
Chapter 6 

Probing the non-linear structure of 

general relativity with black hole binaries 

6.1 Introduction 

Binary pulsar observations provide one of the most stringent methods to test the strong field 

regime of gravity in general relativity (GR) and its alternatives 12121. The test is possible 

since the orbital dynamics of the binary is relativistic enough to allow the measurement of 

effects due to gravitational radiation damping at the post-Newtonian order ( ~ l c ) ~ .  Binary 

pulsar measurements are performed by fitting the pulse arrival times to a relativistic 'timing' 

model [212, 147, 171, 2131 which is a function of the Keplerian parameters (orbital period, 

eccentricity and the projected semi-major axis of the pulsar orbit) and post-Keplerian (PK) 

parameters (the periastron advance, time-dilation and secular change of the orbital period). 

Two more PK parameters, related to the Shapiro-delay caused by the gravitational field of the 

companion, can be measured if the orbit is seen nearly edge-on. Different theories of gravity 

have different predictions for the values of the PK parameters as functions of the individual 

masses of the binary constituents ml and m2. Thus, a measurement of three or more PK 

parameters facilitates a test by requiring consistency, within the observational errors, in the 

estimation of the masses of the two bodies as determined by the various parameters. The 

most rigorous test possible so far is with the most relativistic binary pulsar PSR 50737-3039 

[13 11. Observed almost edge-on, it permitted the measurement of five PK parameters, which 

together with an additional constraint from the measurement of mass-ratio, determine and 

check the consistency of the masses of the two pulsars in the ml-m2 plane [131]. 

As mentioned in the previous chapter, although radio binary pulsars are capable of test- 

ing certain lower post-Newtonian (PN) order general relativistic effects, such as the advance 

of the periastron and the quadrupole approximation to the generation of gravitational waves, 
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they will, unfortunately, not be able to probe the strong field non-linear effects, such as 

the tails of gravitational waves [145]. This is because the PN expansion parameter is of 

order v - - far too small for the effects that first appear at higher post-Newtonian 

orders to play a significant role in radio observations of binary neutron stars. Space- and 

ground-based gravitational wave detectors, such as the Laser Interferometer Space Antenna 

(LISA), Laser Interferometer Gravitational-Wave Observatory (LIGO), VIRGO and Euro- 

pean Gravitational-Wave Observatory (EGO), will observe compact binary neutron stars and 

binary black holes (BBH) in the last stages of their non-linear evolution, during which the 

parameter v is two orders of magnitude larger (v - 0.2-0.4) than it is for current radio obser- 

vations of such systems. For some of the rare (about once per year) inspiral events observed 

by LISA (EGO) the amplitude signal-to-noise ratio could be as large as 3,000 (100). Such 

high SNR events will allow us to measure the parameters of the signal and the source quite 

accurately, thereby allowing tests that were not feasible earlier. Different tests of GR have 

been proposed by various authors using GW observations of the inspiralling compact bina- 

ries [168, 2 14, 136, 1961 and contrasted with the binary pulsar observations [2 1 11. These 

tests would necessitate an accurate parameter extraction scheme using the highest PN order 

waveform available [2 151. 

The GW 'phasing formula' is very close in spirit to the 'timing formula' used in the bi- 

nary pulsar observations. The timing formula, q5ESR=FT[tn, pi], connects the rotational phase 

4, of a spinning pulsar to the time-of-arrival tn of the radio signal and a set of Keplerian and 

PK parameters pi={pK, pPK). Similarly, a precise model for GWs from a compact binary will 

need accurate information about the continuous evolution of the GW phase. Schematically, 

the phasing formula reads q5GW=Fp[t, qi] where, in Einstein's theory, qi carry the information 

of the source via functions of the individual masses and spins. The phasing formula consists 

of different PN parameters qi, similar to the PK parameters of the timing formula, and is 

currently available up to relative 3.5PN order i.e., O(u7) [200,95, 108, 109, 1541. 

In the present chapter we propose and explore an interesting possibility of testing Gen- 

eral Relativity with the high-SNR GW observations of BBH inspirals by LISA and EGO 

using a new variant of the proposal discussed in the previous chapter. The proposed test is 

closer in essence to the binary pulsar test, but in a stronger and dynamic regime of gravity. 

Given a high SNR binary black hole event one can, in principle, make a model-independent 

measurement of the various PN coefficients by accepting those values that best fit the data as 

our estimates. A procedure in which all the parameters 8 - (tc, Qc, qk, @ k l ) ,  k = 0,2, . . . ,7,  

are independently varied to obtain the best possible fit of the signal to the data subjects gen- 

eral relativity to the most stringent test possible. In the previous chapter, we explored the 

power of such a test to determine all the known coefficients to a relative accuracy of 100% 

or better [169]. However, this is by no means the most powerful test. This is because the 
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covariances between the various parameters enhance the errors in their estimation, thereby 

diluting the effectiveness of the test. In the present chapter we have studied the accuracy 

with which we can measure the PN coefficients by treating at a time only three of the nine t,hk 

coefficients to be independent and taking the rest as functions of two of the three parameters. 

Thus, once a high SNR event is identified, we suggest to fit the data to a template wherein 

three terms in the PN expansion, rather than just two as in detection problem, (or all the 

PN terms as proposed in Ref. [169]), are treated as independent parameters. Using the two 

lowest order PN coefficients qi as basic variables to parametrize the waveform and choosing 

the other PN coefficients as 'test' parameters, one at a time, it is possible to perform many 

consistency checks of the PN coefficients in the ml-m2 plane. In the rest of the chapter we 

investigate this possibility in greater detail. 

