
Chapter 2 

Gravitational wave energy flux from 

inspiralling compact binaries in 

quasi-elliptical orbits: 

The instantaneous terms 

2.1 Introduction 

Inspiralling compact binaries, one of the prototype sources for laser interferometric gravita- 

tional wave (GW) detectors, are usually modelled as moving in quasi-circular orbits. This is 

justified since gravitational radiation reaction, under which it inspirals, circularizes the orbit 

towards the late stages of inspiral [138]. This late phase of inspiral and the ensuing merger 

phase offers promises for the gravitational wave interferometric detectors. The recently dis- 

covered double pulsar system [139, 281 has an eccentricity as low as 0.088 consistent with 

the circular orbit assumption for the late inspiral and pre-merger phase, believed to be rea- 

sonable enough for most of the binary systems made of neutron stars or black holes. 

The theoretical modelling of the binary's phase evolution to a very high precision is 

called the phasing formula. This is the basic theoretical ingredient used in the construction 

of search templates for GW using matched filtering [140]. The two key inputs required for 

the construction of templates for binaries moving in quasi-circular orbits in the adiabatic 

approximation are the orbital energy and the GW luminosity (energy flux). These are com- 

puted using a cocktail of approximation schemes in general relativity. The schemes include 

the multipole decomposition, the post-Minkowskian expansion of the gravitational field or 

an expansion in Newton's constant G, the post-Newtonian expansion or an expansion in ulc, 
and the far-zone expansion or an expansion in 1 / R ,  where R is the distance from the source 



Chapter 2 4 1 

(See [7] for a recent review). 

Though the garden variety binary sources of GW are those moving in quasi-circular or- 

bits, there is an increased recent interest in inspiralling binaries moving in quasi-eccentric 

orbits. Astrophysical scenarios currently exist which lead to binaries with nonzero eccen- 

tricity in the gravitational wave detector bandwidth, both terrestrial and space-based. For 

instance, inner binaries of hierarchical triplets undergoing Kozai oscillations [I181 could 

not only merge due to gravitational radiation reaction [I191 but a good fraction (- 30%) 

of them will have eccentricity greater than about 0.1 as they enter the sensitivity band of 

advanced ground based interferometers. [120]. Almost all the above systems possess eccen- 

tricities well below 0.2 at 40 Hz and below 0.02 at 200 Hz. The population of stellar mass 

binaries in globular clusters is expected to have a thermal distribution of eccentricities [121]. 

In a study on the growth of intermediate BHs [I221 in globular clusters it was found that the 

binaries have eccentricities between 0.1 and 0.2 in the LISA bandwidth. Though, supermas- 

sive black hole binaries are powerful GW sources for LISA, it is not yet conclusive if they 

would be in quasi-circular or quasi-eccentric orbits [141]. If a Kozai mechanism is at work, 

these supermassive black hole binaries could be in highly eccentric orbits and merge within 

the Hubble time [123]. Sources of the kind discussed above provide the prime motivation to 

investigate higher post-Newtonian order modelling for quasi-eccentric binaries. 

The inspiral and subsequent coalescence of two compact objects results in the emission 

of gravitational waves (GWs). The GW luminosity from a system of two point masses in 

elliptic motion was first discussed by Peters and Mathews [138, 1121. The 1PN and 1.5PN 

accurate fluxes was provided in [142, 143, 144, 145, 1461 and used to study the associated 

evolution of orbital elements using the 1PN 'quasi-Keplerian' representation of the binary's 

orbit obtained by Damour and Deruelle [147]. Gopakumar and Iyer further extended these 

results to 2PN order [46, 1151 using the generalized quasi-Keplerian representation devel- 

oped by Damour, Schafer and Wex [148,149,150]. The results for the energy flux and wave- 

form presented in [46] was in perfect agreement with those obtained by Will and Wiseman 

using a different formalism [151]. Recently, Darnour, Gopakumar and Iyer [47] discussed 

an analytic method for constructing high accuracy templates for the GW signals from the 

inspiral phase of compact binaries moving on quasi-elliptical orbits. They used an improved 

"method of variation of constants" to combine the three time scales involved in the elliptical 

orbit case, namely, orbital period, periastron precession and radiation reaction time scales, 

without making the usual approximation of treating the radiative time scale as an adiabatic 

process. 

The generation problem for gravitational waves at any post-Newtonian order requires 

the solution to two independent problems within the given theory of gravitation. The first 

relates to the equation of motion of the binary and the second to the far zone fluxes of 
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energy, angular momentum and linear momentum. The latter requires the computation of 

the relativistic mass and current multipole moments to appropriate post-Newtonian orders. 

The 3PN equations of motion (EOM) required to handle gravitational wave phasing turned 

out to be technically more involved due to the issues related to the ambiguities of self-field 

regularisation using Riesz or Hadamard regularisations [94, 152, 871 than the 2.5PN EOM 

required to analyse the timing problem of binary pulsars like 1913+ 16. Only by a deeper 

understanding of the origin of these ambiguities and the use of a regularisation scheme like 

dimensional regularisation, that respects the gauge symmetries of general relativity has the 

problem been uniquely resolved [87, 1021 and provided the value of the ambiguity parame- 

ter w, or equivalently A. We thus have in hand the requisite 3PN EOM for compact binaries 

moving in general orbits. The computation of GW luminosity 3PN or ( v / c ) ~  beyond the lead- 

ing Einstein quadrupole formula crucially requires the computation of the 3PN accurate mass 

quadrupole moment. However, it was proved that three and only three ambiguity parameters 

(5, K and 5)  exist in this case when using (extended) Hadamard regularisation [95,96]. More 

recently, by use of dimensional regularisation and comparison to the Hadamard results, the 

three ambiguity parameters in the mass quadrupole has been determined [I091 and some 

checks performed [153, 1541. These works thus provide the fully determined 3PN accu- 

rate mass quadrupole for general orbits, the other important ingredient to compute the 3PN 

accurate energy and angular momentum fluxes for inspiralling compact binaries moving in 

general non-circular orbits. The 3.5PN phasing of inspiralling compact binaries moving in 

quasi-circular orbits is now complete and available for use in GW data analysis [log, 1541. 

