Chapter 5

Teging post-Newtonian theory with
gravitational wave observations

5.1 Introduction

Ever since the formulation of general relativity (GR), there have been many proposals to
test its predictions. Most important of them are the solar system tests and tests using binary
pulsars [192]. The binary pulsar test provides one of the most stringent tests of gravity in
the strong field regime of GR and its alternatives [193]. The direct detection of gravitational
waves, one of the most fundamental predictions of GR, will only be atest of the relativistic
nature of gravity. Since any relativistic theory of gravitation, not necessarily GR, predicts
radiative solutions of the field equations, one has to be careful in interpreting the detection
in favour of any theory.

Post-Newtonian theory has been highly successful in explaining the decay of the orbital
period in binary pulsars and in confirming the emission of gravitational radiation by these
relativistic systems (cf. [194] and references therein). Nevertheless, the binary pulsar radio
observations do not test PN theory to a high order. This is because the typical velocity in
the most relativistic of binary pulsarsisv/c = 3 x 1073, whichisnot large enough for higher
order terms to be important.

GW observations of the coalescence of binary black holes (BBH) will provide a unique
opportunity to test PN theory to very high orders. This is because the velocities in the
system, close to the merger, could be as high as v/c ~ 0.2-0.4, making the highest order
known PN term 10'2-10' times more important for GW observations than for radio binary
pulsars. Severa tests of general relativity have aready been proposed by various authors
[167, 195, 196].

The possibility of using GW observationsto discriminate GR from other theoriesof grav-
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ity such as Brans-Dicke (BD) theory or massive graviton theory, has been studied exhaus-
tively by Will and his collaborators [196]. BD theory isascalar tensor theory which, unlike
GR, predicts dipole GWs. Using ground-based detectors Ref. [197] examined the possibility
of testing the dipole term in the phasing formula and bounds that can be put on the BD cou-
pling parameter wgp. The bound, as they found, can be as high as 2000 which is about four
times higher than that possible with solar system measurements. The bounds that are pos-
sible with future space-based experiments such as LISA were examined in Ref. [198]. The
bound with LISA may be as high as 240,000. For testing BD theory, the suitable systems
are those whose mass ratio is small; typically a NS spiralling into a massive/intermediate
mass/supermassive BH where the effect of the coupling term is most dominant.

Another possible theory of gravity is the theory of the massive graviton where Compton
wavelength A, of graviton is not infinite as in GR. Bounds can be placed on A, from GW
observations. With the ground-based detector the bound is about 2 x 10'2 km [195] (for an
equal mass binary BH of 10M, ). Space based experiments would place a more stringent
bound on it, which may be about 7 X 10'? km [195] (by the observation of inspiral of a
SMBH binary of 10°M,, each). The calculation in the above mentioned work used the A,-
dependent term which occurs at 1PN in the phasing formula. A critical paper by Damour
and Esposito-Farese contrasted the subtleties involved in interpreting the results in the case
of GW observations against those in the binary pulsar case [199]. These should be kept
in mind while assessing the works discussed above. The possibility to set up these tests
is based on being able to estimate the parameters of the source by GW observations. We
begin by reviewing the basic elements of parameter estimation to the extent werequire in the
following section.

5.2 Phasingformula

In a black hole binary, as the two holes orbit about their centre-of-mass, the energy and
angular momentum from the system is dissipated into gravitational radiation. The radiation
back-reaction force causes the two bodies to gradually spiral in towards each other, resulting
in astrong burst of radiation just before they merge toform asingle black hole. Theradiation
emitted at theend of the binary evolutionisthe primary target of both the ground- and space-
based interferometric gravitational wave (GW) antennas [33]. It has become necessary to
gain an accurate understanding of the late-time evolution of binariesin order to help data
analysts in detecting the signal and measuring the parameters by fitting the observed signal
with that expected from general relativity.

In the general theory of relativity there is no exact solution to the two-body problem.
In the absence of an exact solution (analytical or numerical) theorists have resorted to an
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approximate solution to the problem using post-Newtonian (PN) theory. Briefly, the pro-
gramme of PN theory is the following. Let us consider a binary consisting of two non-
spinning black holes of masses m; and m, (total mass M = m; * m,, symmetric mass ra-
tio v = mimy/M?) separated by an orbital (Schwarzschild coordinate) distance r(¢). Post-
Newtonian theory expresses the relevant physical quantities as a series in the 'small' veloc-
ity parameter € = v/c = \/GM/rc2. For a system consisting of non-spinning black holes the
only relevant quantities are the (specific) binding energy E and the GW flux ¥, which are
obtained as perturbative expansionsin v. Following the standard convention, in units where
G = ¢ = 1!, v" corresponds to a term of order 5-PN. Currently, these expansions are known
to order v” or 3.5PN [200, 108, 109, 86, 102, 89,951:

3
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E= —Evvz Z Ew®, (5.12)
k=0
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F = is_vzvlo 3 Ak, (5.1b)
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where E; and F; are the PN expansion coefficientsthat are all functionsof the dimensionless
mass ratio v = mym,/M?2. Here M = ml + m;, is the total mass of the binary. (Though for
this schematic presentation we write above aTaylor-expansionin VX, recall that there are also
logv in the expansion.)

In the adiabatic approximation one then uses the energy balance equation, —dE/dt =
¥, to compute the evolution of the orbital phase ¢(r) using the following coupled ordinary
differential equations: ,

‘i(lg —w= BM , | (5.2a)
dv dE/dt -F
di  dE/dv E'Q©)’
where E’(v) O dE/dv. The phase ®(¢) of the emitted radiation at dominant order is simply
twice the orbital phase: ®(t) = 2¢(#).

The phasing formulaobtained by solving the above differential equationsincludes differ-
ent PN terms arising from nonlinear multipole interactions as the wave propagates from the
source's near-zone to thefar-zone [63, 145, 158]. Asdiscussed in Chapter 1 the 1.5PN and
2.5PN terms arise solely due to the interaction of the Amowitt-Deser-Misner (ADM) mass
of the source and the quadrupole moment. It isphysically due to the scattering of quadrupo-
lar waves off the Schwarzschild curvature generated by the source and is referred to as the
gravitational wavetail. The 3PN term includes, in addition to the terms at the retarded time,

(5.2b)

'In thischapter and the next in some of the formulas the dependence on ¢ isindicated for convenience, even
though for consistency those c¢'s should be set equal to onein the numerical calculations.
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more interestingly the cubic nonlinear interactions due to the scattering of the wave tails by
the ADM mass energy of the spacetime. The observational tests of these PN termsin effect
test the nonlinear structure of Einstein's gravity.