6.2 Testing PN gravity using GW phasing formula 

Binary black holes in close orbit around each other are highly relativistic and mandate the in- 

clusion of higher PN order terms in their description. Gravitational waves emitted during the 

inspiral phase comprise a variety of terms arising from the non-linear multipole interactions 

as the radiation propagates from the source to the far-zone [63, 1581. These non-linear inter- 

actions lead to the phenomenon of tails at orders 1.5PN and 2.5PN (propagation not only on 

but inside the light cone as well) and tails-of-tails at 3PN. For spinning binaries, there also 

exist effects of spin-orbit and spin-spin couplings at 1.5PN and 2PN, respectively. These 

effects are imprinted in the emitted gravitational radiation and can be extracted by matching 

the detector data with an expected gravitational waveform, often called an optimal filter or a 

template. The template itself can only be computed using post-Newtonian theory in which 

the various physical quantities relevant to the emission of gravitational waves are expanded 

in an asymptotic series in the small parameter v - the characteristic velocity in the system 

'. An important feature of the PN expansion is the presence of log-terms vm(ln v ) ~ ,  where 

m and n are integers. General relativity is incompatible with a simple Taylor expansion in 

only powers of v. For instance, currently, the expansions of the specific binding energy E and 

gravitational wave flux F are known to order v7 (i.e. 3.5PN order) and given by 

'We use a system of units in which c = G = 1. 
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where, v  = mlm2/M2,  is the symmetric mass ratio in terms of the total mass M = ml + m2 

and where the coefficients Ek and Fk can be found in Ref. [26]. Note the presence of the 

log-term at order v6 in the expression for the flux. 

To understand how we might test the non-linear structure of general relativity let us begin 

with the Fourier domain representation H(f) of the signal from a binary at a luminosity 

distance DL consisting of black holes of masses ml and m,: 

where M = v 3 I 5 ~  is the chirp mass and 0 _< C 5 1 is a constant that depends on the relative 

orientation of the detector and source with a root-mean-square value of 215 when averaged 

over all sky locations and source orientations. The phase Y(f) is given by 

Here t, and a, are the epoch of merger and the signal's phase at that epoch, respectively. 

+k and t,bkl are independent off  and given by 

where, 
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and 

The non-vanishing coefficients of the log-terms up to 3.5PN are 

We have a total of nine post-Newtonian parameters, seven of these are the coefficients of v" 
terms for n = 0,2,3,4,5,6,7, and two are coefficients of v" ln(v) terms for n = 5, 6,2 but each 

of these parameters depends only on the masses of the two black holes for the nonspinning 

case in GR. 

As in the previous chapter, we assume a cosmological model with zero spatial curvature 

0, = 0, matter density RA + RM = 1 and Hubble's constant Ho = 70 km s-I Mpc-'. The 

luminosity distance as mentioned earlier 

DL = 
dz' 

[RM(l + z ' ) ~  + RA]"~  ' 

where z denotes the redshift of the source. 

6.3 Model of the gravitational waveform and assumptions 

involved 

Before proceeding with the description of our work, let us summarise the assumptions im- 

plicit in the analysis, the justification for doing so and their possible implications. As in most 

works on this subject, to demonstrate the 'principle' of the proposed method we neglect the 

effects of spins and eccentricity. What will change on including these additional parameters 

is the accuracy of the test. The spin effects are relevant only when one of the black holes is 

2 ~ n  the Fourier domain the log-terms appear at 2.5PN order rather than 3PN because of an integration that 
involves 1 / f .  



Chapter 6 219 

much smaller than the other and/or when the black holes have their dimensionless spin an- 

gular momentum close to unity. It is not clear that astrophysical black holes, especially the 

supermassive ones, will be extreme Kerr. Except in cases where both BHs are extreme Kerr 

(or close to it) spin effects are less important for the proposed tests since we have consid- 

ered black holes of comparable masses in our study. The issue of eccentricity, especially for 

certain LISA sources, is a complex issue depending on the astrophysical scenario related to 

formation mechanisms of the binary. Our neglect of eccentricity is a simplifying assumption 

at present. Finally, let us comment on the use of the so-called restricted PN waveform in 

this work. Not merely in connection with tests that have been proposed but more seriously in 

most works related to the detection problem in GW data analysis, the late inspiral and merger 

part is ignored in the first instance. One begins by using state-of-the-art restricted PN inspiral 

templates. This is not just a theoretical convenience but appropriate as well since both for 

EGO and for LISA there would be a sub-class of sources that would be inspiral-dominated. 

By the time LISA and EGO operate there could be reliable merger waveforms that can be 

included in the phasing and this would make this test more robust. 

6.4 Implementation of the proposed test 

As mentioned earlier, given a high SNR binary black hole event one can, in principle, make 

a model-independent measurement of the various above PN coefficients by accepting those 

values that best fit the data as our estimates. We now investigate the accuracy with which 

one can measure the PN coefficients by treating at a time just three of the nine t,bk coefficients 

to be independent and taking the rest as functions of two of the three parameters. More 

precisely, in Einstein's GR, the tests consist in treating the parameters t,bo and t,b2 as the 

fundamental ones from which we can measure the masses of the two black holes by inverting 

the relationships t,bo = t,bo(ml, m2) and t,b2 = +2(ml, m2), and asking if the measurement of a 

third parameter, say = t,b61(m1, m2), is consistent with the other two. Instead of the pair 

(t,bO, 142) one can, in principle, equally well take any other pair to be the fundamental set. The 

parameters t,bo and t,b2, being lower order coefficients, are best determined as compared to the 

others and constitute our favoured pair. In analogy with the binary pulsar case each PN order 

coefficient can be thought of as comprising different physical effects. The determination of 

a particular PN coefficient is thus the measurement of particular PN effects. The possibility 

to confirm the PN coefficients is what we principally explore and for that what we propose 

is appropriate. The proposal to check a fundamental feature about PN theory such as the 

presence of log-terms by measuring the relevant parameter directly from observations is 

significant. One could alternatively use the entire PN expansion up to some order k' as 

a basis, and then check consistency with (ignoring higher order terms). This would 
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be relevant for testing alternative theories where deviations from GR may grow larger with 

stronger gravity. The procedure we prescribe has the advantage over the above scheme that 

even if one is testing a low order PN coefficient, the systematic effects arising from neglect 

of higher PN order terms is controlled to the extent possible. 

We shall consider the estimation of parameters using the covariance matrix, in the 

ground-based EGO and space-based LISA cases, for which we assume the noise PSDs as 

given in Ref. [216] and [208], respectively. We shall take the fundamental parameters to 

be qo and 1,b2 in addition to the usual extrinsic parameters t, and cD,. We shall take the test 

parameter (C/T  to be in turn q 3 , .  . . , @ 7 ,  and @61. It should be noted that as in the previ- 
ous chapter there is no test corresponding to the term involving q5 since it has no frequency 

dependence and simply leads to a shift in the coalescence phase cD,. 

