-expansion 

2. Post-Newtonian method or (non-linear): expansion (PNA) 

3. Post-Minkowskian method or non-linear iteration: G-expansion (PMA) 

4. Multipole decomposition in irreducible representation of the rotation group: 

(a-expansion in source radius) 

1 5. Far zone expansion: ji expansion 

Successful wave-generation formalisms employ a mix from the above options. A few com- 

ments regarding the various approximation is provided next. 

The PN approximation is valid under assumption of weak gravitational field inside the 

source (weakly stressed) and slow internal motion. Its domain of validity is limited to the 

near zone of the source i.e. exterior region small w.r.t wavelength of the waves. A priori it is 

unable to incorporate the (no incoming) boundary conditions at infinity. 

The PM approximation for weakly self gravitating sources is uniformly valid all over space- 

time. The PM approximation is a more general approximation relative to the PN approx- 

imation, multipole approximation and far-zone approximation. Each of the latter can be 

implemented at the second stage after the PM approximation is implemented as the first 

stage. 

The multipole expansion is a very useful tool in physics. It is an expansion using spher- 

ical harmonics in the scalar case. Its use in GR is complicated due to two reasons. First, 

gravity is a tensorial (spin two) field requiring the use of tensor spherical harmonics. Ten- 

sor spherical harmonics are more complicated objects than the usual spherical harmonics. 

Symmetric trace fee (STF) tensors are equivalent to tensor spherical harmonics but more 

convenient to use and invariably employed. Second, GR is a non-linear theory. It requires 

additional tools and introduces new features like tails and other non-linear effects. 

For stationary sources, multipole moments in the far field are given by convergent ex- 

pansion of metric at spatial infinity [52, 53, 54, 551. For non-stationary sources the first 

approach involves the expansion at future null infinity. The decomposition of the Bondi 

news function leads to the notion of the radiative moments [56, 57, 581. The second ap- 

proach involves combining multipole expansion with weak field or PM expansion [59,60]. 

One views the multipole moments as source moments [54, 61, 62, 631. Though the first 

Bondi-Sachs-Penrose approach is very powerful, it can address only part of the problem (the 
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field at infinity). It cannot be connected directly to features of the source. Hence we follow 

the second approach and adopt the multipole expansion within the complete non-linear the- 

ory following the Multipolar post Minkowskian formalism initiated by Blanchet and Damour 

[61, 62,64,63]. 

1.13 Model of the source and regularisation of the self-field 

An accurate relativistic description of binary neutron stars or binary black holes requires a 

general method for dealing with the gravitational interaction of two (non-spinning) compact 

bodies; bodies whose radii are of the same order as their gravitational radii. During his 

careful analysis of the binary pulsar 1913+16 Damour [65] introduced a matching approach 

which combined two different approximation methods: (i) "external perturbation scheme": 

an iterative, weak-field (post-Minkowskian) approximation scheme valid in a domain outside 

two world-tubes containing the two bodies. (ii) "internal perturbation scheme": a scheme 

describing the small perturbations of each body by the far-field of its companion. He showed 

that to a very high approximation, the internal structures of the compact bodies are eflaced 

when seen in the external scheme. The internal structure effects the EOM only starting at 

5PN level (1/c1O). (Physically, it is due to the influence on the orbital motion of Newtonian 

quadrupole moments induced by tidal interaction between the two compact objects.) The 

effacement result is the rationale for describing, up to 5PN order, two (non spinning) compact 

bodies in terms of two point masses. Mathematically we represent the compact bodies by a 

"skeleton" made of two massive world-lines described by a point-particle action 

Thus, non-spinning compact objects can be well modeled as point particles described by 

6-functions governed by gravitation, described by GR. This allows a systematic analytical 

approximation scheme for the calculation of associated waveforms to the order required or 

resources permit. However, there is a technical problem to be overcome: How to handle 

delta functions in a non-linear theory? This requires the use of a regularization scheme for 

the self field. 
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1.14 Post-Newtonian wave generation 

The generation of problem in gravitational radiation theory refers to the problem of relating 

the outgoing gravitational wave field to the structure and motion of the material source. The 

gravitational wave generation problem is important to decode source characteristics from the 

signals that gravitational wave detectors are likely to receive. The main complication is due 

to non-linear effects of gravitation. 