Unlike at earlier post-Newtonian orders, the 3PN contribution to energy flux come not only 

from the 'instantaneous' terms discussed in this chapter but also include 'hereditary' con- 

tributions arising from the tail of tails and tail-square terms. A semi-analytical scheme is 

proposed and discussed in detail in the next chapter to evaluate these history dependent con- 

tributions. 

In this chapter, for binaries moving in elliptical orbits, we compute all the instantaneous 

contributions to the 3PN accurate GW energy flux. The orbital average of this flux is ob- 

tained using the recently constructed 3PN quasi-Keplerian parametrization of the binary's 

orbital motion by Memmesheimer, Gopakumar and Schafer [155]. Supplementing these, 

by contributions from the hereditary terms computed in the next chapter we will obtain the 

complete expressions for the far-zone energy flux from inspiralling compact binaries moving 

in eccentric orbits. The expressions will represent gravitational waves from a binary evolv- 

ing negligibly under gravitational radiation reaction, including precisely upto 3PN order, the 

effects of eccentricity and periastron precession during epochs of inspiral when the orbital 

parameters are essentially constant over a few orbital revolutions. It also represents the first 

step towards the discussion of the quasi-elliptical case: the evolution of the binary in an 
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elliptical orbit under gravitational radiation reaction. 

The present work extends the circular orbit results at 2.5PN [I561 and 3PN [95] to 

the elliptical orbit case. (Contrary to the previous orders, we encounter both instantaneous 

and hereditary terms at the 2.5PN and 3PN orders). Further, it extends earlier works on 

instantaneous contributions for binaries moving in elliptical orbits at 1PN [143, 1441 and 

2PN [46] to 3PN order. The next chapter similarly extends hereditary contributions at 1.5PN 

by 1145, 1461 to 2.5PN order and 3PN. The 3PN hereditary contributions comprise the 
tail(tai1) and tail2 and are extensions of [157, 1581 for circular orbits to the elliptical case. 

In Sec 2.2 we begin with the structure of the far-zone flux of energy, use expressions relat- 

ing the radiative moments to the source moments and decompose the energy flux expression 

into its instantaneous parts and hereditary parts. Sec. 2.3 lists all the requisite input multipole 

moments in standard harmonic coordinates for binaries moving in general (non-circular) or- 

bits. Sec. 2.4 discuss the computation of the instantaneous terms in the energy flux for 

standard harmonic coordinates. Sec. 2.5 recasts the flux in modified harmonic coordinates 

(without logs) and ADM coordinates. Secs 2.6.2 summarises the 3PN quasi-Keplerian repre- 

sentation required to average the flux expression over an orbit. Sec. 2.7 and Sec. 2.8 exhibits 

the orbital average of the energy flux in modified harmonic coordinates and ADM coordi- 

nates respectively. Sec. 2.10 exhibits the instantantaneous contributions to the energy flux in 

terms of gauge invariant variables. 

2.2 The far-zone flux of energy 

In this section, we discuss the computation of 3PN accurate energy flux for binaries moving 

in general (non-circular) orbits. Starting from the expression for the far zone flux in terms of 

the radiative multipole moments and using the relations connecting the radiative multipole 

moments to the source moments, we rewrite the resultant structure of the gravitational wave 

(GW) energy flux. It consists of the instantaneous terms investigated here, which are func- 

tions of the retarded time and hereditary terms, evaluated in the next chapter, which depends 

on the dynamics of the system in its entire past. 
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2.2.1 Far zone flux in terms of the radiative multipole moments. 

Following Thorne [54], the expression for the 3PN accurate far zone energy flux in terms of 

symmetric trace-free (STF) radiative multipole moments read as 

far-zone 

In the above UL and VL (with L = ijk ... a multi-index composed of I indices) are the 

mass and current type radiative multipole moments respectively and u!) and Vf )  denote 

their lth time derivatives. The moments are functions of retarded time TR = T - in radiative 

coordinates. &ipq is the usual Levi-Civita symbol such that ~ 1 2 3  = + l .  The shorthand O(n) 

indicates that the post-Newtonian remainder is of order of O(c-"). 

Using the MPM formalism, the radiative moments in Eq. (2.1) can be re-expressed in 

terms of the source moments to an accuracy sufficient for the computation of the energy flux. 

For the energy flux to be complete up to 3PN approximation, one must compute the mass 

type radiative quadrupole Ui j  to 3PN accuracy, mass octupole Uijk and current quadrupole 

Vij  to 2PN accuracy, mass hexadecupole Uijkm and current octupole Vijk to 1PN accuracy and 

finally Uijkmn and Vijkm to Newtonian accuracy. 

2.2.2 Radiative moments in terms of source moments 

The relations connecting the different radiative moments UL and VL to the corresponding 

source moments IL and JL are given below. For the mass type moments we have [76, 156, 

157, 1581 
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where the bracket o denotes STF projection. In the above formulas, M is the total ADM 

mass of the binary system. The IL's and JL7s are the mass and current-type source moments, 

and If), J;) denote their p-th time derivatives. W is the monopole corresponding to the set 

of gauge moments WL. 