In the restricted PN approximation (so called because one keeps only the PN corrections
to the phase of the radiation but neglects the PN corrections in the amplitude), the response
of an interferometric antennato the incident radiation from a source at aluminosity distance
Dy is

4CM
D,

h(t) = [TMF 1> cos®(2), (5.3)
where M = v¥3M is the so-called chirp mass of the system. In the above, M and M are
the observed chirp and total masses. They are related to masses measured in the source rest
frame by

M=+ IMource, M = (1 + 2D)Mgouece (5.4)
where z is the cosmological redshift. Further, F() = L 22 js the instantaneous frequency

of theradiation, 0 < C < 1 isadimensionless geometric factor that depends on the relative
orientation of the binary and the detector whose average over all orientations is C = 2/5.
The importance of including PN corrections in the phase but conveniently neglecting them
in the amplitude was realized quite early on [137] and led to alot of simplification of the
data analysis problem. For the tests proposed in this chapter it may eventually be necessary
to incorporate these amplitude corrections [110, 43]. For the sake of simplicity, however, we
have refrained from doing so in this work.

A brief summary of the cosmological model weemploy isin order. Let Q, be the matter
(dark plus baryonic) density parameter, Q,, the cosmological constant or vacuum density
parameter and Q,, the density parameter associated with the curvature constant. For a zero—
spatial-curvature universe Q, = 0 and matter density Q4 + Qu = 1, the luminosity distance?

isgiven by
D, = c(1+z)f dz | 55)
Hy Jo [Qu(1+7)+Qu]"2

In our calculations we used Qu = 0.3, Q4 = 0.7 and Hy = 70 Km/sec/Mpc.
For our purposes it will be useful to work with the Fourier transform of the signal A(z)
Eq. (5.3), whichisgiven by

h(f) = f ) h(t) exp2rift) dt. (5.6)

2Luminosity distance, Dy, is a term used in astronomy to describe the distance at which an astronomical
body would lie based on its observed luminosity in the absence of any unanticipated attenuation.
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Using the stationary phase approximation it has been shown that [33, 201]
h(f) = AL exp [i‘I’( e+ i%] , G.7)

with the Fourier amplitude A given by

— ¢ 5 5/6
A = W"EZM , (5.8)

and phase Y(u(f)), (wherev = (nM f)!73), given by [26, 40]:
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Here ¢. and @, are the fiducia epoch of merger and the phase of the signal at that epoch.
y = 0.5772156649... the Euler Gamma Function?

5.2.1 Dealingwith thelogterms

An examination of the aboveformularevealsthat in addition to a polynomia dependence on
v, thereis also alog v dependence. Thisis aconsequence of the fact that the post-Newtonian
seriesis an asymptotic series in gauge functions ¢(log ¢)*. This additional complication
requires a strategy to treat that log dependence. The log-terms are treated in three different
way's as discussed below:

1. Log-Constant: In this method the log terms are treated as constants with respect to the

3Note that y denotes the Euler Gamma function and not Gm/c?r as in the literature on the generation
problem asin the earlier chapters.
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frequency with the justification that the log-dependence on the frequency is weak in
the relevant bandwidth. The ¥(f) in compact form then lookslike

V() = 2fte+ D+ ) Yy fEIP (5.10)
k

They, now are given by
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2. Log-Expanded : In this method the log terms are expanded about v, which is the
invariant speed at the last stable orbit during the coalescence of the binary. For a
test mass in a Schwarzschild spacetime vy, IS equal —‘}-g Substituting the expanded
expression in the formula of W(f) keeping the needed terms and neglecting the terms
higher than 3.5PN, the ¥(f) then becomes

Y(f) = 2nft.+ .+ Z U feS (5.13)
k
The y,’s are independent of f and given by

_ 3 *=5)/3 ~
Y = 1281/(er) 7 (5.14)
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a, = gfork = 0,2,3,4 and for the remaining, ay, a1,a; and a4 are as given in
Eq. (5.12). For the remaining
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3. Independent parameters for Logs: In this choice the coefficients of the log-terms are
treated as additional signal parameters. This choice indeed increases the dimensional-
ity of the parameter space making the Fisher matrix highly ill-conditioned. The ¥(f)
may be written as

V() = 2nfte+ ®c+ Y [+ P (AL, (5.16)
k

where, ¥, and ¢ are independent of f and given by

3
- MYEBg,
Vi 138 v(" ) (7
3
Ya = 128v(" MY B, (5.17)
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_ (77096675 378515 74045 ,
- 254016« 1512 ' 756 ' )’
ay = 0. (5.18)

5.3 Ground-based detectors

In this section we list the noise psd and the calculation of the signal to noise ratio(SNR)
of the various ground based detectors that we will employ in our analysis. These include
the kilometer class GW detectors Initial LIGO and Virgo followed by the next generation
american detector Advanced LIGO and findly the third generation European EGO.

531 Sendtivity curves
5.3.1.1 Initial-LIGO

The LIGO noisecurve [26] isgiven by

-56 f -4.52 2
S4() = So [(4.49%) ¥ 0.16( : ) +052+ 0.32(%) ] , (5.19)

fo )
where fy = 150 Hz , f; = 40 Hz, and S = 9.00 X 10~ Hz™".

53.1.2 Virgo

The Virgo noisecurve [26] isgiven by

seffsmf) +2(E] 1+(F]
Sh(f)—So[(6.23fO) +2 fo +1+ nl (5.20)

where f, = 500 Hz, f, = 20Hz, and Sy = 3.24 X 10746 Hz-".

5.3.1.3 Advanced-LIGO
The Advanced LIGO noise curve [202] is given by

_ _Ji —4.14— i)—2
R
+111 (1 - (1)2 + -1-(1)4)/(1 o1 (1)2)] (5.21)
Ll 2\f 2\f) )|’ '

where fy = 215Hz, f, = 20Hz, and Sy = 1 x 107 Hz-".
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Figure5.1: Noiseamplitudeplotsof ground-baseddetectors Virgo, Initial-LIGO, Advanceu-
LIGO and EQDas afunctionof frequency f(Hz). Theminimaof the noiseamplitudeappear
at the frequendiesf = f, = {500, 150,215,200) Hz for {\rgp Initial-LIGO, Advanced-
LIGO, EQD respectively.

5314 EGO

Finally, the EGO noisecurve[203, 204] is given by

Sa(f)

where f; = 200 Hz, f;

! -4.05 ( 7 )—0.69
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(5.22)




Chapter 5 182

In above equations fy, is a scaling frequency chosen to be the frequency at which the
noise amplitude is minimum or where the sensitivity ismaximum. See Fig. [5.1].

In Fig. [5.1] we plot the noise amplitude for Initial-L1GO, Virgo, Advanced-LIGO and
EGO. The ground-based detectors are sensitive in the frequency range 10-1000 Hz. For all
the detectors the maximum sensitivity isin the frequency range 100-500 Hz.