The standard quadrupole equation was first derived by Einstein [66] within the linearized 

approximation to general relativity and is applicable only to slowly moving sources with 

negligible self gravity. Consequently, it does not apply to any realistic astrophysical sys- 
tem since e.g., it cannot be applied to a binary system of two ordinary stars whose mo- 

tion is governed by gravitational forces. Hence these equations need to be generalized to 

at least weakly self-gravitating systems. This was achieved along two very different lines 

by Landau-Lifshitz [67, 681 and Fock [69] respectively. Epstein and Wagoner [70] stud- 

ied post-Newtonian corrections. The Landau-Lifshitz approach has been followed up by 

Thorne [71, 541; Anderson [72] and Walker and Will [73]. In particular Thorne [71, 541 

has developed a formalism for calculating gravitational radiation from slow motion sources 

(not necessarily weakly self-gravitating) by a systematic use of multipole decomposition and 

formal inclusion of higher order multipoles. However, all this work was unsatisfactory as it 

involved both at the intermediate steps and in the final results undefined divergent integrals. 

This is because all this work makes essential use of the Landau-Lifshitz effective stress ten- 

sor of the gravitational field which is not confined to the compact support of the source but 

extends with a slow falloff to infinity [74]. 

Fock's approach is conceptually different and lends itself to useful generalizations. The 

main idea is to solve the problem in two parts. First, compute the gravitational field in 

the near zone of the source where retardation is small compared to the characteristic period. 

Next, obtain the structure of the general radiative gravitational field in the wave zone. Finally, 

match the results of the two steps via an intermediate expression for the gravitational field 

that bridges the gap between the two zones. The Multipolar post Minkowskian formalism 

due to Blanchet, Damour and collaborators [61, 62, 63, 75, 76, 771 based on the Fock 

approach is the most refined and successful formalism at present. Currently it is the only 

appproach complete up to 3PN both in the EOM and radiation problems. It builds on the 

earlier work of Bonnor and collaborators [78, 59, 601 and Thorne [54]. 

Using the Direct Integration of Relaxed Einstein Equations (DIRE) Will and Wiseman 

[79] set up an improved Epstein-Wagoner-Thorne formalism which dealt with the problem 

of divergences differently from the MPM formalism. It is equivalent to the MPM formalism 

[7] but an algebraically different implementation, thus providing an useful check on the final 
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formulas. However, currently DIRE is complete only up to 2PN in EOM and generation. The 

Landau-Lifshitz approach was improved by Futamase and Schutz [80] while Futamase [81] 

extended it to sources with strong self-gravity but weak mutual self-gravitation. Though this 

approach has derived the 3PN EOM [82] for generation it has been investigated only at the 

leading Newtonian order. 

The generation problem beyond the lowest linearised gravity involves two independent 

aspects addressing two independent problems. First, the setting up of a general method 

applicable to extended or fluid sources with compact support based on the mixed post- 

Minkowskian approximation and multipole expansion (MPM) and matching to some post- 

Newtonian source. Second, the application to point particle binaries modelling ICB's, us- 

ing a choice of a regularization scheme for the self-field. The various schemes used in the 

literature include: Pure Hadamard Schwarz regularization, Riesz regularization, Extended 

Hadamard regularization and more recently Dimensional regularization. 

The 2.5PN point-particle description was dealt by using Riesz analytical continuation 

method to (uniquely) regularize the divergent integrals linked to the use of point particles in 

non-linear general relativity [83, 841. Equivalent results could be obtained by using an ana- 

lytic continuation of the space-time dimension D, instead of a Riesz-type analytic continua- 

tion. Surprisingly, the 3PN order turned out to be technically complicated and it was almost 

ten years before the situation has become conceptually satisfactory. Using Hadamard-type 

regularizations most of the complicated non-linear integrals appearing at 3PN order could 

be unambiguously dealt with. However, a few of them turned out to be ambiguous because 

of the appearance of logarithmic divergences at the 3PN order These led to 4 undetermined 

coefficients at 3PN: 

One in the 3PN acceleration [85, 86, 87, 88, 44, 89, 90, 91, 92, 93, 94, 951, w, or 

44 G4(m1 + m2)mlm; . . . + (gauge dependent) In 1-12 - -A 
3 T;iZ 

and three in the 3PN mass quadrupole moment [95,96], ,$,[ and K, 
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Multipolar post Minkowskian method 

The Multipolar post Minkowskian formalism due to Blanchet and Damour [61, 62,64,63] 

proceeds as follows: 

First: Desdribe the gravitational field in the region exterior to a general isolated sys- 

tem by a Multipolar Post Minkowskian metric. Assume the metric is stationary in the 

neighbourhood of past timelike infinity and asymptotically Minkowskian in the past. 