For the current-type moments, on the other hand, we find 

[The underlined index - a means that it should be excluded from the STF projection]. For all 

the other moments required in the computation we need only the leading order accuracy, so 

that 

The constant scaling the logarithm has been chosen to be ro to match with the choice 

made in the computation of tails-of-tails in [158]. It is a freely specifiable constant, entering 

the relation between the retarded time U = T - Rlc in radiative coordinates and the cor- 

responding time t - plc in harmonic coordinates (where p is the distance of the source in 

harmonic coordinates). More precisely we have 



Chapter 2 46 

From Eqs (2.2)-(2.3), it is clear that the radiative moments have two distinct contribu- 

tions. One part which is a function only of the retarded time, U = T - !, and referred to 

as the 'instantaneous terms' forms the subject matter of this chapter. The second part on the 

other hand depends on the dynamics of the system in its entire past [76] and is referred to 

as hereditary contributions. Equally important but requiring a different treatment, it is dealt 

with in the next chapter as mentioned earlier. 

2.2.3 Far zone flux in terms of source multipole moments: 

Instantaneous terms 

Discussions in the earlier section on the structure of radiative multipole moments in terms of 

source moments allow us to write down explicitly the different kinds of contributions to the 

far zone energy flux up to 3PN. We have, 

where the instantaneous contribution of interest here is explictly written as 

Since the hereditary contributions will be discussed completely in the next chapter, we 

refrain from giving more details about them here. 
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2.3 Input multipole moments in standard harmonic 

coordinates (with logs) 

We provide, in this section, the requisite multipole moments needed for the computation of 

the instantaneous part of the 3PN accurate energy flux in the standard harmonic coordinate 

system containing log terms as used in other earlier works including [159]. These are 

generalisations to general non-circular orbits of expressions available in [95] for inspiralling 

compact binaries moving in circular orbits and explicitly computed using retarded potentials 

by implementing the details described in [96]. Though algebraically long and involved, the 

procedure is fairly algorithmic as explained in [95, 961. Thus we skip those details here 

and list the final expression for these relevant source multipoles. The mass quadrupole Iij is 

already available in [96], where the procedure used for its computation is outlined in detail. 

We list it here for the sake of completeness and choice of notation. 

where 
1 29 29v G m  5 8 

fi = c2 1+- [u2 (a -12 )+T( - -+ -v ) ]  7 7 
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In the above equation ro is an arbitrary scale that is introduced in the general MPM formalism 

and which then appears in the definition of the source multipole moments. r',, related to other 
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scales r; and ri by m In rk = ml In pJ, + m2 In r; is specific to the application of the formal- 

ism to point particle systems and comes from regularizing self-field effects in the standard 

harmonic coordinates. By deJinition of the ambiguity parameters these scales are taken to be 

the same as the two scales that appear in the final expression of the 3PN equations of motion 

in harmonic coordinates computed in [85, 1521. r;, 6 and hence Jo are 'unphysical' in the 

sense that they can be arbitrarily moved by a coordinate transformation of the 'bulk' met- 

ric outside the particles or more appropriately when considering the renormalisation which 

follows the regularization by relevant shifts of the particles' world lines [154]. 

The 2PN mass octupole for general orbits is the next of the non-trivial moments required 

for what follows. It is given by: 

The other mass-type moments needed in this work read as 

In the above and what follows, Xijk , , ,  = x i x j x k  ... and v i j k , , ,  = v i v j v k  ..., v = m1m2/m2 and STFL 

denotes that the terms inside the bracket are symmetric and trace-free in the indices listed. 
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W, the monopole corresponding to the set of gauge moments WL is given by: 

The other new input needed is the current quadrupole to 2PN accuracy which reads as: 

The remaining current moments required are given by 

The computation of the fluxes involves the time derivatives of the source moments. 3PN 
accurate fluxes require the 3PN equations of motion for inspiralling compact binaries which 

is now complete [88, 160,88, 1021. For the present work, where the multipole moments are 

computed in standard harmonic coordinates and reduced to the centre of mass (CM) coordi- 
nates, we require the 3PN accurate equation of motion (acceleration) in the CM coordinates 

in the standard harmonic gauge. This was computed in [I591 and given by: 

and where the coefficients YlE and BE are: 
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Recall that R is no longer arbitrary but now uniquely determined and given by R = 

-30801 1987. 

2.4 3PN energy flux in standard harmonic coordinates 

Using the multipole moments in Eqs. (2.8) - (2.17), one computes the required time deriva- 

tives as required in Eq. (2.7). Though lengthy it is straightforward to compute the different 

parts constituting the instantaneous terms in the energy flux at 3PN order. We have, 

2.5PN 

( 2 )  + ( ? T I  inst + ( f )  her +0(7) ,  
(2.20) 

32G3m4v2 

{ ;; 2} 

- v - - r  , 
5 c5r4 
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6220199 88 1763 57577$ - 43018 
I n -  -- 

+ [ 22680 - 9 ( )  192 n2] ' -I- 6237 'l) 

The new results of this chapter are the instantaneous terms at 2.5PN and 3PN. Up to 2PN 

order, all the terms match with those in [138, 143,461. As one may notice, the 2.5PN terms 

in the above equation are all proportional to i- and hence are zero for the circular orbit case 

in agreement with the results of [156]. The i- dependence of these terms is also a crucial 

aspect when we discuss the orbital average of the 2.5PN terms in Sec. 2.7. The 3PN terms 

provide the generalizations of the circular orbit results at 2.5PN and 3PN in Refs. [I561 and 

[95] (respectively). As expected, the two constants ro and r; present in the expression of 

the mass quadrupole moment appear in the final expression for the flux. The dependence of 

the instantaneous terms on the scale ro should exactly cancel a similar contribution coming 

from the tail terms as we will see in the next chapter generalising the situation for circular 

orbits. The dependence on rh is more involved. For circular orbits, it was shown [95] that 

this 'unphysical or gauge' dependence disappears when the total flux is expressed in terms of 

the gauge invariant parameter x related to the asymptotic gravitational wave frequency. We 

shall examine later the analog of this cancellation in the general orbit case. We also exhibit 

alternative representations of the energy flux for elliptical orbits, one of which is in terms of 

gauge invariant variables related to those suggested by [155]. 