5.3.2 Signal tonoiseratio

Following the discussion in Sec. 1.9, if §,(f) is the one-sided noise spectral density of a
detector, the inner product between two signals k,(¢) and k,(z) is defined by

(hally) = 2 f Il + e (5.23)
O T ’ '

where h,(f) and h,(f) are the Fourier transforms of the respective gravitational waveforms
h,(r) and hy(r). The signal-to-noiseratio (SNR) for agiven histhen

plh] = (Wh)'/*. (5.24)

In the stationary phase approximation (SPA), the Fourier transform of the restricted wave-
form can be shown to be [205]:

h(f) = Af70ND, (5.25a)
5/6

where, A = i, (5.25b)
V30r2/3 Dy

where A is the average of A over al orientation.
With the restricted post-Newtonian form for £ in Eq. (5.25), with help of Eq. (5.24)we
can express the SNR pin theform

fend f—7 /3

PN S

df, (5.26)

In Fig. [5.2] we plot the variation in the SNR p at a luminosity distance D, = 200 Mpc
as afunction of the total binary mass using Eq. (5.26) for EGO, Advanced-LIGO, Initial-
LIGO and Virgo detectors respectively. We choose 200 Mpc for these calculations since it
is expected that the advanced interferometers will detect a few NS-NS events per year at
this distance and BH-BH binaries lead to large enough SNR’s to implement these tests [28].
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Figure5.2: SNR of ground-based detectors current and future, for equal mass binaries as
a function of the total mass of the binary M far the luminosity distance D, = 200 Mpc.
Thetypical SNR for neutron- neutron star (NS-NS) binaries at 200 Mpc vari es from 0.2for
Initial-LIGO t 0 30for EGO. For Virgo and Advanced-LIGO the corregponding valuesare 0.3
and 8 respectively. A black hole binary of total mass20M,, leadsto a SNR of 2, 2.25, 25 and
135 in Initial LIGO, VIRGO, Advanced-LIGO and EGO respectively. Initial-LIGO achieves
a maximum SNR = 3 corresponding t o at total mass of about - 35 M. The corresponding
numbers for Virgo, Advanced-LIGO and EGO are -3 and —70 Mp; ~50 and -50 Mp; and
—-300 and -200 M, respectively.



Chapter 5 184

From the figureit is clear that the typical SNR for neutron- neutron star (NS-NS) binaries
at 200 Mpc variesfrom 0.2 for Initial-L1GO to 30 for EGO. For Virgo and Advanced-LIGO
the corresponding values are 0.3 and 8 respectively. For BBH with total mass 40M,, the
corresponding values are 3, 3, 50, 100 for Initial-LIGO, Virgo, Advanced-LIGO and EGO
respectively. Not only iseach detector the most sensitive at different values of the frequency
but also the maximum SNR attained by them differs. For Initial-LIGO it is -3 at total mass
-35 M, whereas, for Virgoitis-3at total mass —70 M. For Advanced-LIGO on the other
hand, it is —50 at total mass —50 M., whilefor EGO, it is ~300 at total mass -200 M, Thus
the technological advances are expected to improve the SNR for EGO by about 100 times
that of Virgo and for Advanced LIGO by about 20 times that of Initial-LIGO.

5.4 Teding general reativity with gravitational wave
observations

Our proposal to test the PN theory is the following. Let us suppose we have a GW event
with a high signal-to-noise ratio (SNR), say more than 1,000. Once an event is identified
we suggest to fit the data to a signal wherein each term in the PN expansion is treated as
an independent parameter. More precisely, instead of fitting the detector output with a sig-
nal that depends on only the two mass parameters, we could fit it with the same signal but
by treating all the y;’s (cf.Eq. (5.11)) as independent. For example, if we want to test the
PN theory to order v* then we should use a four-dimensional grid of templates consisting of
{0, Y2, Y3, Y4} rather than the two-dimensional one that is used in the detection problem.
This higher-dimensional fitting of the data with our model would measure each of the PN
coefficientsindependently of the others. In Einstein's theory, for the case of non-spinning bi-
naries, each of they,’s hasa specificrelationship to the masses, ¥, = y(m;, m,), whereasin
adifferent theory of gravity (for example, atheory in which the graviton has non-zero mass)
the relationship will be different and might involve new parameters. Thus, the measured ;s
could be interpreted, in principle, in the context of different theories of gravitation.

In the case of general relativity we know that the y;’s are given in terms of the masses
by Egs. (5.11), (5.14) and (5.17). If general relativity (or, more precisely, the PN theory
that approximates genera relativity) correctly describes the dynamics of the system then
the parameters must be consistent with each other within their respective error bars. One
way to check the consistency would be to invert the relationships between the y,’s and the
masses to obtain m, = mk(my, yy), and plot m, as a function of m; for various yx’s, and
see if they all intersect at a common point. If they do, then the theory is correct to within
the measurement errors, if not, the theory is in trouble. In addition to the PN theory we
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could also test other approximants, such as the P-approximant [39] or the effective one-
body approximation [24, 44] that have been proposed as alternativesto the orbital dynamics
of binary inspirals as also numerical relativity predictions.

Although these tests are in principle possible, an important question is whether the vari-
ous PN coefficientscan really be measured accurately enough for the test to be meaningful.
We aready know that a simpler test proposed in Ref. [167], in the context of ground-based
detectors, requires events with SNRsin excessof 25. The generalized tests proposed in this
chapter would require much stronger signals, SNRs of 100 to test lower-order terms and in
excess of 1,000 to test al terms currently known. Initial ground-based interferometers are
unlikely to observe events with such large SNRs. As we shall show, while some of these
tests might be possible with advanced detectors, a supermassive BBH merger in LISA isour
best bet.

Totest an approximation it should be possible to measure the various PN coefficientswith
a good accuracy. We shall require that the relative error in the measurement of a parameter
belessthan 100%;, i.e. Ay /¢, < 1, where Ay, istheerror in the estimation of the parameter
Y, in order that its presence is tested with confidence. A little thought will aso reveal that
in order to measure more and more higher order PN coefficients independently will require
higher SNR’s. In the Appendix we surnmarise the effect on the errors in the lower order
coefficients, caused by the increased dimensionality of the parameter space, due to the in-
clusion of higher order PN coefficientsasindependent parameters. Asexpected, covariances
between the increasing number of PN parameters systematically worsen the determination
of the PN coefficients.

For the binary system in question define a parameter vector 8 = {z., @, y;} for the
cases when the log terms are treated as constant or expanded. The parameter vector 8 =
{t., ©., Y, Yy} is chosen in the case when the log terms are treated asindependent. We then
have

fiSO
437(2 ﬁlbf—7/3 df

1, Sa(f)’
oY(f; 6)0Y(f; 0)

fao = a0, %, (5.27)

Fab

Notethat we have now introduced specific valuesfor thelimitsin theintegration: f;issimply
the lower frequency cutoff chosen such that the loss in the SNR due to this choice is negli-
gible compared to the choice f; = 0. fi is thefrequency of the radiation at the last stable
orbit of the system which we assume to be the value given in the test mass approximation,
namely fi,, = 1/(6**aM). Using the Fourier domain waveforms given in Egs. (5.10), (5.13)
and (5.16), it is straightforward to compute f,, whichis8 X 8 matrix in both the log-constant
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and log-expanded cases:

[ 47238 27x® 2nx? 2n 2mx 2mxd 2nxt 2mx |
2o 1 O ox? xr oxt ox X
drx? x5 10 ;B T 6 4 3
2 x3 x® x® xS ox*t x?t x! (5.28)
2nx x2 x7 xS xt x73 -1 1 '
2nx? xU x% xt x3 x? 1 x
2nxt x x*ox? oxt 1 2 %
| 27 ¥ X3 ox' 1 x 2 X