The general method for the external field is not limited a priori to slowly moving PN 

sources. In the construction of the external field the divergence at the origin arising 

from the use of the (external) multipolar expansion must be carefully controlled. In 

the MPM approach this is implemented using an analytic continuation finite part oper- 

ation. This plays a crucial role in the construction of the PM iteration to any order. 

Second: Relate the multipole moments to the material content of source. In Linearized 

gravity the above relation is independent of source velocity. However, it is not so in the 

non-linear theory. Hence one must supplement MPM by an assumption of the metric 

inside the isolated system. One assumes the metric is regular and smooth and admits 

inside a post-Newtonian expansion that matches to the vacuum MPM metric in the 

exterior (in the sense of asymptotic expansions). In other words, there should exist a 

'matching' or 'overlapping' region where both the MPM and PN expansions are valid. 

For slowly moving and weakly stressed i.e. PN sources this region always exists and is 

the exterior (r  > a) near (r  << A) zone. (a < r << A). Hence, closed form expressions 

for source multipole moments can only be obtained for PN sources with the typical 

internal velocity as the small PN parameter. 

Third: In a non-linear theory the source multipole moments mix with each other caus- 

ing non-linear effects in the radiation field. One must then relate the source moments 

to the radiative moments 

General structure of the PN expansion (c + +m) is necessarily of the type 

where p I n - 1 (and q 2 2). PN expansion involves not only with the normal powers 

of 1 / c  but also powers of the logarithm of c  
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1.16 General source moments, canonical source moments 

and radiative moments 

The end result of the implementation of the above computations are the expression for the 

six general source moments [97,98]. The most important 'mass' and 'current' moments are 
given by: 

In the above, 

c4 

.S"P = lglTaP + - 
1 6 n G  

hap , 
matter term - 

grav. source term 
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To compute the multipole moments to a given PN order one performs a retardation expansion 

of the above equations using: 

1 " (21+1)!! ll dzdr(2)~ (x, t + Z I ~ I I C )  = C 2j j!(21 + + )!! xI2j (xi" S (x, t) . (1.43) 
j=O 

cat 

In the linearised gravity case the above results reduce to the results in Damour and Iyer 

[99, 1001 as required. 

The explicit computation of the moments can be schematically surnmarised thus. The 

source moments IL JL are functions of - Z, Zi, Zij, which in turn are functions of the total 
stress-energy tensor - T which can be expressed in terms of the metric perturbations - h. 

To proceed, one must express h in terms of retarded potentials [96] or further in terms of 

Poisson like potentials [95]. By an integration by parts one can simplify some terms to 

simpler surface terms, using Leibniz rule (valid for smooth sources). The computation of the 

multipole moments to 3PN is very long and involves tens of thousands of terms. 

Starting from the complete six STF Source Moments IL , JL , WL , XL , YL , ZL , for which 

general expressions can be given valid to any PN order, one can define a set of Two Canonical 

source moments ML and S L  such that the two sets of moments are physically equivalent 

i.e metrics constructed from them differ by a coordinate transformation. Thus, by a gauge 

transformation one can go from 

s. t. hffP [IL, . . . , ZL] is isometric to kOP[~L, S L] 

The six general source moments are closely rooted to the source; we know them as integrals 

over +". However, the canonical moments are necessary since they simplify the calcula- 

tions of the external non-linearities. Their existence shows that any radiating isolated source 

characterised by two and only two sets of time-varying multipole moments. We need, 

The MPM formalism is valid all over the weak field region outside the source including 

wave-zone (upto future null infinity) in harmonic coordinates. The far zone expansion at 

Minkowskian future null infinity has the structure 
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One can define step by step in PM expansion, Radiative coordinates by gauge transformation 

to eliminate these Log terms. One recovers Bondi-type radiative metric [64]. One can then 

extract Radiative Moments UL and VL in the standard way: 

The two radiative multipole moments UL and VL can be obtained as some non-linear func- 

tional~ of the two canonical moments ML and S L  and thus of the six general source moments 

IL,  JL, WL, XL, YL, ZL. The non-linearities in the external field are computed by the PM al- 
gorithm. The relation between the radiative and source moments include many non-linear 

multipole interactions as the source moments mix with each other as the wave propagates 

from source to detector. 

