
Chapter 2

Observations and Software system
for data analysis

“In God we trust,

all others bring data.”

- W. Edwards Deming

“You think - you know when you can learn,

are more sure when you can write,

even more when you can teach,

but certain when you can program.”

- Alan Perlis

34

2.1. Observations 35

In this chapter, we summarize the observations carried out for the survey (prior to this

thesis work) followed by organization of the data set. In the second part we discuss ad-

ditions to provide various new functionalities and improvements on the existing software

system for data analysis, to make it complete and robust.

2.1 Observations

One of the disadvantages of an aperture synthesis telescope like MRT is the long span of

time over which the observations have to be made to record the visibilities for synthesiz-

ing the final images. The observations for the survey were carried out during the period

May, 1994 to March, 1999. In this section, we describe the mode of observations, the vari-

ous cycles in which the observations were carried out and the resulting survey data set.

2.1.1 Mode of observations

At MRT, all spacings available in a square aperture are obtained by correlating the EW arm

of the > with the NS groups. One of the advantages of a > shaped array like MRT is that

it samples the visibilities on a uniform regular rectangular grid and not quasi randomly

like a Y array or regularly on great circles facing the poles like Cambridge Low Frequency

Synthesis Telescope (CLFST). These instruments require the measured visibilities to be re-

sampled onto a regular grid and this operation introduces yet another sampling function

before the visibilities are transformed to an image. The corrections due to irregular weight-

ing and their relative contributions based on distance of these samples from the grid cen-

ters are not required in our case. This also makes the deconvolution relatively simpler.

Our aim is to sample the visibilities with NS baselines from 0 m all the way up to 880 m,

every 1 m (λ2 at 150 MHz), which keeps the grating response at the horizon while observ-

ing at 150 MHz. Even though the frequency of operation was shifted to 151.5 MHz, this

sampling still keeps the grating response well outside the main beam of the primary beam

response. A 512 channel complex correlator is used to measure the visibility function by

correlating 32 EW groups with 16 NS groups (15NS and E16). E16 as shown in Fig. 1.6 is the

last group of the EW array and is fed into the correlator in place of 16th NS trolley. This gives

a set of baselines between E16 and the EW array on all the observing days which helps to

check the repeatability of the data. The baselines with each NS trolley gives 31 indepen-

dent closure information which can be used in calibration. At the same time this reduces

the number of usable NS trolleys to 15.

MRT measures different Fourier components of the brightness distribution of the sky

in 63 different sets of configurations of the trolleys in the NS arm over a period of time in

2.1. Observations 36

Block Allocation Baseline covered Number of

number range (along NS) delay settings

block-1 1-6 6 m-94 m 1

block-2 7-12 2 m-5 m, 95 m-171 m 1

block-3 13-18 172 m-261 m 2

block-4 19-24 262 m-351 m 3

block-5 25-30 352 m-441 m 4

block-6 31-36 442 m-531 m 4
block-7 37-42 532 m-621 m 4

block-8 43-48 622 m-711 m 4

block-9 49-54 712 m-801 m 4

block-10 55-63 796 m-880 m 4

Table 2.1: The observations over the 880 m NS track are divided into 10 blocks each covering about
90 m. The number of delay settings used during observations for each block is also shown.

order to sample all baselines in the NS arm every 1 m. Each configuration corresponds

to a given placement of the NS trolleys and is referred to as an allocation . Due to local

terrain the trolleys in the southern part of the NS arm cannot approach the EW arm closer

than 11 m. So the visibilities with trolley distance from 2 m to 11 m along the NS from

the EW arm are sampled using a trolley on the northern extension. The trolleys cannot

be placed closer than 2 m due to the physical size of the trolley itself. In each allocation

(barring when a trolley needs to be located on a forest road and a few exceptions when

observations on certain baselines are repeated), the 15 NS trolleys are spread over 84 m

with an inter-trolley spacing of 6 m as shown in Fig. 1.6. The 6 m distance between each

NS trolley also minimizes shadowing of one trolley by another.