For ground-based detectors, Advanced LIGO and EGO, each (independent) test involves 

the parameters t,, 0, and the three chosen t,hk9s. For LISA, on the other hand, the results 

correspond to the case of a single detector but with amplitude modulation caused by the 

motion of the detector relative to the source. Thus, for LISA our Fourier domain waveform 

will have amplitude, phase and frequency modulations due to the orbital motion of LISA 

and we use the waveform given in Ref [207]. In the case of LISA, in addition to the three qk 
parameters related to our tests we also have the luminosity distance DL and the four angles 

related to the source's location and orientation ps = cos 8s , (bs , p~ = cos 8 ~ ,  ( b ~ .  

6.4.1 SNR for Advanced LIGO, EGO and LISA 

The power of the tests depends on the SNR achieved for the source. In Fig. [6.1] we have 

plotted the SNR in LISA, EGO and for comparison, Advanced LIGO [215], for BBH binaries 

at a distance of z = 1 for LISA and a distance of DL = 200 Mpc for EGO and Advanced 

LIGO. In the case of EGO, we consider stellar mass BBH of equal masses with the total 

mass in the range 1 M, to 400Mo, while in the case of LISA the mass range is from 1O4M, 

to 107M,, but scaled down by lo4 so as to fit all the curves in the same plot. While the SNR 

in EGO can reach several 100's for sources that it might observe every once in a year, in 

the case of LISA the SNR could be several 1,000's for the supermassive BBH sources that 

it is expected to observe about once per year. The SNR's in both LISA and EGO are large 

enough for the tests to be powerful probes of the PN coefficients and the non-linear effects 

of GR. 
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Figure 6.1 : The signal-to-noise ratio for stellar mass binary black holes (BBH) in Advanced 
LIGO and EGO and supermassive BBH in LISA for equal mass binaries at a distance of 200 
Mpc (for EGO and Advanced LIGO) and z = 1 (LISA) respectively. In the case of LISA we 
assume that the signal is integrated for a year (last year before coalescence) and in the case 
of EGO we assume that the signal is integrated over a bandwidth from 10 Hz until the binary 
reaches its innermost circular orbit. The masses of supermassive BBH in the case of LISA 
have been scaled down by a factor of lo4, The maximum SNR for Advanced LIGO, EGO 
and LISA is 52, 310, 2922 respectively corresponding to the total binary mass of 55M0, 
112M,, 106MD. 
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6.4.2 The test using Advanced LIGO 

Let us begin with the case of Advanced LIGO. For a source at 200 Mpc the errors in the 

lowest order parameters qo and q2 are measured with the smallest relative errors of order 
- Fig. [6.2] plots the relative errors AqT/qT  for various parameters qT as a func- 

tion of the total mass M. From the plots, it is clear that the proposed tests can be performed 

only for q3 and q5, with fractional accuracies better than 100% for stellar mass BBH binaries 

with the total mass in the range 2-50 M,. For sources with the total mass in a very narrow 

range around - 15M,, all the parameters, except q4 and q6,, can also be measured to a rel- 

ative accuracy of 100%. Thus, though the 3PN log-term cannot be probed with Advanced 

LIGO, the 2.5PN log-term can be tested leading to an interesting possibility in the more im- 

mediate future. 

6.4.3 The test using EGO 

In the case of EGO for a source at 200 Mpc the errors in the lowest order parameters qo and 

9 2  are measured with the smallest errors of order - Fig. [6.3] plots the relative 

errors AqT/qT  for various parameters qT as a function of the total mass M. From the plots, 

it is clear that the proposed tests can be performed for all qk's, with fractional accuracies 

better than 100% for stellar mass BBH binaries with the total mass in the range 5-14M,. 

This demonstrates the exciting possibility of testing the non-linear structure of general rel- 

ativity using the GW observations by EGO. More quantitative details including the relevant 

correlation coefficients are summarized in Tables [6.1] - [6.6]. 

From those tables [6.1] -[6.6] and fig. [6.4] of the correlations for EGO, we find the follow- 

ing: 

The correlation coefficients in general are very much mass dependent. 

The correlation coefficient c~~ is almost constant (varying between 0.9997-1) for binary 

total masses in the range 2 - 200Mo. Thus variables t,b2 and t,b4 are very strongly 

correlated. 

The correlation coefficient co2, for test variables lCIT ( T = 51, 6, 61, 7) increases from 

0.84 to 1.0 when the binary mass varies from 2M, to 200M,. Thus variables qo and 

$2 are also correlated. However the correlation varies from strong to very strong de- 

pending on the binary mass. 

The correlation coefficient coT (T = 51, 6, 61, 7) similarly increases from -1 to -.75 

as the total mass varies from 2Mo to 200Mo. Thus the parameter qo and qT, (T = 
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Total Mass of the Binary ( Ma) 

Figure 6.2: Plot showing the relative errors AqT/lCrT, in the test parameters qbT 
i,b3, q4, @fl, @61 $617 $7, as a fkction of the total mass M of a BBH at a distance of DL 
200 Mpc observed by Advanced LIGO. We assume that the signal is integrated over a b 
width from 20 HE until the binary reaches its innmost circular orbit. The proposed tests 
can be performed only for q3 and (with fractional accuracies better than 100%) for stellar 
mass BBH binaries with total mass in the range 2-50 M, . For sources with the total mass in 
a very narrow range around - UM,, all the parameters, except 9+.4 and q61r can be similarly 
measured. 
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Total Mass of the Binary ( M,) I 
Figure 6.3: Plot showing the relative errors in the test parameters I++~ = 
@3, t,h, @51, @6, f,b661, @7, as a function of the total mass M of a BBH at a distance of DL = 
200 Mpc observed by EGO. We assume that the signal is integrated over a bandwidth from 
10 Hz until the binary reaches its innmost circular orbit. The proposed tests can be per- 
formed for all b's, with fractional accuracies better than 100% for stb:llar mass BBH b,iwrks 
with total mass in the range 5- 14M0. 
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51, 6, 61, 7) are always anti-correlated. 

The correlation coefficient co2 (when t,bT = t,b3) varies between -0.98 and -0.95 in the 

same mass range. Thus parameters t,bo and t,b3 are strongly anti-correlated. 