3PN Energy Flux in alternative coordinates 

The first prominent application of the present computation is the evolution of the orbital ele- 

ments under gravitational wave radiation reaction to order 3PN beyond the leading quadrupo- 

lar radiation reaction. This requires one to average over an orbit, the instantaneous expres- 

sions for the energy flux obtained in Sec. 2.4. Averaging over an orbit is most conveniently 
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accomplished by the use of the generalized quasi-Keplerian representation for the orbit. Re- 

cently, such a representation has been constructed to 3PN accuracy in both harmonic and 

ADM coordinates by Mernrnesheimer, Gopakumar and Schafer [155]. 

The standard harmonic coordinates used up till now though useful for analytical algebraic 

checks, contain gauge-dependent logarithm terms that are not very convenient in numerical 

calculations. More seriously, in the presense of the log terms a simple generalised quasi- 

Keplerian representation is not possible impeding the averaging of the flux over an orbit. 

Ref. [I551 thus only provides the generalised quasi-Keplerian representation at 3PN for only 

the modified harmonic coordinates (without the log terms). Consequently it would be useful 

to have the expresssion for the energy flux in a modified harmonic coordinate system like 

the one explicitly used in [161]. This would require us to re-express the instantaneous 

expressions for the energy flux Eq. (2.21) in standard harmonic coordinates (with logs) as 

used in [I591 in terms of corresponding variables in the modified harmonic coordinates 

without logs as used in [161]. We first provide this in this section. 

Many related numerical relativity studies are in ADM-type coordinates and hence for 

future applications we transform the energy flux in modified harmonic coordinates suitably 

and provide explicitly an expression for the energy flux in ADM coordinates. 

For economy of presentation, we avoid rewriting the long expressions for the far-zone 

flux in these alternative coordinates but present them in terms of the flux in standard harmonic 

coordinates and an additional 'correction term'. 

2.5.1 Energy Flux in modified harmonic coordinates without logs 

In order to obtain the expression for the energy flux in modified harmonic coordinates, we 

need to consider the effect of the 3PN coordinate transformation that removes such log terms 

as discussed in [86]. Following [I021 these logs can be equivalently removed by the fol- 

lowing shift formula on the particle world-lines: 

Under the shift by 6, the acceleration of the first particle is shifted by 
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Consequently the relative acceleration is shifted by 

2 2 ,  2 2 m  . 4 4 , i  + -v - - - ) n l  + T r u }  [ ( 1  lop - 22u2) ni - 44iui] ln 
3 3 r 

(2.24) 

Adding the above shift to the expression for the relative acceleration in standard harmonic 

coordinates in [I591 yields the expression for the acceleration in modified harmonic coordi- 

nates: 
&X m a = - = -  [(- 1 + A)n + Bv] , 
dt2 r2 

where A and B represent post-Newtonian terms. In this appropriate harmonic gauge, writing 

A = Al + A2 + . . and B = B1 + B2 + . . a ,  the expressions for A and B read [161]: 
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As expected, the log dependence in the above transformation exactly cancels the log depen- 

dence of the acceleration in the standard harmonic coordinates 2.8a. Some 3PN coefficients 

in the EOM are also modified and the final result agrees with that displayed in [161]. 

The only other modification vis a vis the calculation of the energy flux in standard har- 

monic coordinates is the part related to the mass quadrupole which must be computed to 3PN 

accuracy. 

Under the above shift formula the mass quadruple Iij is shifted by 

which exactly cancels the In rb dependence of the mass quadrupole in standard harmonic co- 

ordinates. Thus in the modified harmonic gauge the In r', dependence of the mass quadrupole 

also vanishes as expected. The rest of the expression of the mass quadrupole remains exactly 

the same as in the standard harmonic coordinates Eq. (2.8a) and not re-written here. 

Taking into account these modified contributions to the 3PN energy flux from the mass 

quadrupole and adding it to the other multipole contributions that remain unchanged, one 

finally obtains the energy flux in the modified harmonic coordinates without logs. 

704 Gm , 704 Gm --- ,J + ? +  1408Gm2 v +-- 2816Gm i2 ) log (;)I) - 
5 r 3 r 45 r 

(2.29) 

To avoid any confusion arising from the above very compact notation, let us remind the 

reader that the expression for the energy flux in the modified harmonic coordinates would 

involve variables solely in the modified harmonic cordinates. Thus the u, i. and r would be the 

variables in the modified harmonic coordinates. The symbol (&)SHa.+Mha. thus schematically 

represents the expression given in Eq. (2.21) in standard harmonic coordinates but where u2
, 

k2 and m/r are the modified harmonic variables uLHar, and m/rMhx. To avoid making 

the notation too heavy we refrain from putting a subscript MHar on v,  i. or r. Since the 

transformation starts at 3PN there is no need to put any such label on the diference terms 

and this is often useful to remember. 
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2.5.2 Energy Flux in ADM coordinates 

To transform the energy flux to from standard harmonic to ADM coordinates we require the 

'contact' transformations connecting the standard harmonic coordinates (with log terms) and 

ADM coordinates. They are given by [159]: 

Gmv 9 13 19 65 5 25 
+-i c6 r [v4 (-g + -Sv) + P$ (- 16 - -v) 16 + i4 (-- 16 + -v) 16 

