Synthesis, Characterization and Self-assembly of

Functionalized Soft Nanomaterials

By

Santanu Kumar Pal

Thesis submitted to Jawaharlal Nehru University, New Delhi for the award of the

degree of

Doctor of Philosophy

Raman Research Institute

Bangalore - 560080

January 2008

Dedicated to

My beloved

Raman Research Institute

CERTIFICATE

This is to certify that the thesis entitled "Synthesis, Characterization and Self-assembly of *Functionalized Soft Nanomaterials*" submitted by *Santanu Kumar Pal*, for the award of the degree of **DOCTOR OF PHILOSOPHY** of Jawaharlal Nehru University, New Delhi, is his original experimental investigation and conclusions. The subject matter of this thesis has not been previously published or submitted to any other university for the award of any other degree, diploma, associateship, fellowship or any other similar title.

Prof. Ravi Subrahmanyan Director Raman Research Institute Prof. Sandeep Kumar

(Thesis Supervisor)

Bangalore- 560080

Raman Research Institute

DECLARATION

I hereby declare that the entire work embodied in this thesis is the result of the experimental investigation carried out by me independently at Raman Research Institute, Bangalore, under the guidance and supervision of Prof. Sandeep Kumar. The experimental work and conclusions presented in this thesis work has not been previously submitted and no part of this thesis work has formed the basis for the award of any other degree, diploma, fellowship, associateship or any other similar title.

Prof. Sandeep Kumar

Santanu Kumar Pal

(Thesis Supervisor)

Raman Research Institute

Bangalore- 560080

ACKNOWLEDGEMENTS

I am greatly indebted to my thesis supervisor Prof. Sandeep Kumar for his valuable and inspiring guidance throughout my research work. There are no adequate words to explain his keen interest, immense patience, kind advice, sustained encouragement, constant help and throughout provoking discussions that I had with him during this time. I am grateful to him for revealing me the richness of some basic synthetic organic chemistry. It was a valuable experience to work with and learn so many things from him both as a scientist and as a human being. It has been a great pleasure and I really enjoyed working with him.

I would like to express my gratitude to Prof. V. Lakshminarayanan, for his keen interest in my research work and many valuable discussions that I had with him. I have learnt some basic electrochemistry during some of the electrochemical studies of our compounds.

I especially thank Prof. K. A. Suresh and G. S. Ranganath for their valuable suggestion during my course-work and also for my Ph.D programme.

I wish to express my gratefulness to Prof. B. K. Sadashiva and also Prof. N. V. Madhusudana for their keen interest in this work and for useful discussions and suggestions during the period.

I take this opportunity to thank Dr. V. A. Raghunathan for his keen interest and valuable help in the interpretation of XRD data. I have learnt the basics of XRD from him, which has been very helpful for interpreting the data described in this thesis.

I am thankful to Dr. Reji Philip, Dr. R. Pratibha, and Dr. D. Vijayaraghavan, Dr. Arun Roy for many valuable discussions.

My sincere thanks to Mr. H. T. Srinivasa, Mr. Rame Gowda for their help in various ways during the period. I appreciate the kind of help, co-operation and encouragement given to me by my colleagues, Hari Krishna Bisoyi and Satyam Kumar Gupta during the period. I had very useful discussions with them on both academic and non-academic matters and I had enjoyable time.

I sincerely thank Ms. K. N. Vasudha for recording IR spectra, DSC thermograms and elemental analysis. I also thank Mr. K. Radhakrishnan for his valuable and timely help throughout my research work.

My thanks to Mr. A. Dhason, Mr. Ram, Mr. Mani, Mr. Raju for their kind help in various ways.

I would like to thank RRI library staff for providing me an excellent, timely and significant help during my research work. The ever smiling staff would oblige for all our requests including books and journals from various other libraries. This is the first time I have come across such a well maintained library.

I also thank various other departments of RRI and the administration, computer section, accounts, workshop, transport, canteen and clinic for their constant support throughout my Ph. D life.

I was lucky to have Sanat, Sajal, Ganesh, Ms. Umadevi, Brindaban, Rajkumar, and Surajit as my seniors, Alpana, Rahul as my batchmates and D. H. Nagraju, P. Suresh Kumar, Rakesh Kumar Pandey, Radhika, A. V. Radhakrishnan, Bibhu Ranjan Sarangi, Tripta Bhatia, Bharat Kumar, Arif Kamal, Antara Pal as my juniors. I wish to thank all my friends and research colleagues in the institute who made my stay enjoyable.

My deep gratitude to my beloved parents, my sister, and my brother-in-law for being a constant source of encouragement and help throughout my research work. I have greatly benefited by their valuable suggestions and thought provoking advices.