The correlation coefficient co2 (when t,bT = t,b4) and cZ4 vary over the full range [-I, 11 

as the total mass varies between 2 - 200M,. They are positive in the mass range 

between 3 and 100 solar mass and negative in the rest of the range. 

The correlation coefficients co3 and c~~ vary in the full range [-I, 11 very similarly, but 

relatively differ by a sign. c ~ ~ ( c ~ ~ )  starts from +I(-1) decreases through zero at a mass 

of about 5.5M, and then saturates at -1(+1) from a total mass value of IOM, up to 

200 M, . 

6.4.4 The test using LISA 

In the case of LISA the errors in the parameters t,bo and t,b2 for a source at z = 1 are of order 
- in the range of the total mass lo4-lo7 M,. The cosmological model used is 

( a ,  = 0, RM = 0.3 and SZA = 0.7 ) and the redshift is z = 1. Fig. [6.5] plots the relative errors 

At,bT/t,bT for various parameters t,bT as a function of the total mass M. The top panel corre- 

sponds to the relative errors when the waveform model includes the orientation of the source. 

The orientation of the source is chosen to be (cos Bs, & ,  cos BL, qL) = (09, 2, -0.8, -5). The 

bottom panel corresponds to the averaged pattern waveform. From the plots, it is clear that 

the proposed tests can be performed effectively with all +Gk's. This is another reason why 

LISA is such an important mission. All the test parameters, including the log-terms at 2.5PN 

and 3PN order, can be estimated with fractional accuracies better than for massive BBH 
binaries with the total mass in the range lo4-lo7 M,~. This demonstrates the exciting pos- 

sibility of testing the non-linear structure of general relativity using the GW observations of 

LISA. Further quantitative details like the correlation coefficients are tabulated in Tables 6.7 

- 6.12 for LISA with the pattern averaged waveform. The more complex case without pattern 

averaging i.e. with a specific choice of 'optimal' orientation angles is also investigated. The 

details are summarised in Tables 6.13 - 6.18. 

6.4.5 No test for t,k4 ? 

With reference to Fig. [6.3] and [6.5], one may wonder why the error in +G4 is the largest 

relative to the other higher order t,bk9s. We believe that there are several reasons for this odd 

3 ~ t  should be emphesized that here one is only talking about the statistical errors and that the systematic 
errors (i.e. biases) might dominate over the statistical errors and must be investigated in the future 
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Table 6.1: Variation with total binary mass M of SNR, the relative errors in the $0, @2 and 
4b3 for EGO when the test parameter is t,b3. The luminosity distance is DL = 200 Mpc. Also 
listed are the correlation coefficients cij = cji between the parameters +hi and qj, i,  j = 0,2,3. 

Table 6.2: A similar table as above for the test parameter @4. Also listed are the correlation 
coefficients cij between the parameters t,bi and @ j ,  i, j = 0,2,4. 

M(MQ) 
2 

SNR 
22.8 

A@o/@o% A@2/@2% A / @  
0.00708 0.431 0.380 

co2 co3 c~~ 
-0.970 0.882 -0.968 
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Table 6.3: Variation with total binary mass M  of SNR, the relative errors in the t,ho, q2 and 
951 for EGO when the test parameter is @51. The luminosity distance is DL = 200 Mpc. Also 
listed are the correlation coefficients cij = cj' between the parameters $i and @j,  i, j = 0,2,51. 

M ( M Q )  SNR 
2 22.8 

Table 6.4: A similar table as above for the test parameter $b6. Also listed are the correlation 
coefficients cij between the parameters @; and cj/i, i, j = 0,2,6.  

M ( M o )  S N R  
2 22.8 
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Table 6.5: Variation with total binary mass M of SNR, the relative errors in the @O, i,b2 and 
$6, for EGO when the test parameter is f,h6,. The luminosity distance is DL = 200 Mpc. Also 
listed are the correlation coefficients cij = cji between the parameters @i and t,bj, i, j = 0,2,61. 

Table 6.6: A similar table as above for the test parameter q7. Also listed are the correlation 
coefficients cij between the parameters t,bi and @,, i, j = 0,2,7. 
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Figure 6.4: Plot showing the variation of the correlation coefficients ciT for EGO with the 
total mass of the binary. The luminosity distance is DL = 200 Mpc. ciT is the correlation 
coefficient between @i,  i = 0,2 and the test parameter +T, T = 3,4,51,6,61,7. 
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Total Mass of the Binary ( M,) 

1 o3 1 o4 1 o5 1 o6 1 o7 
Total Mass of the Binary ( M,) 

Figure 6.5: Plot showing the relative errors ASTIST, in the test parameters ST = 
93, @.I, t,b5l, 96, f,b61, q7, as a function of the total mass M of a supermassive BBH at a red- 
shift of z = 1 observed by LISA. We assume that the signal is integrated for a year. 
The cosmological model used is (R, = 0, RM = 0.3 and RA = 0.7). The top fig- 
ure corresponds to a waveform including a particular 'optimum' orientation of the source 
(cos as, &, cos aL, &) = (0.9, 2, -0.8, -5). The bottom figure corresponds to the averaged 
pattern waveform. In both cases all the t,bk9s can be tested in the total binary mass range 
lo4-2 x i o 6 ~ , .  
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Table 6.7: Variation with total binary mass M of SNR, the relative errors in the t,bo, t,b2 and t+h3 
for LISA when the test parameter is 93. The cosmological model used is (R, = 0, SZM = 0.3 
and RA = 0.7) and the redshift is z = 1 .  The waveform model corresponds to the pattern 
averaged case. Also listed are the correlation coefficients cij = cji between the parameters qi 
and t,bj, i ,  j = 0,2,3. 

Table 6.8: A similar table as above for the test parameter 94. Also listed are the correlation 
coefficients cij between the parameters t,bi and l C l j ,  i, j = 0,2,4. 
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Table 6.9: Variation with total binary mass M of SNR, the relative errors in the t,b2 and @51 

for LISA when the test parameter is 1 ,b5~ .  The cosmological model used is (R, = 0, RM = 0.3 
and RA = 0.7) and the redshift is z = 1.  The waveform model corresponds to the pattern 
averaged case. Also listed are the correlation coefficients cij = cJi between the parameters ei 
and + j ,  i, j = 0,2,51. 