Gm 37 31 Gm 99 259 +- r v2 (-T + + Ti2 (T - 24v) 

22 ln (t) + 2 x 2  - E v ) ] }  4 n, 

+- 
c6 
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Gmv 39 99 163 443 23 73 
+-P c6r { P ( - ~  + T v )  + pV2(= - Ti-v) + P (-a + 

The above equations provide the 3PN generalization of Eq. (4.6) of [46]. They also incorpo- 

rate the corrected transformation between ADM and harmonic co-ordinates at 2PN, as given 

in [47]. Using these equations, one can transform the energy flux in standard harmonic coor- 

dinates, Eq. (2.21), into an expression for the energy flux in ADM coordinates. In a notation 

similar to that introduced above. we obtain: 
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where (&) 
SHar-ADM 

denotes the expression for the flux in standard harmonic coordinates 

Eq. (2.21) but where v2, 1-2 and m / r  are the ADM variables vi, i2, and m/rA.  A close ex- 

amination of the two terms on the RHS of 66 Eq. (2.32) reveals that the terms with In r', of 

(')sH,+ADM exactly cancel with those of 6 6  and the final flux in ADM coordinate is free of 

In (,. This is consistent with the general understanding that In J, is a feature of the harmonic 

coordinates and that the ADM coordinates will not contain this. The cancellation of the In r', 
terms provides a useful internal check on the long algebra involved in these computations. 

Unfortunately, for the further computations in this chapter that allows one to extract 

a more gauge-invariant description of the inspiral the above description is inadequate for 

reasons explained earlier. The modified harmonic coordinate (without logs) is better suited 

for these purposes. In order to perform as many independent checks on the long and involved 

algebra, we have found it expeditious to use two different harmonic coordinate systems; one 

containing the (gauge dependent) log terms a' la [I591 and another harmonic coordinate 

system without log terms as in [86, 1611. We conclude the section with an expression 

for the difference between the energy flux in the modified harmonic coordinate and ADM 

coordinates. As before this requires the relevant contact transformations given by: 
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Gm 1 21 
V M H ,  = VADM + (2 (- F V )  + P (:v) 4- 7 (; T V ) ]  

Gmv 13 31 49 127 19 53 -v + PV2 - - y + f 4  -- 
+ x [ ~ ~ ( - 8 + 8 )  (16 1 6 )  ( 1 6 + Z v )  

Gm 9 25 Gm 165 45 G2m2 3839 21 , 1 
+ - . z ( - ~  I - sv) + + T V )  (-- 840 - -7r 32 + -v)]}v  2 

9 13 19 65 5 
+% c6r i [v4 ( -g  + + r2u2 (- 16 - -v) 16 + r4 (-- 16 + 2.) 16 

Gm 37 31 Gm 99 259 
+-u2 r (-T + T v )  + ?P (T - zv )  

G2m2 7549 63 , 13 
+-(- r2 280 + -n 32 - -.)I). 4 

, 

rMH, = 

39 99 23 73 +? iU4 (i - yv) + i2u2 (-- 16 + -v) 16 + i4 ( z  - zv) 

451 3 Gm 283 5 G2m2 

+eu2(?, r + ,v) + - T v )  + (-% - E n 2 ) } ,  (2.346) 

2 13 Gm 1 21 
U MHar = u i D M  + 2 { v 4 ( - T V )  + i 2 V 2 ( i V )  + $(iv) + T o ,  (2 + l v )  

r 
13 31 31 75 5 25 +% c6 r {u6 (-T + T v )  + pV4 (8 - T v )  + i4v2 (-$I+ i6 (-g  + 

r 

(2.34~) 

. 2  
~ M H ,  - 

Gmv 39 99 163 443 23 73 
- c6 r P {u4 (-T + T v )  + i2v2 (x - T v )  + i4 (-z + zv)  

+-v Gm.,  1777 131 G m 2 (  r ;v)+?r (-+-v) 24 12 

G2m2 4702 21 , 11 
+-(- r2 105 + -n 8 - -.)) 2 .  
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Employing the above equations, one can transform the energy flux in modified harmonic 

coordinates, Eq. (2.21), into an expression for the energy flux in ADM coordinates. We 

obtain, 

Once again, for the last time we reiterate that (&)MHU+ADM denotes the energy flux expression 

in the modified harmonic coordinates Eq. (2.29) where v;,,, G,, and m/rMHar are replaced 

by the ADM variables v:,,, tDM and m/rADM. 

Before we discuss the calculation of the orbital average of the energy flux in Sec. 2.7, we 

recall briefly the useful Keplerian representation of planetary motion. We then summarize 

the generalized quasi-Keplerian representation at 3PN order in the ADM coordinates recently 

obtained in [I551 which, as mentioned earlier, is another essential input for the computations 

to follow. 
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Figure 2.1 : This figure illustrates an object "P' moving in elliptical orbit around the focus 
S. a, b and e are the semi-major axis, semi-minor axis and eccentricity respectively. r 
is the position vector which makes angle V with tRe x axes. The angle V called the "true 
anomaly". C is the center of the orbit and the circle. u and I are the eccentric anomaly 
and mean anomaly respectively. At u = 0, I = V = 0 and 4 = #o. When 16 = n then 
1 = V = n and 4 = n + &J. Further h ( S  P,A)/Area(S PA)= (r a2/2)/(r a b/2)= a/b and also 
that Area(CPd) equals Area(S PA). 
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2.6 The generalised quasi-Keplerian representation 

2.6.1 The Keplerian representation 

The Keplerian parametrisation of a particle moving in a general orbit with 0 I e I 1) is 

given by: 