In each allocation observations are carried out for a minimum period of three

days (Sachdev & Udaya Shankar, 2001b; Sachdev, 1999). This ensures that we have suf-

ficient good data for imaging even if one has to discard data due to several factors such

as man made interference, Sun affecting the observations (increased solar activity) and

unexpected instrumental failures. In the next allocation the trolleys are moved by one me-

tre each. After 6 consecutive allocations, we get visibilities measured over 90 m stretch,

sampled every 1 m. We refer to the measurements made over 6 consecutive allocations

filling up a 90 m stretch along the NS track as a block . After measuring the visibilities

in one block all the 15 NS trolleys are moved to cover the next 90 m stretch correspond-

ing to the next block. The 63 required allocations are obtained in ten blocks, where the

tenth block includes 3 additional allocations from 61 to 63. These are used to measure

certain baselines which could not be measured in the tenth block due to local terrain con-

straints. The visibilities are measured with different delay settings to minimize the effect

of bandwidth decorrelation. With each delay setting, a small part of the sky in declination

can be observed without appreciable decorrelation (<20%) which is referred to as a delay

2.1. Observations 37

Cycle Allocations Observation Sampling Mode Data collected

No. covered period frequency (hours)

Start - End (MHz)

1 1-12 July 94 Sep 94 12 EW×NS 835

2 13-24 Sep 95 Dec 95 2.65625 EW×NS 1469

3 1-25; 1-63 Jan 96 Mar 99 2.65625 EW×NS 17320

E×EW, NS×(NS+W)

Total 1-63 July 94 Mar 99 19624

Table 2.2: The various cycles during which the observations were carried out for the survey. Only
the data files which are complete for one sidereal hour range have been considered. For observa-
tions with allocations 1 to 12, each visibility value is stored as int (occupies four bytes) while for
observations with allocations 13-63, each visibility value is stored as short (occupies two bytes).

zone (Sachdev & Udaya Shankar, 2001b). The number of delay settings used for a block

vary from one to four and depends upon the maximum length of the NS baseline covered

in that block. The positions covered and the number of delay settings used in each block

are given in Table 2.1.

Since observations are carried out for three days in each of the allocations, it takes

about six months to obtain data for 63 allocations. However, in this period the Sun

moves through half the sky (12 hours in RA), thereby preventing the full sky coverage

with six months data. We therefore carry out the observations in two rounds. In the sec-

ond round we repeat the observations with the same allocations after a gap of about six

months. This ensures that we have night time observations covering all sidereal hours for

each allocation. In addition there have been repetitions in the observations, as the array

was being commissioned and tested in various stages while the observations were going

on.

2.1.2 Observing cycles

The entire observations carried out for the survey can be broadly divided into three major

cycles, as shown in Table 2.2. In the first cycle observations were carried out to cover all

NS baselines from 2-171 m (i.e. blocks 1 and 2). Data observed in allocations 1 to 12 (i.e.

block 1 and 2) is also referred to as Short Base Lines data1 as on these baselines the band-

width decorrelation is not significant over the range of declination covered by MRT. Hence

it is adequate to measure the visibilities with only one delay setting. The sampling used is

12 MHz and the integration time is ≈ 1.095 sidereal seconds.

The second cycle of observations started after an years gap, using the newly built recir-

culator (Sachdev & Udaya Shankar, 2001b; Sachdev, 1999). During this cycle, the NS base-

1Data observed in allocations from 1 to 12 is referred to as Short Base Lines (SBL) data while data observed
in allocations 13 to 63 is referred to as Long Base Lines (LBL) data.

2.2. Data organization 38

lines from 172-351 m (i.e. blocks 3 and 4) were covered. The visibilities for both the blocks

were measured with different delay settings as given in Table 2.1. The sampling frequency

used is 2.65625 MHz and the integration time is ≈ 1.088 sidereal seconds.