Table 6.10: A similar table as above for the test parameter +6. Also listed are the correlation 
coefficients cij between the parameters t,bi and 1,4~, i ,  j = 0,2,6. 
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Table 6.1 1 : Variation with total binary mass M of SNR, the relative errors in the 9 0 ,  @2 

and for LISA when the test parameter is The cosmological model used is (R, = 0, 
CIM = 0.3 and CIA = 0.7 ) and the redshift is z = 1. The waveform model corresponds to 
the pattern averaged case. Also listed are the correlation coefficients c i j  = cJi between the 
parameters +hi and @ j ,  i, j = 0,2,61. 

SNRx 1 O3 
0.0148 
0.0437 
0.1 15 
0.299 
0.776 
1.71 

0.972 
0.896 
0.935 

Table 6.12: A similar table as above for the test parameter 1,b7. Also listed are the correlation 
coefficients c i j  between the parameters @i and Gj ,  i, j = 0,2,7. 
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Figure 6.6: Plot showing the variation of the correlation coefficients ciT for LISA with the 
total mass of the binary. The cosmological model used is (R, = 0, RM = 0.3 and RA = 0.7 ) 
and the redshift is z = 1. The waveform model corresponds to the pattern averaged case. ciT 

is the correlation coefficient between t,hi, i = 0,2 and the test parameter t,hT, T = 6,61,7. 



9 Table 6.13: Variation with total binary mass M of SNR, the relative errors in the A ,  go, fi2 and $3 for LISA when the test parameter is t,h3. a, 

% The cosmologicai model used is (Q, = 0, QM = 0.3 and QA = 0.7) and the redshift is z = 1. The waveform model includes the orientation q 
of the source. The orientation of the source is chosen to be (cos &,  &,  cos eL, qL) = (09, 2, -0.8, -5). Also listed are the correlation o\ 

coefficients cij = cji between parameters and qj,  i, j = 0, 2, 3. pk is the correlation coefficient between parameters A and t,hk. 

Table 6.14: A similar table as above for the test parameter is 144. 

M(M,)  
2 x lo3. 
2 x 103.5 
2 x lo4. 
2 x 104.5 
2 x lo5- 
2 x 105.5 
2 x 1O6- 
2 x l ~ ~ . ~  
2 x lo7. 

SNR x103 
0.0246 
0.0777 
0.186 
0.465 
1.19 
2.64 
1.50 
1.39 
1.45 

AA/A% 
1690 
1030 
1340 
767. 
401. 
252. 
194. 
172. 
186. 



9 Table 6.15: Variation with total binary mass M of SNR, the relative errors in the 3, IClo, i,h2 and #51 for LISA when the test parameter is (C15i. p, 
'P, The cosmological model used is ( S Z ,  = 0, RM = 0.3 and RA = 0.7) and the redshift is z = 1. The waveform model includes the orientation 

of the source. The orientation of the source is chosen to be (cos f i S ,  &, cos gL, qL) = (09, 2, -0.8, -5). Also listed are the correlation o\ 

coefficients cij = cJi between parameters t,bi and IClj, i, j = 0, 2, 51. Pk is the correlation coefficient between parameters 3I and fik. 

Table 6.16: A similar table as above for the test parameter is t,h6. 

SNR x103 
0.0246 

A3I/3I% 
1690 



Q Table 6.17: Variation with total binary mass M of SNR, the relative errors in the 34, t,ho, @2 and @61 for LISA when the test parameter is $61. w 
2 The cosmological model used is (51, = 0, Rw = 0.3 and RA = 0.7) and the redshift is z = 1. The waveform model includes the orientation 

of the source. The orientation of the source is chosen to be (cos as, &, cos gL, 4L) = (09, 2, -0.8, -5). Also listed are the correlation o\ 

coefficients cij = cji between parameters @i and @j, i, j = 0, 2, 61. pk is the correlation coefficient between parameters 34 and t,bk. 

Table 6.18: A similar table as above for the test parameter is @7. 

A34/fl% 
1690 
1070 
1360 
764. 
396. 
250. 
196. 
177. 
172. 

M(M,)  
2 x lo3. 
2 x 103.5 
2 x lo4. 
2 x 104.5 
2 x lo5. 
2 x l ~ ~ . ~  
2 x lo6. 
2 x l ~ ~ . ~  
2 x lo7. 

SNR x103 
0.0246 
0.0777 
0.186 
0.465 
1.19 
2.64 
1.50 
1.39 
1.45 

SNR x lo3 
0.0246 

A 
1690 

A@o/$o% A@2/@2% Aq7/t,h7% 
0.000226 0.293 941. 

Po g7 
0.0387 -0.0431 0.0271 

c02 c07 c27 
-0.590 0.772 -0.949 
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Figure 6.7: Plot showing the variation of the correlation coefficients PT for LISA with the 
total mass of the binary.The cosmological model used is (a ,  = 0, QM = 0.3 and KIA = 0.7) 
and the redshift is z = 1. The waveform model includes the orientation of the source. The 
orientation of the source is chosen to be (cos & ,  4s,  cos OL, $L) = (09, 2, -0.8, -5). PT is 
the correlation coefficient between 3 and the test parameter i,bT, T=3,4, 51,6, 61, 7. 
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Figure 6.8: Plot showing the variation of the correlation coefficients ciT for LISA with the 
total mass of the binary.The cosmological model used is (a, = 0 ,  LRM = 0.3 and SZA = 0.7) 
and the redshift is z = 1. The waveform model includes the orientation of the source. The 
orientation of the source is chosen to be (cos as ,  qs,  cos gL, qL) = (09, 2,  -0.8, -5). ciT is 
the correlation coefficient between i = 0, 2 and the test parameter t,hT, T=3,4 ,  51, 6 ,  61,7. 



Chapter 6 240 

behaviour. Recall that the PN terms in the Fourier phase are given by t,bk f(k-5)13. When k = 5 ,  

there is no dependence on the frequency and when k = 4 the term varies very slowly as f-'I3. 

Therefore, terms close to k = 5 are likely to suffer from large variances since the frequency 

dependence of the corresponding term is weak. Although one might expect t,b6 to also suffer 

from large relative errors, the fact that in this case the term increases with frequency as f 'I3, 

makes it a more important term than q14. We also observe that t,b4 has significantly larger 

covariances with t,b2, (see Tables 6.2,6.8 and 6.14), which adds to its poor determination. 