In the above KI and n l  are constants that are given by general formulas in [97]. 

The radiative mass-type quadrupole moment U i j  includes a quadratic tail at the relative 
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1.5PN order (or l/c3). It represents the interaction of the mass M of the source and its 

quadrupole moment Iij. Physically, it represents the back-scattering of quadrupolar waves 

off the Schwarzschild curvature generated by M. It gives the dominant non-linear effect of 

tails and will appear at 4PN order in the EOM beyond Newtonian acceleration. Uij also 

includes the non-linear memory integral at the 2.5PN order. It represents quadrupolar radi- 

ation of the stress-energy distribution of linear quadrupole waves themselves, the multipole 

interactions Zij  x Ikl. Cubic tail, or "tail of tail", arising at the 3PN order, corresponds to 

the multipole interaction M~ x Iij. The computation of tail integrals require a model for the 

orbit since it depends on the behaviour of the field at all instants in the past. One can use a 

non-decaying circular orbit in those cases where the remote past contribution to tail integrals 

can be shown to be negligible. 

1.17 Application to compact binary systems 

In the application of the above results to compact binary systems, the second aspect of our 

approach comes into play. NS or BH are modelled as point particles represented as Dirac 6- 

functions bringing along the technical problem of how to handle 6- fns in a non-linear theory. 

The general formalism set up for continuous smooth matter distribution with continuous T p v  

cannot be directly applied to point particles since they lead to divergent integrals at location 

of particles when T~~i,,,,,,_pani,,, is substituted in the source moments IL, JL,  WL, XL, YL, ZL. 

The formulas need to be supplemented by a prescription for removing the infinite selfJield 

of point particles. This is our ansatz for applying a well-defined general 'fluid' formalism 

to an ill-defined point-particle source. It is implemented by the use of one of the following 

regularisation schemes: Pure Hadamard regularisation (HR) based on Hadamard's partie 

finie, Riesz regularisation, Extended Hadamard regularisation or Dimensional regularisation 

(DR) 
In both the Amowitt-Deser- Misner (ADM) and harmonic approaches to 3PN dynam- 

ics and MPM approach to radiation, the use of Dirac-delta-function sources to model the 

two-body system causes the appearance of both badly divergent integrals and badly defined 

"contact terms" which cannot be unambiguously regularized by Hadamard regularisation or 

Riesz regularisation. The incompleteness of Hadamard Regularisation at 3PN leads to ap- 

pearance of Ambiguity parameters (arbitrary dimensionless coefficient whose value cannot 

be fixed within Hadamard Regularisation). Hadamard regularization of the self-field of point 

particles violates the gauge symmetry of perturbative general relativity (diffeomorphism in- 

variance) and thereby breaks the crucial link between Bianchi identities and EOM. This is 

probably why the Hadamard based works are unable to fix the parameter w,, 2, 6, K, 5 
Dimensional regularisation was introduced by 't Hooft & Veltrnan [ lo l l  to respect gauge 
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symmetry of perturbative quantum gauge theories. Here we use it to respect gauge symmetry 

associated with diffeomorphism or general coordinate invariance of classical general rela- 

tivistic description of interacting point masses Work in d + 1 spacetime dimensions, where d 

considered as a continuous complex number. If d = (3 - A) this regularisation is equivalent 

to the successful Riesz regularisation upto 2.5PN. Dimensional Regularization respects the 

gauge symmetry of perturbative GR. In this sense, it is a better regularization scheme. 