In a > array like MRT there are no redundant baselines in its usage for image synthesis

in pencil beam mode ((E+W)×NS) but since EW and NS arrays are highly redundant ar-

rays with equally spaced groups, there are some baselines which occur more than once.

In the third cycle the correlation receiver was configured to correlate the E×(E+W) and

NS×(NS+W) in addition to the pencil beam mode, which can be used to independently

calibrate the EW and the NS arrays using redundant baseline calibration (Hamaker et. al.,

1977). Only a small fraction of integration period was used for the measurements with

E×(E+W) and NS×(NS+W) mode (equivalent to ≈0.05 s). During this cycle, first the re-

maining allocations from 25 to 63 were covered and subsequently observations for all the

63 allocations were repeated. The visibilities covering all the blocks were measured with

different delay settings as given in Table 2.1.

The Data Set : The MRT survey dataset comprises of ≈20,000 hours of astronomical obser-

vations with a total size of ≈ 1 TB. To facilitate data handling and data processing, it has

been organized in hourly Local Sidereal Time (LST) files. Each data file contains visibil-

ities measured with one delay setting for one sidereal hour duration. For the third cycle

of observations, visibilities measured in each of the (E+W)×E and (NS+W)×NS configu-

ration are also recorded separately for each sidereal hour duration. The data files are in

binary and use the C unformatted style. For Short Base Lines data, each visibility value is

stored as int (occupies four bytes). For Long Base Lines data, each visibility value is stored

as short (occupies two bytes). The nomenclature of the data file is such that most of the

preliminary information about the data file like Julian Day (JD) of observation, allocation,

sidereal hour duration, delay zone etc. can be inferred from the name of the file itself.

2.2 Data organization

The data was stored as and when the observations were carried out in chronological order

of observations on 160 data cartridges (Exabyte make) of native capacity 5 GB each, after

compression using lossless compression utilities. The imaging at MRT is carried out on

sidereal hour basis. To image one sidereal hour and full declination range of MRT, one has

to retrieve data spread across several data cartridges. Data retrieval from data cartridges

is sequential and extremely slow. Due to this, data retrieval was one of the most time con-

suming step in data processing.

During the last 3-4 years, the dramatic improvement in technology and severe compe-

2.2. Data organization 39

tition in computer industry has led to significant increase in the capacity of hard drives.

Due to easy availability of high capacity hard-disks (capacities exceeding 100 GB) at low

costs it has become practically feasible to achieve data processing setup with several TB of

memory on hard disks. Taking advantage of this we have now built up a database during

the course of this dissertation in which the entire MRT survey data is available (in read only

form) on networked hard drives accessible to the computers used for MRT data processing

work at Raman Research Institute (RRI).

In order to implement any automatic scheme for data processing, the corrupted data

needs to be identified and should be avoided during imaging. Data corruption can occur

due to erroneous recording, improper compression and archiving or due to the data car-

tridges going bad. Each data file was subjected to data integrity checks for memory, header

positions and sidereal time stamps. Software was developed in order to identify and re-

move the corrupted data and duplicate data files from the database. About 4% of the data

files were found to be corrupted. Data organization has facilitated immediate data access,

helped in streamlining the data processing and has brought down the time spent on data

retrieval to a minimum. Since the imaging is done on sidereal hour basis, we have also

stored data on hard disks on the basis of sidereal hour and within each sidereal hour range

in order of increasing allocation. A 3-tier archive based on Mammoth-2 data cartridges of

native capacity 60 GB each, DDS-3 data cartridges of native capacity 12 GB each and on

hard drives of capacity 250 GB each, have been maintained for any inadvertent exigencies.

A copy of this has been also made available to the observatory in Mauritius. This integrity

checked database contains a total of about 80,000 files of hourly visibility data and is used

while imaging for the survey.