6.5 Representation in the m l - m 2  plane 

In Fig. [6.10]and [6.9] , we have depicted the power of the proposed test in the ml-m2 plane. 

We present for EGO and LISA the uncertainty contours, with 1 -CT error bars, associated with 

the different test parameters t,bT = t,b3, @4, t,b51,t,b6, t,b6,, t,b7 in the ml-m2 plane, when qlo and 

q12 are used to parametrize the waveform. For EGO the source corresponds to a (10, 10)Mo 

black hole binary at a luminosity distance DL = 200 Mpc. For LISA the corresponding 

source is a (lo6, 106)M, supermassive black hole binary at a redshift of z = 1 observed in its 

last year before merger. 

The region in the ml - m2 plane for a binary of total mass Mo corresponding to the 

parameter +k is determined as follows. It is given by Rk(ml, m2; (@k)lM=Mo - Sk))=O, where 

- A q l k l ~ = ~ ~  I Sk I AqlklM=~,. In the above Aqlk corresponds to the estimated errors in qlk for 
a particilar detector and particular source of total mass Mo. Normally, there is an 'allowed' 

region in the ml - m2 plane associated with each of the t,bk7s. However, one boundary for 

q14 does not appear in the plot; the region determined by t,b4 is almost the whole area in the 

figure. This implies that the test using t,b4 is a poor one and thus the determination of ml and 

m2 using $4 not recommended. The test parameter $3 corresponds to the smallest region in 

the ml-m2 plane relative to the other parameters. The 1-CT uncertainty in t,b3 is smaller than 

the thickness of the line. The allowed region corresponding to t,bSI has only one boundary. 

In this case, the equation determining the other boundary has no real solution. Finally, the 

parameter t,b6, is much better determined by LISA than EGO, as one would expect. These 

figures are an explicit demonstration of the efficacy of the proposed test and the accuracy 

with which the future GW observations of BH binaries by EGO and LISA and in the more 

immediate future, Advanced LIGO, can test GR in its strong field regime. 

As mentioned earlier, the spin and angular parameters add a lot of structure to the wave- 

form which contain additional information that can be extracted and more tests conducted. 

Covariance between the old and new parameters is likely to increase the error boxes but the 

tests become more demanding as a result of seeking consistency amongst a greater num- 

ber of parameters. Future studies should look into the more general case incorporating the 



Figure 6.9: Plot showing the regions in the ml-ma plane that correspond to 1-u uncertainties 
in the &st par- $T = #3'3,$4,#51,#6,@61+#7 for a (10, 10)Mo, 6.e. MO = ZO&), 
black hole binary at a luminosity distance DL = 200 Mpc observed using EGO. Normally, 
there is an 'allowed' region in the rnl - 7pt2 plane associated with each of the &'s. However, 
one boundary for +4 '4 not appear in the plot; the region d e k m b d  by #4 is almost the 
whole area in the figure. This quantifies how bad the test of p4 actually is and thus how 
bad will k the &tamhation of ml and wing fi4. The test parameter corresponds to 
the smallest region in the rnl-mz plane relative to the other parmetas. Finally, the allowed 
region corresponding to #51 has only one boundary. In this case, the equation determining 
the other boundary has no real solution. 
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Figure 6.10: Plot showing the regions in the mi -m:! plane that correspond to 1 -u uncertainties 
in the test parameters #r = @3,@4,#51,@6, @619t,b7 for a (lo6, I 0 6 ) ~ @ ,  (i-e. Mo = 2 x lo6 M,), 
supermassive black hole binary at a redshift of z = 1 as observed for a year before merger by 
LISA, Normally, there is an 'allowed' region in the prml - r n ~  plane associated with each of 
the qk's. However, one boundary for 4,k4 does not appear in the plot; ~e region determined 
by $4 is almost the whole area in the figure. This quantifies how bad the test of ~ , b ~  actually 
is and thus how bad wiIl be the determination of ml and pnz using #4. The test parameter #3 

corresponds to the smallest region in the ml -mz plane relative to the other parameters. The 
1-u uncertainty in @3 is smaller than the thickness of the line. Finally, the allowed region 
corresponding to qS1 has only one boundary. In this case, the equation determining the o t . h~ .~ ; i  .- -4 
boundary has no real solution. 
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effects of spin and systematic effects of orbital eccentricity that could affect the tests, and 

more interestingly, go beyond the restricted waveform approximation by incorporating the 

amplitude corrections [I101 to the GW phasing. 

6.6 Bounds on Compton wavelength of the graviton using 

the current proposal 

We conclude by discussing the extent to which we can extend the current proposal to discrim- 

inate between different theories of gravity such as massive graviton theories and scalar-tensor 

theories [214, 136, 2171. The limitations of GW phasing to quantitatively discriminate be- 

tween alternate theories of gravity has been critically discussed in [211] and should be kept 

in mind. For massive graviton theories the 1PN phasing term $2 is different and also involves 

the Compton wavelength of the graviton A,. 

We adopt the following procedure to calculate the bounds on the mass of the graviton. 

The presence of a massive graviton modifies the 1PN terms of the phasing formula which 

for our analysis can be viewed as 

3715 55 1 
where, $Y = - 

(32256 + 384 V )  ' 

and +yG the leading correction due to the effect of the massive graviton is given by 

$YG will alter the arrival time of the waves of a given frequency and depends only on the 

size of the graviton Compton wavelength A, and on a distance parameter D which is defined 

D = 
dz' '(E ') S (1 + zJ)2 [nM(i  + 2')) + n,,11i2 . 

Recall that D is not the conventional cosmological distance measure, DL [195]. 

Using t+ho and t+h3 as basic variables and $2 as a test, we find that bounds can be set on the 

value of A,, modulo the neglect of uncomputed higher PN order corrections in the theory. 

For a BH binary of total mass 2 x lo6 Ma at the luminosity distance DL = 6612.2 Mpc, that 

is, (z = 1 and D = 3523.2 Mpc) in the LISA band, one obtains the values $y = 0.0195 

and +yG 2: - 5.1 . From the results in Sec. 6.4.4, the error in estimating $2 is 
( ~ ~ i ( 1 0 ~ ~  ~m))' 

89, = -. The massive graviton model can be distinguished from GR if +YG t Aq2, say, 
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@yG = 10 x A@2, which we adopt as our criterion. For the system considered, we use our 

estimate of A@2 to obtain the value of A, that satisfies our criterion. Any massive graviton 

theory of this type, with R, less than or equal to this value can be distinguished from GR by 

the proposed test. 