CONTENTS

CHAPTER 1:Introduction

1.1	Liquid crystals	1
1.2	History of liquid crystals	2
1.3	Classification of liquid crystals	4
1.4	Thermotropic liquid crystals	4
1.4.1	Calamitic liquid crystals	5
1.4.1.1	Nematic phase	6
1.4.1.2	Smectic phase	6
1.4.2	Discotic liquid crystals	7
1.4.3	Banana liquid crystals	8
1.5	Discotic liquid crystals: the discovery	9
1.6	Structure of discotic liquid crystalline phases	11
1.6.1	Nematic phases (N) of discotic mesogens	11
1.6.2	Columnar phases of discotic mesogens	12
1.6.2.1	The hexagonal columnar mesophase (Col _h)	13
1.6.2.2	The rectangular columnar mesophase (Col _r)	15
1.6.2.3	The columnar oblique mesophase (Col _{ob})	16
1.6.2.4	The columnar plastic mesophase (Col _p)	16
1.6.2.5	The columnar helical phase (H)	17
1.6.2.6	The columnar lamellar phase	18
1.7	Chemistry of discotic liquid crystals	18
1.8	DLCs as materials for a new generation of organic electronics	21
1.9	Why discotics?	22
1.10	Discotics as semiconductor: molecular concepts, one dimensional electrical &	
	Photoconductivity	23
1.10.1	Size of the discotic core	28
1.10.2	Shape of the wave functions	30
1.10.3	Connecting groups	31
1.10.4	Phase behavior and transition temperatures	32

1.11	Discotic liquid crystals in display devices	33
1.12	Discotic in xerographic processes	35
1.13	Discotic as organic light-emitting diodes	36
1.14	Discotic as organic field-effect transistors	37
1.15	Discotic as holographic optical data storage	39
1.16	Discotic liquid crystals as photosynthetic light harvesting	40

CHAPTER 2:Self-assembly of mesogens-decorated gold nanoparticles

2.1	Background & objectives	52
2.2	Inclusion of gold nanoparticles into a discotic liquid crystalline matrix	54
2.2.1	Synthesis	54
2.2.2	Preparation & characterization of nanocomposites with discotic liquid crystals	55
2.3	Alkoxycyanobiphenyl-covered gold nanoparticles	58
2.4	Synthesis of terminally thiol-functionalized alkoxycyanobiphenyls	59
2.4.1	Characterization	59
2.4.2	Thermal behaviour	62
2.4.3	X-ray diffraction studies	65
2.4.4	Conclusion	66
2.5	Self-assembled monolayers of alkoxycyanobiphenyl thiols on gold: A study	
	of electron transfer reaction using cyclic voltammetry and electrochemical	
	impedance spectroscopy	67
2.6	Self-assembled monolayers of alkoxycyanobiphenyl thiols on gold surface	
	using a lyotropic liquid crystalline medium	69
2.7	Synthesis and Characterization of alkoxycyanobiphenyl-covered GNPs	70
2.8	Discotic-decorated gold nanoparticles	71
2.8.1	Synthesis of thiol-functionalized triphenylenes	71
2.8.2	Synthesis of triphenylene-decorated GNPs	72
2.8.3	Characterization of triphenylene-covered GNPs	74
2.8.3.1	Transmission electron microscopy	74
2.8.3.2	Thermogravimetric analysis	76
2.8.3.3	X-ray diffraction studies	77

2.8.3.4	DC conductivity	77
2.8.4	Conclusions	79
2.9	Experimental	79
2.9.1	General information	79
2.9.1.1	Column Chromatography	80
2.9.1.2	Thin-layer chromatography	80
2.9.1.3	Transition temperatures	80
2.9.1.4	X-ray diffraction studies	80
2.9.1.5	Ultraviolet spectra	81
2.9.1.6	IR spectra	81
2.9.1.7	¹ H NMR & ¹³ C NMR	81
2.9.1.8	Elemental analysis	81
2.9.2	Synthesis	81
2.9.2.1	Synthesis of 6a (4'-[5-bromopentyloxy][1, 1'-biphenyl]-4-carbonitrile)	81
2.9.2.2	Synthesis of 7a (4'-[(5-(acetylthio)-pentyl)oxy][1, 1'-biphenyl]-4-carbonitrile)	82
2.9.2.3	Synthesis of 9a (4'-[(5-sulphanylpentyl)oxy][1, 1'-biphenyl]-4-carbonitrile)	83

CHAPTER 3: Phase transitions in novel disulfide-bridged alkoxycyanobiphenyl dimers