The available data for the survey : A simple analysis was carried out on the data to as-

certain, if we have enough data for completing the survey. As imaging is done on sidereal

hour basis, only data files containing visibilities for one full sidereal hour range were con-

sidered. Since night time observations are generally found to be interference free and also

have minimum interference from the Sun, it is classified as class-I data. Class-I refers to

a data file observed when the Sun’s RA is 6 hours away from the LST of observation. On

similar lines class-II refers to a data recorded when the Sun’s RA is 3 to 6 hours away from

the LST. Similarly we have class-III and class-IV data which refer to data recorded when the

Sun’s RA is 2 to 3 hours and less than 2 hours away from LST respectively. Fig. 2.1 shows

the availability of class-I data file for different allocations and sidereal hours. It is clear that

there is at least one Class-I data file for most of the allocations for all the sidereal hours.

There are very few gaps which can be easily filled in by the Class-II data. The analysis

indicates that the data set for the survey is indeed complete.

2.3. Software system for data analysis 40

0 5 10 15 20 25
0

10

20

30

40

50

60

Sidereal Hour −>

Al
lo

ca
tio

n
Nu

m
be

r −
>

Class−I Data availability

Fig. 2.1: The figure shows the availability of Class-I data for different allocations and sidereal hours
(denoted by a *). There are a few gaps which can easily be filled by Class-II data.

2.3 Software system for data analysis

In this section we briefly describe the data analysis software system developed in-house

for debugging and wide field imaging with the non-coplanar MRT array. An hierarchical

software system based on a mix of top-down and bottom-up approach consisting of sepa-

rate application programs with specific functionalities (top-most layer) and using general

purpose generic libraries (lowest layer) was developed to accomplish this purpose. Algo-

rithm development is a separate vital discipline and we would not be including this in our

discussions as a part of software development in this chapter. The development of the

data analysis software system can be broadly divided into two stages. The first version was

developed before the commencement of this thesis work and the second one with sub-

stantial additions and improvements has been developed during the course of this disser-

tation. The former is referred to as MARMOSAT2 while the latter is referred to as eXtended

MARMOSAT (X-MARMOSAT). We would first briefly mention their main objectives indi-

2MAuRitius Minimum Operating System for Array Telescopes

2.3. Software system for data analysis 41

vidually and then discuss the design aspects of the overall software system.

2.3.1 MARMOSAT

MRT is in a region of rough terrain due to which it is non-coplanar and also the align-

ment of arms is far from perfect. Many if not most of the difficulties which have to be

solved would not have arisen in the first place if a better site had been available. In its

configuration, the method of observation and data analysis, MRT cannot be categorized

as one belonging to the telescopes else where in the world. This partly compelled the in-

house development of a software system for imaging with the MRT. The development of

software started as the correlator was put through the first tests. The main objectives of

MARMOSAT suite which was mainly developed by R. Dodson (Dodson, 1997) are two fold.

One of it provides a link with the correlator system while the other provides off-line data

analysis capabilities. The data processing steps implemented in MARMOSAT are shown in

Fig. 2.2.

The first part uses the correlator output for online monitoring of the health of the ar-

ray (amplitude and phase of various baselines, antennae based amplitude and phase, sys-

tem temperature variation with time, cosine and sine correlations etc.). Two programs On-

line and Health were developed to perform system checks in real time on the stream of

data being received continuously, to quickly detect gross errors like malfunctioning com-

ponents. Online displays the visibility data on a few baselines in detail while Health gives

the aggregate properties of several baselines. They perform numerous tasks on the data

and provide options to check various array parameters. The data is stored temporarily on

hard disk and later on data cartridge tapes via a distributed network.

The second part carries out off-line processing of the measured visibilities. The most

important of these include interference detection and excision, calibration and transform-

ing the visibilities to brightness distribution taking into account the non-coplanarity of the

array. A detailed discussion about the software aspects of these is beyond the scope of this

dissertation and can be found in Dodson (1997).