Given the theoretical status of the phasing formula in the massive graviton case, this 

choice we implement is the most convenient one at present. Our analyses for the alternative 

gravity case is modulo uncomputed higher order effects in these alternative theories. In a 

more complete theory @3 could in general depend on the Compton wavelength as well and 

there would be not much rationale behind the choice proposed. One could then use t,bo and 

t+bz as basic variables and 4b3 as a test, as before. Using EGO, which will observe stellar mass 

BH coalescences, we can set a bound on A, to be 1.3 x 1013 km whereas with LISA the 

bounds are as high as 7.12 x 1016 km. 

Scalar-tensor theories like Brans-Dicke theory, which predicts dipolar GW emission, 

have additional leading terms in the the phasing formula at a PN order lower than in GR. 

But the dipole GW emission is more important for asymmetric binaries than it is for equal 

mass systems. However, for such systems spin effects are also expected to play a crucial 

role. The present chapter deals with only non-spinning binaries and we will have to post- 

pone the questions relating to dipolar radiation including spin effects to a future analysis. 

Once again, these tests will be limited by the uncomputed higher order PN contributions in 

the Brans-Dicke theory. 

6.7 Summary 

Based on the analyses of the previous sections, we can finally provide an executive summary 

of the results that we have discovered in this chapter. In Table 6.7 the relative errors A@k/@k 

is summarised for the Advanced LIGO, EGO and LISA cases respectively. The relative 

errors have been calculated for the total binary mass of 20M, and 2 x 1o6M, at luminosity 

distance DL = 0.200 Gpc and DL = 6.61223 Gpc (Z = 1) for Advanced-LIGOIEGO and 

LISA respectively. The corresponding values of SNR are about 38, 144 and 1000-1500 

respectively. In the case of LISA the two values corresponds to the averaged waveform 

pattern and to the waveform including the orientation pattern. With the prototypical black 

hole binary at a typical distance chosen here, Advanced-LIGO can only hope to test $3, @51, 

and $b6. With EGO, however, all the t,bk's, except fi4, can be tested. The LISA detector can 

test all the ek9s  with excellent accuracy with a supermassive black hole binary of total mass 

2 x lo6 M, at a cosmological redshift z = 1. 

In Table 6.20 the minimum SNR required in this proposal to test various PN order coef- 

ficients are summarized for Advanced LIGO, EGO and LISA detectors. From the Table one 
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can see that with a prototypical 2 x 10Mo BBH, EGO only requires a SNR of 20 to test t,b3, 

qa, +61, and q7. LISA can do much better. With its SMBH prototypical source it can test all 

the PN coefficients ( l / k  using this scheme at a SNR of 120-200. We also provide an alternative 

presentation viz the maximum distance at which the source can be located and yet lead to a 

feasible test of the particular PN coefficient in the phasing formula. 

6.8 Testing PN gravity: Future prospects 

We conclude with a few directions in which this present work can be extended in the furure. 

In the future we intend to develop the proposed test in such a way that this can be im- 

plemented with the real data from LIGO/VIRGO/LISA. The assumptions with which 

we work at present could be relaxed and the test generalized. 

The effect of spin which we have neglected in the present work, can be included es- 

pecially with the 2.5PN spin-orbit term in the phasing being completed recently [218, 

2191. 

The effect of orbital eccentricity could be significant, at least for many of the antici- 

pated LISA sources. Though including eccentricity in a complete way may be a hard 

task, one can use the treatment in [220] which is applicable for small eccentricities to 

understand the effect of its inclusion. 

Another obvious modification is to go beyond the inspiral waveform and include avail- 

able information about the merger phase. Though one might have to wait till the nu- 

merical simulations succeed in their hard task of computing the merger waveforms 

using numerical relativity, as a first step, one can try modelling the merger phase using 

approaches like the effective one body formalism [24]. 

Recently Luna and Sintes [221] noted that adding the ringdown information to the 

inspiral waveform will improve the parameter estimation of the mass parameters com- 

pared to that in Ref [215]. Though a similar study could be performed in the present 

context, there would be conceptual issues since the masses appearing in the ringdown 

and inspiral waveforms are not the same. 

Restricted PN waveforms will only bring new variety (higher harmonics) without in- 

creasing the number of parameters; a full test should definitely use the full waveform. 

One should thus investigate in detail the effect of the full waveform [43, 110, 2221 

(as opposed to the restricted waveform used here). The additional information about 
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Table 6.19: The following table summarizes the central results of this chapter. It lists the val- 
ues of the relative errors A$k/t,hk for k={O, 2, T} where T labels the test parameter. The table 
is horizontally partitioned into 6 sub-tables, corresponding to the six possible test parameters 
at 3.5PN order. Every sub-table has three rows, the first two rows corresponding to the basic 
chosen variables, (in this work we choose $0 and (C12), and the third row corresponding to the 
test parameter ( F I T .  The values of the relative errors have been calculated for the total binary 
mass of 20M, and 2 x 106Mo at luminosity distance DL = 0.200 Gpc and DL = 6.61223 Gpc 
(z = 1) for ground based detectors (Advanced-LIGO and EGO) and space based detector 
(LISA) respectively, as shown in the table. The corresponding values of SNR are listed. In 
the case of LISA there are two columns: one corresponds to the averaged waveform pattern 
and the other to the waveform including the orientation pattern. With the prototypical black 
hole binary at a typical distance chosen here, Advanced-LIGO can only hope to test $0, q2,  
&,$*I, and $6. With EGO however, all the $k '~ ,  except t,b4, can be tested. The LISA detector 
can test all the qkYs with excellent accuracy using a supennassive black hole binary of total 
mass 2 x 1 0 6 ~ ,  at a cosmological redshift z = 1. 