One has to redo all calculations from the beginning in d + 1 dimensions with all the 

d-dependent coefficients. One then computes the Difference between the d- dimensional 

Dimensional Regularisation result and 3 dimensional one corresponding to Hadamard regu- 

larisation (pure Hadamard-Schwartz). The difference is computed in the form of a Laurent 

expansion in s = d - 3. The s expansion of the difference depends only on the singular 

behaviour of metric coefficients in the vicinity of point particles. Hence functions involved 

in the delicate divergent integrals can be computed in d- dimensions as local expansions 

in the 'sizes' rl or r2. Ambiguities arise solely from terms in the integration region near the 

particles rl + 0 or r2 -+ 0 that give rise to poles K I/& where s = d - 3 corresponding 

in 3 dimensions to logarithmic ultraviolet divergences. The difference DZ between the DR 

evaluation of the d-dimensional local integral and its corresponding three-dimensional (pure) 

HS one is expressible in terms of the s- expansion coefficients. Imposing the physical equiv- 

alence between the DR result and HR one determines all the ambiguity parameters. There 

are no undetermined parameters any more and the 3PN EOM and radiation are complete and 

available for use in GW data analysis. 

1.18 Current status 

What is the current status of the computations of the equation of motion (EOM) and energy 

flux (luminosity) in the general binary case for ICB binaries? The energy E or equivalently 

EOM is known to 3PN accuracy for general orbits. It has been computed by three indepen- 

dent methods. The first two are ADM Harniltonian method using Hadamard regularisation 

(HR) by Damour, Jaranowski, Schafer [87, 88, 44, 891 and EOM in harmonic coordinates 

using HR by Blanchet and Faye [85]. The results were equivalent but included one ambi- 

guity parameter R or w, arising from the incompleteness of the Hadamard regularisation. By 

using dimensional regularisation both the groups independently determined the ambiguity 

parameter and checked their agreement. [87, 88,44, 89, 1021. The third computation was 

the surface integral approach by Itoh and Futamase [82] for two spherical compact stars in 

harmonic gauge without introducing singular sources. The surface integral approach leads 

to EOM independent of internal structure. The 3.5PN terms in the EOM has also been com- 

puted by three independent groups [90, 91, 92, 93, 103, 104, 105, 106, 1071. In the case 
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of luminosity L: or the energy flux, the results are known in the circular orbit case to 3.5PN 

accuracy relative to the to quadrupolar (Newtonian) order. It was computed using HR by 

Blanchet, Iyer and Joguet [95] and included three more undetermined ambiguity parameters 

arising due to the incompleteness of the Hadamard regularisation. The associated 3.5PN GW 

phasing was provided by Blanchet, Faye, Iyer and Joguet [108]. By using DR, Blanchet, 

Damour, Esposito-FarCse and Iyer determined the three ambiguity parameters completing 

the 3PN generation [109]. Based on the above inputs the restricted GW templates can be 

computed to 3.5PN accuracy in the phase [108, 1091. This effectively deal with terms in the 

acceleration of orders - 5.5PN /6PN term relative to the Newtonian accn. The complete GW 

templates including all the amplitude corrections is known to order 2.5PN beyond the lowest 

order Newtonian waveform has been computed by Arun, Blanchet, Iyer and Qusailah [110]. 

These final polarisations at 2.5PN can be schematically written as: 

Together with the 3.5PN phasing results quoted below these provide the best templates avail- 

able today. 

and 
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where C = 0.577216 the Euler constant. The constant ro is related to a constant phase that 

is simply fixed by the initial conditions when the frequency of the wave enters the detector's 

bandwidth. 

where t, denotes the instant of coalescence, at which the frequency tends formally to infinity 

(evidently, the approximation breaks down well before this point). 

Table 1.1: The contributions to the accumulated number N = +(q51sco - q5seisrmc) of 
gravitational-wave cycles [108, 1091 at different PN orders for three prototypical systems. 
The frequency entering the bandwidth is he is^, = 10 Hz; terminal frequency is assumed to 

c3 be at the Schwarzschild innermost stable circular orbit Asco = m. 
2x1.4M0 10MO+ 1.4M0 2 x  10Mo 

Newtonian 1603 1 3576 602 

We conclude with a table 1.1 that gives the contributions to the accumulated number 

N = +(4rsco - eseismic) of gravitational-wave cycles [108, 1091. The frequency entering 

the bandwidth is LeiSrm, = 10 Hz; terminal frequency is assumed to be at the Schwarzschild 
c3 

innermost stable circular orbit fIsCO = @ / 2 ,  G, .  