2.3.2 eXtended MARMOSAT

The eXtended MARMOSAT comprises of various new functionalities and improvements

which were incorporated on the existing MARMOSAT to make the data analysis software

complete and robust during the course of this dissertation. Fig. 2.3 shows the main steps

of data processing implemented in the overall data analysis software system starting from

recorded visibilities up to the source catalogue construction.

2.3. Software system for data analysis 42

DELAY
SETTINGS

RECIRCULATOR SYSTEM CORRELATOR SYSTEM

CONTROL AND DATA AQUISITION

SYSTEM

WRITE DATA FILES ON NETWORKED

CALIBRATION
TRANSFORM

DECONVOLVE

DATA BACKUP

ADD DIFFERENT

ALLOCATION
FILE

B
A

C
K

U
P

 A

N
D

S

T
O

R
A

G
E

A

T

A
L

L
 S

T
A

G
E

S
 O

F
 P

R
O

C
E

S
S

IN
G

ASTRONOMICAL
CLOCK

2−BIT 3−LEVEL

DATA FROM
THE SAMPLERS

BOX−CAR AVG

TO EPOCH 2000
AND REGRID

DIFF. ZONES
DAYS IN

ZONE

FRINGE
CALIBRATION

DETECTION
INTERFERENCEDATA QUALITY

CHECKING

 HARD DRIVE

Fig. 2.2: A schematic showing data processing steps to obtain full resolution dirty images using
MARMOSAT which was mainly developed by R. Dodson (courtesy Sachdev (1999)).

2.3. Software system for data analysis 43

data file
visibility

sources etc.)

Reject bad
allocation images

MRT
CATALOGUE

Fringe

Delay zone
calibration file+

(rms, fit for strong
Image quality

No Yes

No

Yes

Interference
Detection/flagging

Visual Inspection
Hampel Filtering
Fourier Filtering

Apply calibration

brightness distribution
visibilities to

Transform calibrated

Select a good

all delay Are all
allocations

overover
zones

Are

Data Bank of all allocation images

 imagesImage of one
Allocation

detection in image
Interference

Interference
detection using

all allocation
images

Select delay zone

 Database of

appropriate weights

Select sidereal hour

Select allocation

common Epoch (2000)

Check each days

Accept good

Add images with

Full resolution
raw image

Deconvolution

covering one

range of MRT
and entire declination

sidereal hour range
Deconvolved image Flux calibration

Catalogue
construction

calibration

Select suitable
file of

 Calibrator

Classified database
of visibility files

ranked in decreasing
order of quality

raw Visibilities

Precess and Regrid to B
A

C
K

U
P

 A
N

D
 S

T
O

R
A

G
E

 A
T

 A
L

L
 S

T
A

G
E

S
 O

F
 P

R
O

C
E

S
S

IN
G

Fig. 2.3: A schematic showing the main steps of data processing implemented in the overall data
analysis software system to synthesize full resolution deconvolved image including source cata-
logue.

2.3. Software system for data analysis 44

Additional Functionalities : The main objectives of the additional functionalities which

were added to the data analysis software include (a) Automatic evaluation of data qual-

ity (b) A hierarchical RFI mitigation system (c) Image analysis at the level of each day and

full resolution images3 (d) Deconvolution of wide field images with a non-coplanar array

(e) Flux calibration (f) Source extraction and catalogue construction from the deconvolved

images (g) Correcting for the errors in time stamping in the data files.

To accomplish most of these additional functionalities, a number of different pro-

grams were developed (for each functionality often at multiple stages of data processing).

All these required sophisticated efficient software including the need for browsing large

amount of data with interactive Graphical User Interface (GUI). The software developed

to provide additional functionalities in X-MARMOSAT is fairly large and complex. It com-

prises of more than 60,000 lines of code in a variety of languages namely C, Perl, Matlab

and F77 and in addition uses shell scripts extensively. Detailed discussion on the software

aspect would be excluded in this thesis keeping in mind that the thesis deals with astron-

omy per se. The algorithms would be discussed briefly as and when required in the later

parts of this thesis.