In the case where thelog terms are parametrised by independent parameters, f,, isal10X 10
matrix whose first five columns are given by

An? xS 2mx’ 2nx~? 2n 2nx
2nx 1 X3 x3 x?
2nx~? x x710 x8 x7
2r x3 x8 x6 x>
2rx x2 x7 x x4
2nx? x! x6 x4 x3 ’
6nx°In(x) 3In(x) 3x7In(x) 3x3In(x) 3x?In(x)
2rxt X x4 x? x!
6nx*In(x) 3xIn(x) 3x*In(x) 3x72In(x) 3x7'In(x)
2nx° x? x3 x! 1

and whose last five columns read

2t e In(x)  2mx* 6mxtln(x)  2nx° ]
x! 3 In(x) x 3xIn(x) x?
x 3x%In(x) x* 3x74In(x)  x73
x4 3x73 In(x) x? 3x72In(x) x!
x‘z 3x2In(x)  x7! 3x7'In(x) 1 (5.29)
X 3x7n(x) 1 3 In(x) X
3x7 'In(x) 9In(x)*> 3xIn(x) 9xIn(x)*> 3x*In(x)
1 3xIn(x) x? 3x% In(x) x
3In(x)  9xIn(x)*> 3x%In(x) 9x*In(x)> 3x°In(x)
x 3x% In(x) x 3x% In(x) x*
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Intheabovex = f /3, [Bewareof thechangein notation for x different from the one normally
used in the generation context (See Chapters 2 and 3) where it denotes the gauge-invariant
parameter X = (GmnK/c*)*3 ]

We see that the information matrix will involve moments of the noise spectrum of the
form f0°° f‘f/3%, where j runs from 1 to 17. The elements of the information matrix,
therefore, take on values in a very large range leading to a highly ill-conditioned matrix.
Extreme caution should be exercised in computing the moments, else it is easy to end up
with values in the covariance matrix that are negative, and even imaginary, while we know

that the covariance matrix should bereal.

5.5 Reaultsfor ground-based detectors

In this section we summarise the results following the procedure described in the pre-
vious section. We proceed systematically starting from the presently operating ground-
based detectors like initial-LIGO and Virgo and moving on to the next generation detectors,
Advanced-LIGO and the third generation one like EGO. An examination of these results
then makes obvious the need and advantages of going to a space-based detector like LISA,
which we analyse later. In each of the cases we have also examined the differences arising
from different strategies to treat thelog termsin the phasing formula

In view of the structure of the noise functions of the various detectors mentioned in Sec.
5.3, theintegrals in Eq.(5.27) can only be evaluated using numerical methods. We use three
different methods to check our evaluations:
1) Gauss program using C++ from Numerical Methods [206],
2) Nlntegrate Package in Mathematica version 5.2, and
3) ListIntegrate Package in Mathematica version 5.2.
We used these three methods and varied the number of integration points to check our results
for the Fisher information matrix I',,. In this regard, we find that irrespective of the three
different waysin which thelog terms are treated (constant, Taylor expanded or characterized
by new independent parameters) the difference in the values of T, coming from the three
numerical methods is very small and within the limit of numerical errors. The valuesof T,
do not depend on the number of integration points in the range 10° to 10%. We can thus be
confident of our numerical evaluation of theintegrals in the definition of the I'gs.

However, our problem does not end here. We next need to calcul ate the matrix inverse of
Iy, to obtain Z,,." In this calculation more serious numerical problems arise because of the
ill-conditioned nature of the matrix I',, especialy in the higher massrange. The numericsin
this case seem to be very sensitive to the precision used and a careful analysis showed that
the problem is alleviated to alarge extent by using 'infinite precision’. More explicitly, the
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use of arational number representation of the matrix elements in our Mathematica programs
seems to circumvent the problem of abadly computed matrix inverse. With this prescription
the inverse is numerically well determined (I'’Z = I!) aslong as the determinant of Iy is
well within the machine precision. For high valuesof mass the determinant iseither toolarge
or too small and in these cases there are large differencesin the values of X, [including even
(the obviously incorrect) imaginary values| between the different methods. In particular,
note that for all the detectors and for the case where the log terms are treated as independent
parameters the curves are not smooth and the data points are fewer. See Figures[5.3] and
[5.4]. This could be due to the fact that when the dimensionality of the parameter space
increases, the covariance matrix is highly ill-conditioned leading to an unreliable inverse.
For many values of the binary mass the unreliable numerical situation leads to unphysical
imaginary valuesresulting in fewer reliable points and a consequent more jagged curve. For
a lower range of masses (and other ways of dealing with logs), the curves are smooth and
thisleads usto believein their reliability. More careful studies are needed to deal with these
delicate numerical issues and ascertain the reliability of the results in the problematic mass
ranges. We hope to return to thisin the future.

Let us begin with a study of the current generation detectors Initial- LIGO and Virgo.
Fig. [5.3] plots the relative errors in ¢’s at D; = 200 Mpc in asix panel format. The top
panels corresponds to Virgo and the bottom panels to Initial LIGO. The first column on the
other hand corresponds to the case where the log terms are treated as constants, the second
column where the log terms are Taylor-expanded and retained up to 3.5PN and finaly the
third column where thelog terms are treated asindependent terms and parameterized by new
additional parameters. From thefirst row for the Virgo detector we see that we can only test
the lowest order parameter v, and that too for a very small range of binary masses. Even so,
thisisonly possible for thefirst two ways of dealing with logarithms, (either in the constant
log or in the expanded log case). For Initial LIGO none of the y,’s can be tested.

We next move on to the next generation detectors, Advanced L1GO and EGO. Fig. [5.4]
summarizes similarly the situation for these two detectors with Advanced LI1GO in the top
panels and EGO in the bottom panels. From thefigures one can see that for Advanced LIGO
once again one can only test . However it can be tested for alarger range of binary masses
in the log-constant and log-expanded cases and even for the log-independent case though
for a smaller range of masses. With EGO the situation is the best among the ground-based
detectors. Not only g but aso ¥, can be tested, both in the log-constant and log-expanded
cases. However when thelog terms are independently parametrised only o can be tested.

From the discussion of the results above for ground-based detectors, both present and
future third generation, it is clear that one can only test PN theory to order 1PN at most,
and as expected with a binary black hole system. Testing the higher order PN terms would
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require larger SNRs and these are expected in space-based GW detectors like LISA. In the
next section, we explore this possibility in more detail.

5.6 Space-based detector-LISA

The Laser Interferometric Space Antenna (LISA) will observe supermassive black hole bi-
nary mergers with amplitude signal-to-noise ratio of several thousands. We investigate the
extent to which such observations afford high-precision tests of Einstein's gravity. We show
that L1SA provides a unique opportunity to probe the non-linear structure of post-Newtonian
theory both in the context of general relativity and its alternatives.