SNR= p 

A$o/$o 
Aq2/q2 
A+,/$, 
A$o/$o 
A$2/$2 

A$o/$o 
A@2/q2 

A 1 

M = 20M, 
DL = 0.200 GPC 

M = 2 x 106M, 
DL = 6.61223 GPC, z = 1 

Advanced 
LIGO 

37.53 13 
0.013137 
0.040054 
0.079637 
0.026753 
1.0303 
41.612 

0.01039 1 
0.05618 1 
0.41028 

LISA 
(Without pattern) 

97 1.629 
0.000043626 
0.00040555 
0.00035428 
0.000039616 
0.002970 1 
0.12312 

0.000028807 
0.00036579 
0.0038650 

EGO 

143.923 
0.00063028 
0.00391 77 
0.0043976 
0.00087828 
0.043544 
1.7786 

0,000441 10 
0.0038843 
0.03701 3 

LISA 
(With pattern) 

1499.26 
0.000038441 
0.00033733 
0.00033069 
0.000039470 
0.0030124 
0.12444 

0.00002601 1 
0.0003 1403 
0.003 1684 
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Table 6.20: The table shows the minimum value of signal to noise ratio (SNR) p required 
to test the PN coefficient $Ik (i.e. A$k/$k - 1 for k={0,2,T)={0,2,3), {0,2,4), ...,{ 0,2,7)) with 
a prototypical black hole binary of mass 2 x IOM, for ground based detectors (Advanced- 
LIGO, EGO) and supermassive black hole binary of mass 2 x 106M, for space based detector 
(LISA) respectively. The table is divided into 6 sub-tables. Every sub-table has three rows, 
one each for $o, @ 2 ,  $T where t,h0 and t,b2 are the chosen fundamental variables and t,bT is the 
test parameter. From the table one can conclude that with a 2 x IOM, black hole binary EGO 
only requires a SNR of 20 to test $ 3 ,  Q S 1 ,  $61 and $7,  if one uses the scheme proposed here 
considering two basic variables and a test parameter. LISA using a supermassive black hole 
binary can test all the t,bk7s if the SNR is about 120 using the pattern averaged waveform and 
190 using the orientation waveform. 

$0 

$2 

9 3  

@o 
9 2  

$4 

$0 

9 2  

$ 1  

$0 

$2 

$6 

$0 

$2 

$61 

90 
9 2  

9 7  

] 

M = 
Advanced 

LIGO 
0.4931 
1.503 
2.989 
1.004 
38.67 
1562. 
0.3900 
2.109 
15.40 
0.3082 
1.1 16 
35.38 -- 

0.2392 
0.5196 
104.3 
0.2622 
0.7820 
43.18 

20Mo 
EGO 

0.09071 
0.5638 
0.6329 
0.1264 
6.267 
256.0 

0.06348 
0.5590 
5.327 

0.05195 
0.3039 
41.53 

0.2505 
14.16 

0.04487 
0.2138 
18.52 

M = 2 x  
LISA 

(Without pattern) 

0.04239 
0.3940 
0.3442 
0.03849 
2.886 
119.6 

0.02799 
0.3554 
3.755 

0.02390 
0.1993 
5.787 

[0.04847'pp- 0.026 18 
0.2582 
14.5 1 

0.02128 
0.1437 
14.07 

LISA 
(With pattern) 

0.05763 
0.5057 
0.4958 
0.05918 
4.516 
186.6 

0.03900 
0.4708 
4.750 

0.03354 
0.2590 
7.213 

0.03655 
0.3400 
18.29 

0.03032 
0.1845 
16.83 
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Table 6.21 : The following table summarizes the maximum values of luminosity distance DL 
in Gpc up to which the test for a particular qk is feasible using a BBH of the total mass 20M, 
for ground based detectors (Advanced-LIGO, EGO) and a SMBBH of total mass 2 x 1 0 6 ~ ,  
for the space based detector LISA (At,bk/t,bk - 1 for k={0,2,T)={0,2,3}, {0,2,4),. .., {0,2,7}). 
The table is divided to 5 sub-tables; every sub-table has three rows $0, $2, $T where $0 

and $2 are our selected fundamental variables and is the test parameter. From the table 
one can conclude that with a 20Mo BBH EGO can test for all the $ k ' ~  except $4 and $6 at 
DL = 6.7 Gpc or z = 1. More importantly, with a 2 x 1 0 6 ~ o  SMBBH LISA can test all the 
$k's at z = 1 and even as far as 53 Gpc. Testing GR using only three parameters qo, 4b2, $T 

at a time is a powerful 

$0 

9 2  

$Q 

t,bo 
9 2  

$4 

t,bo 
(j12 

$0 

$2 

'$76 

$0 

t,b2 
'$6, 

$0 

$2 

'$7 

test. 
M = 

Advanced 
LIGO 

15.2238 
4.99331 
2.51138 
7.47581 
0.194118 

0.00480634 
19.2482 
3.55990 

0.487476 
24.3525 
6.72495 
0.212151 
31.3754 
14.4455 

0.071958 1 
28.6298 
9.59884 
0.173849 

M = 2 x 
LISA 

(Without pattern) 

151565. 
16304.4 
18663.9 
166909. 
2226.28 
53.7058 
229535. 
18076.4 
1710.78 
268856. 
32234.3 
11 10.21 

245386. 
24885.4 
442.890 
301852. 
44711.6 
456.565 

20Mo 
EGO 

317.320 
51.0510 
45.4798 
227.719 
4.59309 
0.112448 
453.410 
51.4889 
5.40357 
554.045 
94.7140 
0.693109 
593.841 
114.917 
2.03226 
641.498 
134.603 
1.55436 

106M, 
LISA 

(With pattern) 

1720 10. 
19601.9 
19995.5 
167524. 
2194.99 
53.1340 
254207. 
21056.2 
2086.96 
295556. 
38279.6 
1374.35 
271 193. 
29155.8 
541.951 
327003. 
53744.8 
588.930 
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the masses could make possible more interesting tests [223]. Including PN arnpli- 

tude corrections is generally expected to improve the tests and this is what would be a 

follow-up of the present analysis. 

In the LISA case one should eventually deal with the problem in terms of the time 

delay interferometry variables [224] so as to have close contact with the real LISA 

situation. Lastly, a careful analysis will have to be done to extend the present proposal 

to include, in greater detail, the case of alternate theories of gravity, especially the 

scalar tensor theories like BD theory. 

We wish to return to these issues and develop them further in future works. 
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