An important point worth mentioning here is that we carry out detection of inter-

ference in self correlations, increase their integration time and correct for the errors in

time stamps in the data files before any other steps of data processing are carried out (See

Sec. 4.3.4 and Sec. 5.1 for details). The original data is not modified at any stage and the in-

terference excised and smoothed self correlations along with corrected sidereal times are

stored in a separate binary file corresponding to each data file as they are used by most of

the programs for data processing. Since all the existing programs in MARMOSAT were de-

signed to access the self correlations and sidereal time from the original visibility file only,

we needed to carry out appropriate changes in order for the programs to access the values

stored separately in the newly created file instead. This required us to read the source code

of each of the application program and the libraries in the existing MARMOSAT (only those

parts which are used for off-line data analysis), to incorporate the necessary changes.

In order to ensure that no previously working functionalities have failed and that the

new modifications to the program have not inadvertently introduced errors, verifica-

tion/regression testing was carried out. In this, each program was executed with different

sets of input parameters, before and after modifications and the outputs at different stages

were compared. In addition, the expected values of variables were compared at interme-

diate stages using a debugger for both sets of programs. Parts of the program which were

3Images for a survey with partial resolution (17′×23′) with MRT were made earlier by Golap (1998) while
data was being collected with longer NS baselines. Due to this the term full resolution image is used and
refers to an image with a resolution of 4′×4.′6sec(δ+20.◦14) made using data from all the allocations.

2.3. Software system for data analysis 45

dead codes and never executed were retained as it is in order to keep the changes from the

original to a minimum.

Improvements : The improvements were carried out only in those programs of the MAR-

MOSAT which deal with the off-line data analysis and are briefly described below.

Software was developed in order to identify and remove the corrupted data and du-

plicate data files from the database as a part of data organization described in Sec. 2.2.

The most computationally intensive step during imaging is the inversion of the calibrated

visibilities into images, which requires use of Direct Fourier Transform (DFT) due to non-

coplanarity of the array. The run time performance for the inversion of visibilities was suc-

cessfully improved by use of look-up tables, by a factor of ten. The existing programs were

optimized by avoiding redundancy and reducing loop overhead by reducing the number

of iterations and replicating the body of the loop (loop unrolling).

We incorporated appropriate changes to improve the flexibility of usage of a few pro-

grams, like ability to run them on data of different cycles. The programs were written orig-

inally for Digital Unix O/S (Dec-Alpha platform), Linux (IBM PC) and for Digital Unix (Sun

Platform). Our aim was to bring in conformity the entire existing software to a Linux plat-

form which is being used both at RRI and Observatory at Mauritius, for data processing

work. While most of the programs could be easily compiled on Linux, a few of them needed

modifications. The changes include replacing by newer syntax, the old subroutine calls

which had become obsolete in the newer versions of the Linux operating system and the

software packages on which the programs depend. All the programs in the data analy-

sis software system were compiled with the warning flags on, to check for any suspected

errors related to improper memory allocation, exchange of data to functions etc..

2.3.3 Software design

The design of data analysis software system is based on modular approach. The focus

has been to choose schemes and methods which are natural and appropriate depending

upon our particular strengths and problems. The data analysis software system consists of

stand-alone programs which have to be executed one after another in a sequential man-

ner. The programs communicate via standard data files rather than having all possible

operations integrated into one huge kernel program. This is similar to the approach taken

by Unix and Linux Operating Systems. This facilitates easy maintenance, easier addition

of new functions or utilities and flexibility for up-gradation. In this approach it is difficult

to run the programs blind which ensures that the processing is carried out carefully. The

user interface is provided by using external display softwares. The programs which are

executed in later stages do require the output of earlier programs as inputs along with a

2.3. Software system for data analysis 46

variety of flag options which provide flexibility. The disadvantage is that the tasks often

require scripts to chain together several programs for their execution. This is important in

situations when one has to process a large number of files as in case of MRT. Shell scripts

are extensively used in batch processing mode for imaging.