There are some mgjor differences between the ground-based detectors discussed in the
previous section and space detector like LISA. The important differenceisthat L1SA will be
sensitive to gravitational wavesin amuch lower frequency band: 10~4-10-! Hz, afrequency
range not accessible to the ground-based detectors due to seismic and more importantly
gravity gradient noise. Another important difference between LISA and the ground-based
interferometers relates to how they identify the angular position of the source in the sky.
LISA isnot a pointed instrument; it is an al-sky monitor with a quadrupolar beam pattern.
The ground-based detectors share this characteristic, but because there will be at least three
ground-based detectors, and because they will be sensitive to gravitational radiation whose
wavelength is much shorter than the distance between detectors, they will be able to deter-
mine the source position to within = 1° by a standard time-of-flight method [20]. This
method is not availableto LISA. Only one space-based detector is currently planned. More-
over the gravitational wavelength at the heart of the LISA band (- 10~ Hz) is of order |
AU, so a second detector would have to be placed at |east severa AU away from the Earth
for time-of-flight measurements to give useful constraints on source positions [207]. The
argument presented hereis not the full story. LISA measures the direction to its sources in
the same way asasingle ground-based interferometer measures direction to a GW source,
viz by demodulating the doppler modulation on the waveform due to the motion of LISA
relative to the source.

The frequency band, 107*-10"! Hz, contains many known gravitational wave sources
that LISA is able to see. These guaranteed sources comprise a wide variety of short-period
binary star systems, both galactic and extragalactic, including close white dwarf binaries,
interacting white dwarf binaries, unevolved binaries, W Ursae Majoris (W UMa)* binaries
and neutron star binaries.

Indeed, our galaxy probably contains so many short-period, stellar-mass binaries that
LISA will be unable to resolve them individually, and the resulting confusion noise will ac-

4W UMa isa variablestar in the constellation Ursa Mgjor.
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tually dominate over instrumental noiseat frequencies s 1073 Hz, asthe principal obstruction
to finding other sources of GWs in the data-stream. In addition to stellar-mass binaries, other
possible LISA sourcesinclude: astochastic GW background generated in theearly universe,
theinspiral of compact, stellar-mass objects into supermassive black holes (SMBHs) and the
merger of two SMBHs. The detection of any one of these would clearly be of immense
interest. The events involving supermassive black holes must surely occur in the universe,
but the event rates are highly uncertain [207].

56.1 Sendtivity curveof LISA

The power-spectral-density of LISA is more complex and includes both instrumental and
astrophysical contributions. The details are beyond the scope of the present study and treated
ine.g. [207, 208, 209, 196]. We only list the expressions we require. The total noise curve
of LISA isgivenby [196]

Su(f) = min [SNSA(f) /exp (—kTkondN/df), SEA(F) + SE(O}+SEE(f). (5.30)

In the above S }*A(f) denotes the non-sky-averaged noise spectral density of LISA and
isgiven by

AN Ay
SNSAH = [9.18 x 1072 (7) +1.59x 107*! +9.18 x 1073 (—) ] Hz'. (531

0 Jo

S flal( f) isthe galactic estimated white-dwarf confusion noise which is approximated as
7 -7/3
SE(f) =2.1x 107 (?) Hz'. (5.32)
0

Findly, S Z"'gal( f) isthe contribution from extra-gal actic white dwarfs and given by

f -7/3
SOE(f) =42x 1077 (7) Hz!. (5.33)

0
In the expression above fy = 1 Hz and dN/df the number density of galactic white-dwarf
binaries per unit gravitational-wavefrequency, represented as

— =2x103Hz!

T (5.34)

f

In our calculations we always assume that the duration of the LISA mission Tpission = 1 Yr
andk ~ 4.5[196].

dN (1 Hz)“’3
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5.7 Antenna pattern function for L1 SA detector

The signal measured by LISA, A(r) , can be written as:

3 V3 2m; m,
WO == oD,

A(t) cos ( j; f@)dr + @, + <pD(t)), (5.35)

where r(z) is the relative distance between the two compact bodies, ¢,(?) is the waveform
polarization phase [see Eq. (5.39a)] and ¢p(r) the Doppler phase [see Eq. (5.39b)]. A(¢) is
defined by

A = \/[1 + (L n22 Frz+ A . n)p P2 (5.36)

where L is the orbital angular momentum unit vector of the source, and n isa unit vector in
the direction of the source on the sky. The quantities F** are the pattern functions, defined
by

F+(05a¢5"//3)

—;-(1 + cos? f5) cos 25 cos s

- cosfs Sin2¢s SN2y ,

%'( 1 + cos? ) cos 2¢s sin 2urg

+ Cc0sfs SN2¢s COS2s . (5.37)

F*(0s,¢s,¥s)

In the above equations we have denoted by (65, ¢s) the sourcelocation and by s the polar-

ization angle defined as X R
L.z-(L.n)z-n)
n-(L X z)

tan s (¢) = (5.38)

with L, z and —n being the unit vectors along the orbital angular momentum, the unit normal
to LISA’s plane and the GW direction of propagation, respectively.

The waveform polarization and Doppler phases that will enter the GW signa (see
Eq. (5.42) later) are

2(f,n)FX(1)
(1 + (L -n)F@)]

@, (8) (5.39a)

oo®) = 2 Reinfs cos(@() - &), (5.39b)

with R = 1AU and ¢(t) = ¢ T 2nt/T. Here T = 1 year is the orbital period of LISA, and
$o isaconstant that specifies the detector's location at timet = 0. In this chapter we always
assume that there is no precession, so L¢ pointsin a fixed direction (8., ¢.). The angles
Bs, s, 0., ¢, describe the source location and orbital angular momentum direction in the
reference frame attached to the solar system barycenter.
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The relations between the angles (s, ¢s,¥s) evaluated with respect to the rotating
detector-based coordinate system and the angles (6s, s, 6;,$;) evaluated with respect to
the fixed solar-system-based coordinate system are given by [207]:

_ 3 -
cosfs(t) = % cosfs — \/7_ sinfs cos(@(?) — ds) , (5.40a)
_ . 2m [ V3cosBs + sinfs cos(d() - és)
os(t) = ao+ T + tan 29N Bs Sn@() - ds) , (5.40b)

where @ isaconstant specifying the orientation of thearmsat t = 0. Following Cutler [207],
we choose @ = 0 and ¢, = 0, corresponding to a specific choice of the initial position and
orientation of the detector. In addition [207, 196],

z-n = cosfy, (5.41a)
) 1 o

Lz = scosd- lé—gsin Brcos (3(2) — B1) , (5.41b)
L-n = cos éLCOS és + SinéL Sinés COS((;L - (Zs) , (5410)

. 1 - - - -
n-(Lxz) = ESineL sins sin (¢ — @s)

3 = = - T S
——‘g—_cos¢(t)(cosf)L Sinfs sings — cosés sind; SII’]¢L)

3. - - - - - -
__\/Z_smdb(t)(cos fs SIn@; cos¢; — cosf, sinbs COS&S). (5.414d)

The Fourier transform of the measured signal can be evaluated in the stationary phase ap-
proximation, since A(¥), ¢,(¢) and ¢p(2) vary on timescaleson the order of 1 year (thus much
larger than the binary orbital period = 2/f). Theresultis

V3

iz( f) = 7 j{ f7/6 ei‘l’(f) {% A(t( f))} e‘i(‘Pp,a(t(f))""PD(t(f))) , (5_42)

where A isdefined in Eq. (5.25b), and 1(f) is given by

14%()

o df (5.43)

nf) =

To proceed we list below the explicit expression for #(f) we will require in the computation
in the different methods of dealing with the log terms.