1 s n ( t - t o )  = u - e  sinu, 

where, V = 2arctan [(: - z)"' tan i]. 
In the above, the three angles V, u and I (measured rom the perhelion) are called the true 

anomaly, the eccentric anomaly and the mean anomaly respectively. The orbit has serni- 

major (minor) axis a(b), eccentricity e and mean motion n. The geometrical meaning of the 

various anomalies (or angles) emerges from the following geometrical construction. Con- 

struct an auxiliary circle for the orbit with a diameter equal to the orbit's semimajor axis a 

as in the Fig. [2.6.1] where C is the center of auxiliary circle and ellipse, S one of the focii 

of the ellipse, P the position of the orbiting body, A the perihelion, P, the projection of the 

orbiting body on the auxiliary circle, (therefore a l b  r Area(S P,A)/Area(S PA)) and finally 

PI, a point on the circle such that Area(CPIA)= Area(S P,A). 

2.6.2 3PN generalised quasi-Keplerian representation: Summary 

The Keplerian representation discussed in the previous section was for the leading New- 

tonian order. The quasi-Keplerian representation at IPN was introduced by Damour and 

Deruelle [I471 to discuss the problem of binary pulsar timing. At this order, relativistic peri- 

astron precession first appears and complicates the simpler Newtonian picture. This elegant 

formulation will play a crucial role in the our computation of the hereditary terms in the 

next chapter and will be discussed in more detail there. The 2PN extension of this work in 

the ADM coordinates was next given by Damour, Schafer and Wex [148, 149, 1501 and is 

referred to as generalized QK representation. In a more recent work, the 3PN parametriza- 

tion of the orbital motion of the binary was constructed by Memmeshiemer, Gopakumar and 

Schafer [I551 in both ADM and modified harmonic coordinates. In ADM-type coordinates 

Eq. (19) of Ref. [I551 provides the 3PN parametrization which reads as 

r = a, (1 - e, cos u) , (2.37a) 
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where, V = 2 arctan 

V is the 3PN generalisation of the Keplerian true anomaly. In the above a,, e,, I ,  u, n, e,, e9 

and 2n/@ are some 3PN accurate semi-major axis, radial eccentricity, mean anomaly, eccen- 

tric anomaly, mean motion, 'time' eccentricity, angular eccentricity and angle of advance of 

periastron per orbital revolution respectively. Notice that the equations contain three kinds 

of 'eccentricities' e,, e, and e9 labelled after the coordinates t ,  r, and # respectively, that as 

we shall see differ from each other starting at the IPN order. The notation @/2n - K = 1 + k 

is used in the next chapter and mentioned here for completeness. 

In ref. ( [155]) the explicit dependence of the orbital elements and all the coefficients in 

Eq. 2.37 above has been obtained as a PN series in terms of the 3PN conserved orbital energy 

and angular momentum. They form the basis for our computation of the average energy flux 

at 3PN order and in ADM coordinates they are given by 

1 (-2 E )  
a, = -{I + - (-7 + v )  + - 

(-2 E )  4 c2 1 6c4 

+ 1 
(-68 + 44 v)] + a[3-9v-6v2 

(-2 E h2) 192 c6 

+3 v3 + (-2 E h2) (864+(-3n2-22212)v+432v2) 

+ (-6432 + (13488 - 240 n2)  v - 768 v 2 ) ] ) ,  (2.38a) 
(-2 E h2)2 

er2 = 1 + 2 E h 2 + -  (-2 E)(24 - 4 v + 5 (-3 + v )  (-2 E h2) 
4 8  

(-2 E)2 
+ - ( 5 2 + 2 v + 2 v 2 - ( 8 0 - 5 5 v + 4 $ ) ( - 2 ~ h ~ )  8 c4 

- 8 (-17+ l l v ) ) + w ( - 7 6 8 - 6 ~ n '  
(-2 E h2) 192 c6 

- 3 4 4 ~ - 2 1 6 v 2 + 3 ( - 2 ~ h ' ) ( -  1488+ 1556v-319v2 
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+ 1 
(-1728 + 4232 v - 3 vn2 

d(-2 E h2) ( 1  + 2 E h2) 

-627 v2 - 105 v3 

i6t = - (23 + 12v+ 6$)}, 

h6t = 192 
3 (-2 E ) ~  3 

0 = 2 n ( l + -  c2h2 + 7 [ ( - 2  E h2) (-5 + 2 v)  

+ 15 
(7 - 2 v)] + 

(-2 E h2)2 
(5 - 5v 

+4v2) - (-2 E h2y  (10080-13952v+123v$+1440$ 

+ (7392 - 8000 v + 123 v n2 + 336 v2 

(-2 E h2)3 
(-2 E ) ~  ( 1  + 2 E h2) 

'@ = 7 (-2 ~ h 2 ) 2  v ( l  - 3 v ) ,  

( - 1 1  - 4 0 v  + 24v2) 

e," = 1 + 2 ~ h ~ + ( - 2 E ) ( 2 4 + ( - 1 5 + ~ ) ( - 2 ~ h ~ ) )  4 c2 
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Note that the PN expansion for k begins at IPN. The three eccentricities e,, e, and eg, which 

differ from each other at PN orders, are related by 

The presense of log terms in the standard harmonic coordinates obstructs the construc- 

tion of a generalised quasi-Keplerian representation which crucially exploits the fact that at 

order 3PN the radial equation is a fourth order polynomial in l l r .  [I551 thus constructs the 

GQK representation for the modified harmonic coordinates. The representation in modified 

harmonic coordinates is of the same form as above but the corresponding equations for the 

orbital elements are given by [I551 
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1 (-2E) 
a, = -(I + - (-7 + v) + - 