3.1	Introduction	112
3.2	Classification of liquid crystal dimers	113
3.3	Structure-property relationships in liquid crystalline dimers	114
3.4	Objective	122
3.5	Synthesis	123
3.6	Characterization	124
3.7	Thermal behaviour	126
3.8	X-ray diffraction studies	129
3.9	Conclusion	131
3.10	Experimental	132
3.10.1	General information	132
3.10.2	Synthesis of thiol dimers: General procedure	132

	CHAPTER 4: Novel triphenylene-based ionic discotic liquid crystals	
4.1	Introduction	155
4.2	Ionic discotic liquid crystals	156
4.3	Objective	161
4.4	Pyridinium-substituted triphenylene-based ionic liquid crystals	162
4.4.1	Synthesis	162
4.4.2	Characterization	164
4.4.3	Thermal behaviour	166
4.4.4	X-ray diffraction studies	169
4.4.5	Effect of counter ions	171
4.5	Imidazolium-substituted triphenylene-based ionic liquid crystals	172
4.5.1	Synthesis	172
4.5.2	Characterization	173
4.5.3	Thermal behaviour	175
4.5.4	X-ray diffraction studies	177
4.6	Conclusion	177
4.7	Experimental	178
4.7.1	General information	178
4.7.2	Synthesis of pyridinium-substituted triphenylene-based ionic liquid crystals	178
4.7.3	Synthesis of imidazolium-substituted triphenylene-based ionic liquid crystals	180

CHAPTER 5:Novel imidazolium-based ionic discotic liquid crystalline dimers and

polymers

5.1	Introduction	199
5.2	Objective	206
5.3	Synthesis	208
5.4	Characterization	209
5.5	Thermal behaviour	214
5.6	X-ray diffraction studies	217
5.7	Conclusion	218
5.8	Ionic discotic liquid crystalline polymers	219

5.8.1	Synthesis	219
5.8.2	Characterization	220
5.8.3	Thermal behaviour	221
5.8.4	X-ray diffraction studies	222
5.8.5	Conclusion	222
5.9	Experimental	223
5.9.1	General information	223
5.9.2	Synthesis of alkoxycyanobiphenyl-based imidazolium ionic liquids	223
5.9.3	Synthesis of imidazolium-based calamitic-discotic ionic dimers	226
5.9.4	Synthesis of imidazolium-based discotic-discotic ionic dimers	226
5.9.5	Synthesis of imidazolium-based ionic discotic polymer	227

CHAPTER 6:Novel discotic-calamitic hybrids: synthesis and characterization of cyanobiphenyl substituted rufigallols

6.1	Introduction	249
6.2	Objective	253
6.3	Rufigallol as a discotic core	255
6.4	Synthesis of rufigallols	256
6.5	Synthesis of rod-disc hybrids: mono alkoxycyanobiphenyl substituted rufigallols	257
6.5.1	Characterization of discotic-calamitic dimers	258
6.5.2	Thermal behaviour of discotic-calamitic dimers	259
6.5.3	X-ray diffraction studies	260
6.6	Synthesis of rod-disc-rod trimers: dialkoxycyanobiphenyl substituted rufigallols	261
6.6.1	Characterization of rod-disc-rod trimers	262
6.6.2	Thermal behaviour of trimers	263
6.7	Synthesis of pentamers: tetraalkoxycyanobiphenyl substituted rufigallols	263
6.7.1	Characterization	264
6.7.2	Thermal behaviour	265
6.8	Synthesis of hexamers: pentaalkoxycyanobiphenyl substituted rufigallols	266
6.8.1	Characterization	267
6.8.2	Thermal behaviour	267

6.9	Synthesis of heptamers: hexaalkoxycyanobiphenyl substituted rufigallols	268
6.9.1	Characterization	269
6.9.2	Thermal behaviour	269
6.10	Conclusion	271
6.11	Experimental	272
6.11.1	Synthesis of 1,2,3,5,6,7-hexahydroxyanthraquinone	272
6.11.2	Synthesis of 1,5 -dihydroxy-2,3,6,7-tetraalkoxy-9,10-anthraquinone	272
6.11.3	Preparation of mono-hydroxy functionalized rufigallols	273
6.11.4	Synthetic procedure of rod-disc dimers	274
6.11.5	Synthetic procedure of dialkoxycyanobiphenyl substituted rufigallols	275
6.11.6	Synthetic procedure of tetraalkoxycyanobiphenyl substituted rufigallols	276
6.11.7	Synthetic procedure of pentaalkoxycyanobiphenyl substituted rufigallols	276
6.11.8	Synthetic procedure of hexaalkoxycyanobiphenyl substituted rufigallols	278