1. Log-Constant:

k-5 _
) =t o ; % AL (5.44)
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where i are given be Eqg. (5.10).
2. Log-Expanded:

LI et
W) = det g 2y S (5.45)

here y are given be Eq. (5.13).

3. Independent parameter for log terms:
() = t+a > 2 i wnngn) + g} 1408 (5.46)
‘T on - 3 )
where y, are given be Eq. (5.16).

5.7.1 Sgnal tonoiseratiowith orientation pattern
From the general definition of SNR in Eq. (5.24) , the non-averaged SNR is given by

- _ - _ 5_ fend3~ _ f_7/3
p(Os, ds,00,¢1) = 3 A j; ZAZ(f(f);Gs,fﬁs,eL, ¢L)Sh(f)df' (5.47)

Following [196] thelimitsin theintegral appearing in the above equation can be chosen.
The upper limit of integration is fs, = min(fisco, fena)- HEre fisco is twice the conventiona
(Schwarzschild) frequency of the innermost stable circular orbit for a point mass, namely
fisco = (6**nM)~!, and f..a = 1 Hz isaconventional upper cutoff on the LISA noise curve.
Theinitial frequency fi, in theintegralsof the Fisher matrix is determined by assuming that
we observe theinspiral over atime T before the ISCO, and by selecting acutoff frequency
below which theLISA noisecurveisnot well characterized. Our default cutoff is fipw = 1075
Hz. Theinitial frequency isthen given, in Hz, by the larger of these frequencies,

-5/8 -3/8

fo = max{ﬁow, 4149 x 10 [10/24Mo] : (fy"r) : } (5.48)
The frequency at a given observation timeis calculated using the quadrupole approximation
for radiation damping. In our calculations we assume that T,,s = 1 yr, consistently with the

choice we made for the LISA mission duration Tops in Eq. (5.30).
In the Fig. [5.5] we plot the signal to noise ratio (SNR) for different orientations for the
sources at aluminosity distance D, = 3 Gpc starting from the orientation {6s, ¢s, 6L, ¢L} =
{(13/40)m, m, (27/40)x, O}, which gives a large SNR. The other directions have been arbi-
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Figure 5.5: Signal to noiseratio p for LISA as a function of total mass of the binary (in
M) located a a luminosity distance D, = 3000 Mpe. (8s, s, fr, 1) describe the source
location and orbital angular momentum direction in the referenceframe attached to the so-
lar system barycenter. In our caculaions, We use the orientation (cosfs, ¢s,cos &, &) =
(09, 2, 0.8, -5) (“optimally oriented")for which the maximum SNR is = 6.4x 10° for a
binary mass 108, Even in this limited set of anglesthereexists an orientation which givesa
larger SNR = 1.15 x 10* at the total binary mass 10°.
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trarily taken. For al the curves the maximum values of SNR appear at total mass 10° M,
The dips which occur at 2 X 10® M, are due to the white-dwarf confusion noise.

5.8 Patternaveraged waveform and itsSNR

Taking the average of the waveformfor one LI1SA detector over the pattern functionsin the
stationary phase approximation, the waveformin the Fourier domain is given by

hf) = ?ﬁ 6 VD (5.49)

Recall, that using Eq. (5.24), we can express the SNR p in theform

end 3 F 7/3 550
f is.n™ -0

Thelimitsin theintegral have aready been discussed in the previous Sec. 5.7.1.

Fig. [5.6] shows the SNR with averaged orientation waveform pattern and with one par-
ticular orientation pattern waveform. The orientation of the source is chosen to be
(cosbs, ¢s,cosb,, ¢.) = (09, 2, —0.8, —5) an ""optimal orientation™ in the sense that it leads
to a high SNR. The two curves in the log-log scale look almost parallel. The maximum
SNR for both curves is more than 4000 and 6000 respectively and they occur at total mass
of MBBH of 10° M,,

5.9 Parameter estimationfor LI1SA

In this section we discuss our results for parameter estimation using the LISA noise PSD.
Theresultsfor the two cases, one where the pattern averaged waveformis used and the other
where waveform is used without pattern averaging, are explained. For the case when one
ignores the antenna pattern of LISA (which assumes that source lastsfor smaller duration in
the LI1SA band that modulations are not significant), the analysisis very much similar to the
ground-based detectors.

The calculation is more involved when one incorporates the modulations induced by
LISA motion. The dimensionality of the parameter space is increased, as compared to the
previous cases, by five. Luminosity distance D;, and the four angles corresponding to the
source's location and orientation in the sky are added to the space of parameters. Thusin
this case, when logs are treated as constants, the total dimensionality is13. It increasesto 15
when one treats |ogs as independent parameters. Another difference in the calculation is the
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Figure 5.6: Signal to NoiseRatio p for LISA as a function of total mass of the binary (in
M) located a a luminosity distance D; = 3000 Mpc., for two cases: 1) usi ng orientation
pattern waveform wherethe orientation of the sour ceischosento be(cos s, @5, cosf;, ¢;) =
(09,2,-0.8, -5), an " optimal orientation" . 2) pattern averaged case. The two curves on
this scale look paralld. The maximum SNR for both curves is more than 4000 and 6000
respectively and they ooour at a binary mass of 10% M,,. The white-dwarf confusionnoiseis
responsiblefor thedip in the curvesat masses ~ 2 x 10M,,
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occurence of #(f) of Eq. (5.43) to account for the amplitude and phase modulations. Asis
evident from Eq. (5.43), the expression for #(f) has an additional dependence on ;s which
has to be taken into account. Finally, the Fisher matrix is computed incorporating all the
above aspects and inverted to obtain the covariance matrix. The results of this exercise are
discussed in what follows.

5.9.1 Reaultsfor LISA

We shall show in this section that the brightest events that can be expected in the space-based
Laser Interferometer Space Antenna (L1SA) will test all the PN terms computed so far.

We assumed that LISA consists of only one interferometer with sensitivity as in
Ref. {207, 208, 196] and the binary consists of two black holes of equal masses in quasi-
circular orbit and observed for the last one year before merger.