From the table it is clear that we have the phasing accuracy we desire to deal with ICB 

in laser interferometric GW detectors. 

1.19 Eccentric binaries 

Inspiralling compact binaries are usually modeled as point particles in quasi-circular orbits. 

For long lived compact binaries, the quasi-circular approximation is quite appropriate, as 

the radiation reaction decreases the orbital eccentricity to negligible values by the epoch the 

emitted gravitational radiation enters the sensitive bandwidth of the interferometers. It is by 

now well-known that the gravitational waveform of an eccentric binary could be significantly 

different from that of a circular one and different detection strategies are required for optimal 

detections (e.g., [ I l l ,  112, 113, 114, 115, 116, 1171. 
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Though the strongest and first sought binary sources of GW are those moving in quasi- 

circular orbits, there is a also interest in inspiralling binaries moving in quasi-eccentric orbits. 

Astrophysical situations currently do exist which lead to binaries with nonzero eccentricity 

in the gravitational wave detector bandwidth, both ground-based and space-based. Promi- 

nently, inner binaries of hierarchical triplets undergoing Kozai oscillations [I181 may not 

only merge due to gravitational radiation reaction [I191 but a good fraction (- 30%) of 

them will have eccentricity greater than about 0.1 as they enter the sensitivity band of ad- 

vanced ground based interferometers. [120]. The majority of the above systems possess 

eccentricities well below 0.2 at 40 Hz and below 0.02 at 200 Hz. The population of stellar 

mass binaries in globular clusters is expected to have a thermal distribution of eccentricities 

[121]. As another example, in the study on the growth of intermediate BHs [I221 in globular 

clusters it was found that the binaries have eccentricities between 0.1 and 0.2 in the LISA 

bandwidth. 

Finally, if a Kozai mechanism is at work, supermassive black hole binaries could be in 

highly eccentric orbits and merge within the Hubble time [123]. Since supermassive black 

hole binaries are powerful GW sources for LISA, the effects of eccentricity would need to 

be carefully addressed. Sources of the kind discussed above provide the prime motivation 

to investigate higher post-Newtonian order modelling for quasi-eccentric binaries. In this 

thesis we compute the total energy flux or GW luminosity from inspiralling compact binaries 

moving in general orbits at the third post-Newtonian order. In addition to the instantaneous 

terms, the more involved hereditary terms depending on the past history of the binary also 

contribute and must be evaluated. 

1.20 Gravitational wave recoil 

1.20.1 What is gravitational wave recoil 

Gravitational waves (GWs) carry energy and angular momentum from a binary system, caus- 

ing decay of the binary's orbit and eventually driving the system to merge into a single object. 

GWs also carry linear momentum from the system as well (e.g., [124]). As a consequence, 

the center of mass in this case must recoil in order to satisfy global conservation of mo- 

mentum. If the recoil velocity is comparable to or greater than the escape velocity of the 

binary's host structure, there could be important dynarnical consequences, such as ejection 

of the merged black hole remnant. 

The recoil arises because the radiation field generated by a binary is typically asymmetric. 

Consider the following argument due to Alan Wiseman. In an unequal mass binary (Fig. 

1.4), the smaller member, ml ,  moves with a higher speed than the larger member, mz. It 
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center of mass 
' 0.1 -, 

Figure 1.4: GW emission from an unequal mass binary. Momentum is ejected parallel to the 
smaller body's velocity (&). Conservation of momentum requires that the system recoil in 
the opposite direction [S]. 

is thus more effective at "forward beaming" its wave pattern. This means that there is an 

instantaneous net flux of momentum ejected from the system parallel to the velocity of the 

smaller body, and a concomitant recoil opposing this [S]. 

Over an orbit, the recoil direction continually changes. If the orbit were perfectly circular, 

this means that there would be no net interesting effect - the binary's center of mass would 

run around in a circle, and the net recoil would sum to zero. However, when GW emission is 

strong, the orbit is not perfectly circular: Because of the secular, dissipative evolution of the 

binary's energy and angular momentum, the black holes slowly spiral towards one another. 

Since the orbit does not close, the recoil does not sum to zero. The recoil accumulates until 

the holes merge and settle down to a quiescent state, shutting off the momentum flux and 

yielding a net, non-zero kick. 