In view of the large size and complexity of the software requirement for the eXtended

MARMOSAT, software design and careful planning was essential to ensure that it works

correctly, can be maintained and extended in future. Now we discuss the salient features

behind its design.

Software design is the process of defining the architecture, components4, interfaces

and other characteristics of the system and the results of that process. In this, we analyse

the software requirements to produce a design of internal structure and organization of

the system which serves as a basis for its construction while adhering to general principles

of good software design. This involves the task of division of the system into subsystem

and components and how these will be connected including their interfaces. During the

software design, one faces a series of design issues and each issue normally has several

alternate design options. In order to make a design decision in the design space one uses

knowledge of the requirements, the design created so far, the available resources, software

design principles and best practices based on one’s experience of what has worked well in

the past. Here the main principles and the basic guidelines adhered behind the design of

the developed software for eXtended MARMOSAT would be briefly mentioned.

• Top-down and Bottom-up design : We first designed the very high level structure

of the system without considering the implementation details to evolve with a good

system structure. Later, we started with the low level utilities keeping in mind their

re-usability to construct the high level structure. The lowest level components were

designed to behave as a single logical entity. Subroutines/Functions which perform

a variety of tasks with very generalized usage were avoided to the maximum possible

extent. Before implementing a particular algorithm, separate flowcharts emphasizing

the top-down and bottom-up design were produced. A piece by piece comparison

of the flowcharts was used to analyse the requirements and arrive at a fair balance

between these two approaches in order to give a software system a good structure

and to ensure that the reusable components can be maximally exploited.

• Maximize Cohesion : Cohesion5 is a measure of the strength of functional related-

4Component : Any piece of software which has a clear role. It may be isolated allowing one to replace it
with a different component that has equivalent functionality.

5Due to wide popularity of object oriented programming and reusable code engineering, cohesion and
coupling are sometimes associated to be paradigms of object oriented programming itself; nothing could
be farther from truth. Cohesion and coupling grew out of structured programming research in 1970’s and

2.3. Software system for data analysis 47

ness of elements within a module i.e. how well the lines of a source code within a

module work together to provide the required functionality. In software highly co-

hesive programs are desired in order to make the system as a whole easier to un-

derstand. During the software development we grouped parts together based on

three basic criteria : (a) data on which a module operates (b) logical relationship and

(c) output of one part being used as input of another. The basic philosophy while de-

signing the modules was to ensure that the higher level modules control the overall

logic and the lower level modules do the nitty gritty work.

• Minimize Coupling : Coupling occurs when there are interdependencies between

one component and another. Changes in one place require changes somewhere

else which make it hard to interpret a particular components overall behavior. For

a well designed software low coupling is preferred. During the software development

while passing the information which needs to be communicated between modules,

data was always passed using explicitly stated argument or parameter lists and never

shared globally except in cases where it was absolutely necessary. Logical dependen-

cies of content were avoided by ensuring that at no stage a module refers to inside

another module in anyway. The control at any stage in the programs developed al-

ways returns to the calling location and sudden jumps from one part to another were

avoided. Functions were always declared in full prototype mode before they can be

used. Data structures were cleared once they were not required to free the memory

and ensure they cannot be used later inadvertently.

• Easy viewing of data : It should be easy to display and view the data and the results of

data processing. Since it is difficult to write a data display software which satisfies all

present and future needs, a good approach is to design a data analysis software which

uses external stand-alone display software. This reduces the effort for development

of display software which requires different specialized software skills. There are large

number of freely available external graphic display packages which were suitable for

our purpose. These include pgplot, gnuplot, octave, scilab etc.. They were chosen de-

pending upon their capabilities, the ease with which they can be used for the desired

application and their compatibility with the language used.