Fig. [5.7] summarises in asix panel format the relative errorsin the various parameters
Y asafunction of the total mass at adistance of D; = 3000 Mpc. The top panels correspond
to the relative error when the pattern orientation waveformis used and the orientation of the
sources is chosen to be (cosés, s, c0s8;,¢,) = (09, 2, —0.8, —5) (*"optimal orientation™).
The bottom panels correspond to the relative error when the averaged waveform pattern
is used. As before, the three columns correspond to the three different ways of dealing
with log terms. The first column corresponds to the case where the log terms are treated as
constants, the second column wherethelog terms are expanded and retained to be consistent
with a 3.5PN accurate waveforms and the third column where the log terms are treated as
independent terms and parameterized by two more new parameters. In the first column
wherein the log-terms are treated as constants, it isclear that in the massrange 10° - 105M,,
fractional errorsassociated with most of the parameters areless than 1, except for theyg jow =
ve(f — fin) which is two times higher. In the second column the case is better: al the
relative errors are much small compared to one and for a wide range of masses except for y4
for which the fractional error isless than one only for small range of masses ~ 2 X 10° M,
Thus, LISA will provide an unique opportunity to test the PN and related approximations
to a high degree of accuracy using the scheme proposed in this chapter. On the scale of
the present graph in the first and second columns the visual difference between the top and
bottom panels is too small to be critically commented upon. To examine in more detail the
difference between the pattern averaged waveform and the waveform including orientation,
we plot in Figures [5.8]-[5.10] the two results and in an adjoining panel the associated
fractional differencein the case wherethelog termstreated as constants. From this graph we
can conclude that in the mass range 2000-2X 107 M,, the differencecan be aslarge as 20% for
thischoice of orientation. However, one must beware that thisis not a generic statement and
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Figure5.7: Relativeerrorsin y, asafunctionof thetotal massof the binary M for the LISA
Detector. The top panels correspond to the case with orientation pattern. The orientation
of the source is chosen to be (cosfs, ¢s,coséy, 1) = (09, 2, —0.8, —5), an "optimal orien-
tation™. The bottom panel corresponds to the case with an average orientation pattern. As
before the three columns correspond to the three ways of dealing with logs: |og-constant,
log-expanded and log-independent respectively. The luminosity distanceis D, = 3000 Mpc.
In the top panels (when the log terms are treated as constants or Taylor expanded), al the
Y’s, EXCEPt Yelow, Can be tested in the mass range between (2-3)x10°.
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could well be different for a different choice of orientation and parametrization [196, 210].

592 Tet of general reativity: Representationin the m;-m, plane

A graphical plot in the m;-m; plane best illustrates how one might test the consistency of the
individual masses of the specific system in the merger of black holes each of mass 10> Mo,
We have chosen a system that givesthe lowest errorsin different parameters (cf. Fig. [5.7])
and assumed that the source is at a distance of 1 Gpc. For each parameter ¢, we have
plotted the region enclosed by the boundaries ¥ + Ay and ¥, — Ayy, where Ay, is the
one-sigma error in the estimation of y,. The region in the my — m, plane for a binary of
total mass M, corresponding to the parameter y, is determined as follows. It is given by
Ri(my, my; (Wdlm=m, — 66))=0, where —Ayily=m, < 6k < AWily=m,- (In the above Ay,
corresponds to the estimated errors in ¢, for a particular detector and particular source of
total mass M,.)

In Fig. [5.11] the top-left panels correspond to the case where the log terms are treated
as constants, the top-right panels to where the log terms are expanded and the bottom panels
correspond to the case where thelog terms are treated asindependent parameters. The higher
order ¢,’s will have to enclose the region determined by, say ¢ and ¥,. This will be a
stringent test for the various parameters and will be a powerful test if LISA sees a merger
event withahigh SNR of = 10, For binaries that merge within 1 Gpc the test would confirm
the values of the known PN coefficientsto within afractional accuracy of ~ 1.

Finaly, one may wonder that there is no test corresponding to ¢s in Fig. [5.7] and
Fig. [5.11]. Thereason issimple. Thisterm has no frequency dependence and consequently
the associated constant ¥ s gets absorbed into a redefinition of the coalescence phase @..

5.9.3 Boundson Compton waveength of thegraviton usingthecurrent
proposal

Based on the discussions of the previous section, it would be interesting to ask whether the
proposed tests can, in principle, distinguish genera relativity (GR) from, say a theory that
also includes amassive graviton [195]. In thistheory the 1PN parameter ¢, isdifferent from
that in GR [195]. The accuracy with which y,, which contains the massive graviton term,
can be determined, can be used to put bounds on 4, once we assume the additional term at
thisorder issame asin Ref. [195].

We adopt the following procedure to calculate the bounds on the mass of graviton. The
presence of the massive graviton modifiesthe 1PN terms of the phasing formula which can
be conveniently rewritten as

Yo = Y5t + 9y (5.51)



Chapter 5 205

3
m, x 10" (M) m, x 10 (M)

1 2 3
m x 10" (M)

Figure 5.11: The m;-m, plane plots for different ¢,’s for the three ways of dealing with
log terms. Tap left is the case where the log terms are treated & constants, the top right
where the log terms are Taylor expanded about u, and retained to 3.5PN and the plot at
the bottom refers to the case where the log terms are parameterized by independent vari-
ables. The source isassumed to be a binary BHof mass M, = 2 x 103! M, at a luminosity
disanceof 1000 Mpc for the LI1SA detector. The orientation of the source is chosen to be
(cos Bs, @s,cos By, ¢;) =(09, 2, -0.8, -5), an " optimal orientation” . For each parameter i,
Ve have plotted the region enclosed by the boundariesy;, + Ayi and ¥y, — Ay, where Ay,
is the one-sgma error i n the estimation of ;. A larger region means a weaker test and a
less certain determinationfor m, and m,. Theexistencedf a non-empty inter section for the
regions associated with each ¢, constitutes the test. In thelast case, the plot includes only
first three y,’s Sinceothers are estimated with very largeerrors.
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where

3715 55 \ 1
GR __ bl
> = (32256 MY V) v M (5-52)

and 'S, the leading correction due to the effect of the massive graviton, isgiven by

_ ctnD
T+

Yy = (5.53)
MG will alter the arrival time of the waves of a given frequency and depends only on the
size of the graviton Compton wavelength A, and on the 'distance’ D which is defined as

[196, 195]
_cl+g) [F dz

Hy Jo (1+22[Qu1+2) +Q4]"*
It should be noted that D is not a conventional cosmological distance measure, like the lumi-
nosity distance D, [195] and differsfromit by afactor (1 + z2)~2 in the integrand.

For a BH binary of total mass 2 X 10® M,, at the luminosity distance D; = 3000 Mpc,
that is, (z = 0.524116 and D = 2007.42 Mpc) in the LISA band we find ¢R = 0.0195 and
PG ~ " ook From our resultsin the previous section 5.9.1 theerror in estimating

is Ay, = 45 Thus the massive graviton theory can be distinguished from GR if ¥ > Ay,
say, ¥Y'¢ = 10 x Ay,, which we choose as our criterion. For the system considered, one
can then use the estimate of Ay, to obtain the value of A, which satisfies this criterion.
Any massive graviton theory of this type, with 4, less than or equal to this value can be
distinguished from GR by the proposed test.

Remarkably, we find that an year's worth of observation of BBH mergers in the mass
range 2 X 10* - 2 X 107 M,, should be sufficient to discriminate GR from a massive graviton
theory provided the Compton wavelength of graviton 2, < 5.5 x 10" - 3.8 x 10'5 kms.
These limits make the simplifying assumption of neglecting the as yet uncomputed higher
PN order corrections to GW phase in the massive graviton case. (See dso [211] for a
discussion regarding the extent to which GW observations can critically distinguish between

different theories of gravitationin comparison to the binary pulsar tests.)