(-2E) 4 c2 1 6c4 

+ 16 
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(-2Eh2) 6720 c6 

+lo5 v3 + (26880 + 4305 n2v - 2 15408 v 
(-2Eh2) 
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+46 v2) - 525(-2Eh2)( - 528 + 200 v - 77 ? + 24 v3 

- ti 
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eccentricities e,, e, and ed. These relations read 

We conclude with a recall of an important point related to the use of gauge invariant 

variables in the elliptical orbit case as stressed by [155]. Damour and Schafer [I481 showed 

that the functional form of n and @ as functions of gauge invariant variables like E and 

h is the same in different coordinate systems (gauges). From the explicit expressions in 

[I551 for n and @ in the ADM and modified harmonic coordinates the gauge invariance 

of these two parameters is explicit. This prompted [I551 to suggest the use of variables 

X M G ~  = ( G m n / ~ ~ ) ~ / ~  and k' = (@ - 2n)/6n as gauge invariant variables in the general orbit 
case. In the present chapter we propose a variant of the former: x = (Gmn @ / 2 n ~ ~ ) ~ / ~  = 

(Gmn  KC^)^/^ = (Gmn ( 1  + k ) ~ ~ ) ~ / ~ .  The choice we propose is the obvious generalisation of 

gauge invariant variable x in the circular orbit case and thus facilitates the straightforward 

reading out of the circular orbit limit. 
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2.7 Orbital average of the energy flux in modified 

harmonic coordinates 

2.7.1 The instantaneous terms 

To average the energy flux over an orbit we will require the use of a 3PN quasi-Keplerian 

representation in harmonic coordinates. Consequently, the averaging over an orbit is only 

possible in the modified harmonic coordinates without the log terms and discussed next. 

The computation of the orbital average involves evaluation of the the integral, 

Using the GQK representation of the orbit discussed in the earlier section, we can transform 

the expression for the energy flux & (r, f2, u2) or more exactly (dlldu x&)(r, i-2, u2)  to (dlldu x 
&)(x, e,, u).' Recall that in the expression of the flux at the 3PN order there are log terms too 

and hence it is convenient to rewrite the expression as 

1 sin u ln(1 - e, cos u) 
{aN(ef)(l - et cos u)N + P ~ ( e t )  - et cos u)N + yA'(et) (1 - cos u)N 

(2.43) 

where the non-vanishing PN7s and yN's read as 

' ~ e f .  [46] uses Gmla, and e, while [47] employs Gmn/c3 and e,. We propose the use of e, and x = 
( ~ m n @ / 2 r r c ~ ) ~ / ~  for reasons outlined in the previous section 2.6.2. 
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Finally, the aN3s are given by: 
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It is worth noting that the PN9s correspond to all the 2.5PN terms while the y~ represent 

the log terms at order 3PN. Recall here the useful formulas 

2" sinu 
du = 0 ,  

(1 - e cos u ) ~  

ln(l - e cos U) (- 1)'"'-1) d(N-l)y(e 
du = 

(1 - e cos u ) ~  (N - 1 d ~ ( ~ - l )  

where, 

Implementing all the above integrations, the expression for the energy flux can be aver- 

aged over an orbit in the modified harmonic coordinates to order 3PN extending the results 

of [46] at 2PN (in ADM coordinates). We have, 



Chapter 2 

It should be noted that in the above there is no term at 2.5PN. The 2.5PN contribution is 

proportional to i. and vanishes after averaging since it always includes only 'odd' terms. For 

ease of presentation we have not put a label on e, to indicate that it represents the eccentricity 

in the modified harmonic coordinates eyH". Since x is gauge invariant, no such label is 

required on it. It is important to keep track of these facts when comparing formulas in 

different gauges, as we will eventually do. 
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The circular orbit limit of the above expression is obtained by setting e, = 0. One obtains, 

The above expression is in exact agreement with Eq. (12.5) of [95] after converting the 

y = Gm/c2rsH,, there to the gauge invariant variable x. It should be kept in mind that this 

is only the instantaneous contribution and not the complete 3PN accurate energy flux for the 

circular orbit case. 

2.7.2 The log terms in the energy flux 

As mentioned before, this chapter is concerned only with the computation of the instan- 

taneous terms in the energy flux. The complete 3PN energy flux also include important 

hereditary contributions composed of tails at orders 1.5PN and 2.5PN and tails-of-tails and 

tails-squared terms at order 3PN. These will be investigated and computed in the next chap- 

ter. Only after computing the complete energy flux can one discuss in detail the structure of 

the log terms in the energy flux, the cancellation of the log ro terms and finally the circular 

orbit limit of this term as a check. 

2.8 Orbital average of the energy flux in ADM coordinates 

Starting from the expression for the instantaneous energy flux in ADM coordinates 

Eq. (2.35), employing the appropriate 3PN GQK representation from [I551 and follow- 

ing the procedure outlined in the previous section, we can average the energy flux over an 

orbit in the ADM coordinates. The calculation proceeds exactly as before. ThePN9s and yN's 

are exactly the same. The alphas, except a l l ,  are different as expected, 
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The final result turns out to be: 
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As before there is no 2.5PN term in the energy flux after averaging. The circular orbit limit 

as expected is in agreement with Eq. (2.53). The contributions at Newtonian and IPN orders 

have the same form in the modified harmonic coordinates and ADM coordinates consistent , 

with the fact that the two coordinates differ starting only at 2PN. The e, in the above expres- 

sion now represents e;DM, the time eccentricity in ADM coordinates. 