This recoil is not a property unique to GWs - it holds for any form of radiation3. This 

can be simply seen by considering a multipolar decomposition. Consider a distribution of 

charges with non-zero electric dipole and quadrupole moments, as in Fig. 1.5. Spin this 

arrangement about its center point, causing the system to radiate electromagnetic waves. 

What does this radiation distribution look like from far away? 

The radiation's amplitude has two pieces, dipole and quadrupole: 

I? = zdip + ,!?quad , where (1.53) 
Zdip  ei(@-ut) 9  quad e~i(@-wt) (1.54) 

3~ndeed, electromagnetic or neutrino recoil may impact neutron star kicks [125, 1261. 
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Figure 1.5: Charge distribution with non-zero dipole and quadrupole moment. Spinning this 
distribution about its center point produces radiation carrying non-zero linear momentum 
due to beating between the dipolar and quadrupolar radiation fields [8]. 

Since the intensity I cc 12?l2, it will contain three pieces: 

where 

Id ip  cc ~ , ? ? ~ ~ p l ~  cc constant ; Iquad cc ~ i ? q ~ ~ ~ l ~  cc constant (1.56) 

 dip-quad cc Re [~!?~~~g~~] LX COS(@ - ~ f )  . (1.57) 

The intensity has a preferred direction, which rotates as the charge distribution rotates. The 

energy from the system is instantaneously beamed in a preferred direction, and so there is a 

net flux of momentum in that direction as well. 

The lowest order GWs in GR are quadrupolar. Recoil from GW emission must come 

(at lowest order) from a beating of the mass quadrupole with mass octupole and current 

quadrupole moments. The mass octupole and current quadrupole vanish for an equal mass 

binary, consistent with our "forward beaming" picture that unequal masses are needed for 

there to be any recoil. Thus GW recoil can be expected to be a very small effect, except 

perhaps in the very late stages of coalescence, since the octupole radiation amplitude is 

smaller than the quadrupole by a factor of order v/c (where v is orbital speed). 

The first careful analysis of recoil in binary systems due to GW emission was by Michael 

Fitchett [127]. Fitchett's analysis described the orbital dynamics of the binary using Newto- 

nian gravity and only included the lowest radiative multipoles which contribute to the recoil. 

His analysis predicted that the recoil of the merged remnant took the form 

where Rt, is the orbital separation at which GW emission terminates, q = ml/m2 is the 

binary's mass ratio, and f (q) = q2(1 -q)/(l +q)5 is a function whose maximum is at q = 0.38, 
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and has the limit f (q) - q2 for q << 1. 

Three features of this formula should be noted. First, this result does not depend on 

total mass but only on the mass ratio (recall R,, scales with total mass M). Thus, this 

scaling holds for any binary black hole merger - stellar mass mergers through supermassive 

mergers. Second, the overall scale is quite high. Although there is an important dependence 

on mass ratio and the termination radius R,,, is somewhat uncertain, Eq. (1.58) indicates that 

kicks of hundreds of km/sec are not difficult to achieve; kicks 2 1000 km/sec are plausible. 

This is high enough that black hole ejection following a merger could to be common. Third, 

the recoil becomes very strong when the separation of the bodies is small. This is a strong 

hint that we cannot take Eq. (1.58) at face value - the strong gravity physics neglected by 

Ref. [I271 is likely to be very important. 

1.20.2 Astrophysical implication of gravitational wave recoil 

The transport of linear momentum, the gravitational-radiation rocket effect, though a higher- 

order relativistic phenomenon, may have observable consequences on galactic scales. Radi- 

ation reaction from the coalescence of black holes from the cores of merging galaxies might, 

in a suitably asymmetric coalescence, eject the resulting black hole from the resulting galaxy. 

Thus the distribution of massive black holes in galaxy cores observed now could depend on 

the details of such highly dynamical black-hole interactions [128]. 

Observational consequences of kicks include: (i) the probability that BHs are ejected 

from galaxies and its implications for BH growth; (ii) the time scale for a kicked BH to 

return to the center of a galaxy, and (iii) the effect of displacement on nuclear structure 

[I 291. 