D

(5.54)

594 Summary and futuredirections

Let us begin with a tabular summary of the results of this chapter to highlight the main
results. In Table 5.9.4 we summarise the minimum SNR required by the various ground-
based detectors to test the various PN order coefficientswith the proposed scheme (treating
all PN coefficients as independent). From the table one can conclude that it will not be
possible to test any of the PN coefficientsy, using the ground-based detectors. The situation
in regard to LISA is similarly paraphrased in Table 5.9.4. In this case, at the generaly
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Table 5.1: This table lists the relative error Ay, /y) for a prototypical binary black hole
system each of 10M,, at a distance of 200 Mpc for the different ground-based detectors
Virgo, Initial LIGO, Advanced LIGO and EGO. From the table it follows that the ground-
based detectors cannot test any PN coefficient ¥, if all the y,’s are treated as independent

Parameters.

M = 20M,
D; =0.200 Gpc
Virgo | Initid | Advanced | EGO

LIGO LIGO
SNR= p 1.92964 | 2.38892 | 37.5313 | 143.923
Ado/o || 79.2489 [ 577.437 | 4.53519 | 0.100777
Ay [ s 4885.46 | 26954.9 | 274.267 | 8.11832
A3 /yrs 9282.07 | 45032.0 | 516.022 | 17.4466
A/ s 69359.4 | 298013. | 3818.32 | 146.395
Agiow/Weiow || S0473.9 | 152923, | 272524 | 152.228
Ao /Yo | 34276.1 | 118037. | 1850.67 | 89.2502
AYrs g 29953.6 | 93341.4 | 1602.03 | 85.6984

Table 5.2 This table summarizes the minimum valuesin the SNR required by LISA to test
the PN coefficient y;, (more precisely at which the relative error Ay /y; ~ 1) if all they,’s
are treated independent. The last two columns give the associated maximum valuesof Dy, in
Gpc up to which this test isfeasible. With a SNR of 1050, one can determine g, ¥» and ¢3

using LISA.
M =2x10°M,
LISA LISA LISA LISA
(Without pattern) | (With pattern) || (Without pattern) | (With pattern)
Minimum in SNR=p Maximum in Dy, (Gpc)
to test iy to test ¥«
Yo 2.994523 4.593583 2145.462 2158.579
s 308.4470 446.7180 20.82898 22.19658
/) 735.3999 1034.571 8.736249 9.584273
Ya 6760.243 9256.164 0.9503559 1.071244
Yelow 9941.631 12985.71 0.6462357 0.7635788
Yeup 4773.239 6234.780 1.345970 1.590370
/g 4853.711 6214.063 1.323655 1.595673




Table 5.3: This table lists the SNR and fractional accuracies Ay/y) with which the PN coefficientsy, can be tested by LI1SA using a
prototypical supermassive binary black hole system (2 x 105M,) at three representative distances of 1 Gpc, 3 Gpc and 6.6122 Gpc (z = 1).
From the table it follows that, if all the PN coefficients are treated as independent parameters, only v, ¥, and 5 can be tested at all the
three distances. i, can be tested only if the sourceisrelatively closer at D; = 1 Gpc.

¢ 191dey)

LISA M=2x10°M,
D; =1Gpc D; =3Gpc D, = 6.6122 Gpc
(Without pattern) | (With pattern) || (Without pattern) | (With pattern) || (Without pattern) | (With pattern)
SNR=p 6424.64 9915.61 2141.55 3305.2 971.629 1499.59
Ao/t 0.000466100 | 0.000463268 0.00139830 | 0.00138980 0.00308196 | 0.00306323
A, s 0.0480100 0.0450520 0.144030 0.135156 0.317453 0.297894
A3 /s 0.114466 0.104338 0.343397 0.313013 0.756873 0.689904
Apa /g 1.05224 0.933494 3.15671 2.80048 6.95764 6.17248
A 10w/ Wlow 1.54742 1.30962 4.64227 3.92887 10.2319 8.65953
Argup [Weup 0.742959 0.628784 2.22888 1.88635 491262 4.15767
Ay [y 0.755484 0.626695 2.26645 1.88008 4.99544 4.14385

80¢C
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realistic SNR of about 1050 LISA can test for ¢, ¥, and 3. The last two columns of
this Table 5.9.40n the other hand provides a similar comparison in terms of the maximum
luminosity distance to which the LI SA detector can test a particular PN coefficient. Finally,
in Table 5.9.4, for the case of LISA we provide a ready-reckoner of the relative errorsin
various PN parameters y,; for a prototypical supermassive binary black hole (2 x 10°Mp) at
three typical distances.

Let usfinaly conclude with the limitations of the present work and an indication of the
possible directions in which the results can be extended.

¢ In the present work we have dealt with only non-spinning binaries. The spin param-
eters, 5 from spin-orbit coupling at 1.5PN and o~ from spin-spin coupling at 2PN, are
assumed to be less significant for theseequal mass systems. For the unequal mass case
the spin effects are expected to be more important.

e Orbital eccentricity, which might introduce systematic effects in these tests, has not
been included as we have restricted our analysis to binaries in quasi-circular orbits.
Especially for many LISA sources the binaries could be in quasi-eccentric orbits and
thus require an extension to include eccentricity.

a Massive graviton theories can be tested since they lead to a phasing formula that is
structurally similar to general relativity but with terms modified due to the propagation
delay. Further work would eventualy require the computation of higher PN order
effectsin such theoriesbeyond the lowest order effect considered usually including the
present work.

a Alternative theories of gravity, such asthe Brans-Dicke theory, where the PN structure
of the phasing is different due to the presence of dipolar radiation, may also be tested
by an extension of the above proposal.

These and other issues should be investigated in the future.
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5.10 Appendix

5.10.1 Effect of increasng dimensonality on parameter estimation due
toincluson of higher post Newtonian terms

In this Appendix we study theeffect of increasing dimensionality caused due to theinclusion
of higher PN order terms as independent parameters on the errors in the estimation of y;s.
For this, we estimated the errors, say in o, when the signa is progressively more accurate
starting from Newtonian, 1PN, ... to 3.5PN. A similar exerciseisrepeated for other y’s a'so
and the results for the Advanced L1IGO, EGO and LI1SA detectors are presented below. One
should bear in mind that systematic errors due to the neglect of higher orders will be domi-
nant in many cases. The increase in dimensionality degrades the accuracy of determinations
of aparticular ¥, asone would expect. For smplicity the log terms are treated as constants.

For each detector, Advanced LIGO (Fig [5.12]), EGO (Fig [5.13]) and LISA (Fig [5.14])
there are five panels corresponding to the relative errors of g, ¥, W3, ¥4 and {i¥e10w and
Yeup } respectively. In each panel the test is performed successively with progressively
more accurate PN waveforms. Increased dimensionality of the parameter space leads to a
poorer determination of a particular PN coefficientif all the PN coefficients are treated as
independent parameters.
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