• Simplicity : The software was kept as simple as possible. It is easy to use tricks just

to make the code apparently shorter but it may become difficult to understand later

by the developer and user both. We employed short cut tricks only when it did serve

a substantial purpose like significant decrease in the computation time.

were discussed by Larry Constantine and Edward Yourdon in their 1976 landmark book, ‘Structured Design’,
subsequently their software quality metric (measure) was coined by Larry Constantine.

2.3. Software system for data analysis 48

• Programming languages : In principle, all the requirements can be carried out using

a single programming language but it generally results in a lot of complicated and

inefficient code as each language has its own strengths and weaknesses. In view of

this, the language was chosen depending upon the requirements.

Most of the computationally intensive programs are generally written in ANSI-C with

very few exceptions. The ANSI-C was used so as the programs are portable as the pro-

cessing is carried out both at RRI and observatory at Mauritius. C was preferred over

F77 due to its better memory management and string parsing capabilities, availabil-

ity of an inbuilt debugger (apart from many external ones) and comparable computa-

tional speed. A few F77 subroutines mostly taken from Numerical Recipes are called

from the C programs as and when required.

Data processing steps which required a fair combination of scripting, text process-

ing, display and computation were carried out using Perl programming language.

Perl (Larry et. al., 2000; Srinivasan, 1997) was chosen due to its flexibility, ease of

programming, excellent text parsing capabilities, compatibility with large (nearly all)

number of graphical display packages, speed, free availability and inbuilt debugger.

It provides all the benefits of an interpreted language while coding and debugging

and the speed of a complied language during run time. It is Object Oriented and a

cross platform language which is portable across various operating systems. It sup-

ports referencing but does not directly support addressable pointers. This enables

easy construction of complex data structures without dangers inherent in pointer

arithmetic. Also its standard library comes with comprehensive eXtensible Markup

Language (XML) support and Graphical User Interface (GUI) apart from long list of

support modules. Perl has provision for embedding C code inside a Perl program and

one can also embed a Perl code inside a C program with support of modules, which

makes it useful for MRT where most of the software has been written in C.

Matlab was used mainly for image analysis. It has a very user friendly interface for

interactive command operations and display. Most of the analysis can be carried out

using a large number of preprogrammed functions available for matrix manipulation.

Codes can be written very quickly and debugged using the inbuilt debugger.

• Documentation : Appropriate documentation is provided at each stage. The doc-

umentation is generally built in the programs. This helps the software and the doc-

umentation to be in synchronization. The general purpose help can be obtained by

invoking the -help flag while executing. In order to keep track of the various output

files produced by different programs, an ASCII header is used for each file by the ap-

plication programs to read or transfer the information from each other. To maintain

2.3. Software system for data analysis 49

a simple standard tracking system, the names are standardized and the software by

knowing the name of a file can work out basic information about the file.

• Libraries : At the lower layer of software system are libraries. These contain a set

of useful functions which are required very often by most of the programs. These

can be automatically linked while running the individual application program. Any

modification or improvement in these libraries affects across the entire software sys-

tem. This helps in optimizing the maintenance of the software by keeping most of the

common tasks at one place. These also include useful routines available in Numerical

Recipes in C (Press et. al., 1989).

• Header and Miscellaneous files : Header files contain parameters of the data struc-

ture and the array settings during the observation of the data file like integration time,

maximum number of correlations etc.. They also contain the definitions of the func-

tions in the libraries and application programs so that they do not have to be declared

individually in each application program. A few examples of header files are mar-

mosat.h, complex.h and defvar.h. Other important files are position files which have

the antennae coordinates for each allocation, Delay files having the delay settings

with which the data was observed, Phase per delay files which contain the equivalent

phase changes across each baseline corresponding to a unit delay etc..

In this chapter, we have given a brief overview of the observations carried out and the data

analysis software system developed in-house for processing the visibilities. In the next

chapter, we discuss an algorithm for automatic scientific classification of the visibility data

to select the best data for imaging.