In this thesis, we investigate the second post-Newtonian linear momentum flux for ICB 

moving in quasi-circular orbits. The 2PN linear momentum flux is then employed to first 

estimate the 2PN accurate GW recoil from the inspiral phase up to the ISCO. This calculation 

is then supplemented by the recoil arising from the plunge to the horizon from the ISCO. 

1.21 Tests of general relativity using binary pulsar systems 

The binary pulsar PSR 1913+ 16, discovered in 1974 by J. Taylor and R. Hulse, provided 

important new tests of general relativity: gravitational radiation and strong-field gravity. By 

timing of the pulsar "clock", important orbital parameters of the system could be measured 

with great precision. These included non-relativistic "Keplerian" parameters: eccentricity e,  

and orbital period Pb at any epoch; relativistic "post-Keplerian" parameters: the mean rate of 

advance of periastron, (b), the effect of special relativistic time-dilation and the gravitational 
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redshift on the arrival time of pulses, (resulting from the pulsar's orbital motion and the 

gravitational potential of its companion), y', the rate of decrease of the orbital period (due 

to gravitational radiation damping, apart from a small correction due to galactic differential 

rotation). P ~ .  Two other parameters, s and r, are related to the Shapiro time delay of the 

pulsar signal. 

By combining the observations of PSR 1913+16 with the GR predictions, one obtains 

both a measurement of the two masses, and a test of GR, since the system is overdetermined. 

The results are [I 301 

The remarkable "double pulsar" 50737-3039 is a binary system with two detected pulsars, 

in a 0.10 day orbit seen almost edge on, with eccentricity e = 0.09, and a periastron advance 

of 17" per year. A variety of novel tests of relativity, neutron star structure, and pulsar 

magnetospheric physics will be possible in this system [131, 1321. For a review of binary 

pulsar tests, see [133]. 

1.21.1 Gravitational radiation tests of gravitational theory 

The detection of gravitational radiation by either laser interferometers or resonant cryogenic 

bars will eventually lead to a new era of gravitational-wave astronomy [33, 1341. It will also 

yield new and interesting tests of general relativity (GR) in its radiative regime [135]. These 

relate to 

1. Polarization of gravitational waves: General theories of gravity can have six inde- 

pendent states of polarizations. Three are transverse to the direction of propagation, 

with two representing quadrupolar deformations and one representing an axisymmetric 

"breathing" deformation. Three modes are longitudinal, with one an axially symmet- 

ric stretching mode in the propagation direction, and one quadrupolar mode in each 

of the two orthogonal planes containing the propagation direction. General relativity 

predicts only the first two transverse quadrupolar modes, while scalar-tensor gravita- 

tional waves can in addition contain the transverse breathing mode. A suitable array 

of gravitational antennas could measure the number of modes present in a given wave. 

If distinct evidence were found of any mode other than the two transverse quadrupolar 

modes of GR, the result would be a problem for GR. 

2. Speed of gravitational waves: According to GR, GWs have the same speed, c, as light. 

In other theories, the speed could differ from c because of the coupling of gravitation to 
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"background gravitational fields. The speed of gravitational waves could also differ 

from c if gravitation were propagated by a massive field (a massive graviton), in which 

case u, would be given in a local inertial frame by, 

where m,, E and f are the graviton rest mass, energy and frequency, respectively, 

and 2, = h/m,c is the graviton Compton wavelength (2, >> c /  f assumed). The 

most obvious way to test for a massive graviton is to compare the arrival times of a 

gravitational wave and an electromagnetic wave from the same event, e.g. a supernova. 

3. Radiation reaction: Bound on the graviton mass can also be set using gravitational 

radiation alone [136]. For an inspiralling compact binary as the frequency of the grav- 

itational radiation sweeps from low frequency at the initial moment of observation to 

higher frequency at the final moment, the speed of the gravitational waves emitted 

will vary, from lower speeds initially to higher speeds (closer to c) at the end. This 

will cause a distortion of the observed phasing of the waves and result in a shorter 

than expected overall time At, of passage of a given number of cycles. Through the 

technique of matched filtering, the parameters of the compact binary can be measured 

accurately [137], and thereby the effective emission time At, can be determined accu- 

rately. 

Finally, in this thesis we investigate the extent to which one can test general relativity 

using gravitational wave phasing in the ground-based GW interferometric detectors and more 

significantly space-based GW detector LISA. 