A useful internal consistency check of the algebraic correctness of different representa- 

tions of the energy flux, the coordinate transformations linking the various gauges, and the 

work of [I551 on the construction of the 3PN generalised quasi-Keplerian representation is 

the verification of the equality of Eqs. (2.52) and (2.56) using the following transformation 
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between the time eccenticities eyHa' and e;DM: 

This relation derives from using Eqs. (20d) and (25d) and rewriting the E and h2 dependence 

in terms of x and e,. There is no ambiguity in not having a label on the e, in the 2PN and 

3PN terms above. 

2.9 Test particle limit 

An important check on the results of our computation is in the test particle limit where results 

for the energy flux in the eccentric orbit case is available (to second order in eccentricity 

e2) from computations using an entirely different method based on black hole perturbation 

theory in a Schwarzschild background. To compare the result of our MPM computation with 

the result obtained in the Ref. [162], we take the test particle limit (v + 0) of our results 

and expand it in powers of e, retaining only terms up to e:. Implementing this procedure, the 

instantaneous contribution to the energy flux in the test mass limit is given by 

In the next chapter, the hereditary contributions will also be computed using MPM in the 

test mass limit. Together with the instantaneous term computed above it will yield the total 

energy flux in the test mass limit of our MPM computations that can then be compared to the 

result in Ref. [I621 obtained by perturbation methods in the Schwarzschild background. 
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2.10 Gauge invariant expression for the energy flux: 

instantaneous terms 

In the previous sections the energy flux was represented using x a gauge invariant variable 

and e, which however is coordinate dependent. The variable e, is useful in extracting the cir- 

cular limit for which it has value zero. In this section we explore the possibility of rewriting 

the flux in terms of two gauge invariant observables defined earlier: x and k'. This can be 

achieved either by starting from the average energy flux in terms of variables x and e, and 

rewriting e, in terms of x and k' or alternatively by working from the beginning with the ex- 

pression for the flux in terms of x and k'. We have checked that they lead to the same results. 

The computation can be done independently both in the modified harmonic coordinate and 

in ADM coordinates. The end result is identical proving the gauge invariance of the energy 

flux and providing a gauge invariant expression of the energy flux. We have 
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The circular orbit limit of the above gauge invariant representation agrees once again with 

that in [95]. Unlike the (x, e,) representation where the circular orbit limit is explicit, the 

gauge invariant representation requires a little more algebra and care to recover the circular 
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orbit limit. More precisely, it requires the following limit of xlk' in the circular orbit case: 

Though the combination of x and k' used above is one choice of gauge invariant variables, 

it may be interesting to use the combination XMGS = ( = (9)Y and K since these variables 

are related to the two basic periodicities in the problem: the radial period n and the periastron 

precession period k. In a numerical computation one can well anticipate the convenience of 

such a choice. In their terms the final results are given by: 
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The circular orbit limit of this form can be derived using the limit of < / K  in this limit given 

by : 
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Once again the results are consistent with the results of [95]. 

In QK-orbit the expression of t/k' in ADM coordinate is given by 

t = 
ADM 

17 13 

+ 

49 
+e: (-4 + 1-11 4 + E1] 128 - y v 2 )  

281 41 
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By substituting the expression of c/k' in Eq. (2.63) we obtain the average of the orbital 

energy flux in term of [ and e, in ADM coordinates which is given by 
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Similarly the expression of 5/k' and < & > in modified harmonic coordinate are given 

by: 



- - -  - -~ 
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By substituting the expression of C/k' in Eq. (2.63) we obtain the average of the orbital 

energy flux in term of 5 and e, in ADM coordinates which is given by 
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The above results in Eqs. (2.67) and (2.70) can be obtained directly by choosing our variables 

and el as we do in the Secs. 2.7 and 2.8. 

From Eq. (2.67), one can recover the result of [I151 up to 2pN after converting from e, 
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to e,. This provides another check on our elliptical orbit result, after taking into account the 

error there which has been corrected in [47] and also here in this chapter. For completeness 

we give also the 3pN result in modified harmonic coordinate. 

We conclude by an expression of the energy flux in terms of two alternative gauge- 

invariant variables x and z, the latter by construction vanishing in the circular orbit limit 

and given by 

This allows one to explicitly see the circular orbit coefficients without any further algebra. 

Unlike x, 6 or k', which are 'exactly' gauge invariant, by construction the explicit expression 

of z is gauge invariant only upto a particular PN order, in this case 3PN. 
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The circular orbit limit is given by z = 0 and reduces to the result for the instantaneous 

contribution in [95] rewritten in term of x. 



Chapter 2 

2.1 1 Concluding remarks 

The instantaneous contributions to the 3PN gravitational wave luminosity from the inspiral 

phase of a binary system of compact objects moving in an elliptical orbit is computed us- 

ing the Multipolar post-Minkowskian wave generation formalism. The new inputs for this 

calculation include the mass octupole and current quadrupole at 2PN for general orbits and 

the 3PN accurate mass quadrupole. Using the 3PN quasi-Keplerian representation of ellip- 

tical orbits obtained recently the flux is averaged over the binary's orbit. The expression for 

the instantaneous contributions averaged over an orbit is presented in different coordinate 

systems: Standard harmonic coordinates (with logs), modified harmonic coordinates (with- 

out logs) and ADM coordinates. Alternative gauge invariant expressions are also provided. 

Supplementing the instantaneous contributions of this chapter by the important hereditary 

contributions arising from tails, tails-of-tails and tails squared terms calculated in the next 

chapter, the complete energy flux can be obtained. 

For binaries moving on circular orbits the energy flux has been computed to 3.5PN order 

[95].  The extension of these results to eccentric orbits would be interesting. However, some 

uncomputed modules remain in the formalism to compute the multipole moments required 

for the 3.5PN generation in the general orbit case. We leave this to a future investigation. 




