
Chapter 4

Nanoscale Mechanical Properties of LB
Films of PyTp and PyTp - DNA Complex by
Atomic Force Microscopy

4.1 Introduction

In the previous chapter, we have shown the formation of stable complex between a cationic discotic

mesogen, viz., pyridinium tethered with hexaalkoxytriphenylene (PyTp), and DNA. The most in-

teresting feature was that the PyTp-DNA complex monolayer, which was formed at the air-water

(A-W) interface, could be transferred successfully onto solid substrates. Mutlilayers containing as

many as 50 layers could be formed on silicon substrates by LB technique with transfer efficiency

close to 100 %.

The discogen molecules are renowned for their intriguing supramolecular architechture. This

makes them potential candidate for various applications (discussed in Chapter 1). The DNA

molecule, containing the genetic code of all living species, has also caught lot of attention due to

its potential application in nanoelectronic devices. Therefore, a combination of cationic discogen

and DNA is an unique approach towards the development of advanced materials with novel elec-

trical and mechanical properties. In literature, there are several reports on the studies of aliphatic

cationic lipid-DNA complexes, which are primarily stimulated by nonviral gene delivery [1, 2].

There are also efforts for using such lipid-DNA complexes for organic electronics [3], biosen-

sors [4], biomedical applications [5] and optical applications [6]. Although aliphatic lipid-DNA

complexes are known for decades, the discogen-DNA complex is being studied recently [7, 8] and
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they are expected to have some novel applications. For any practical application, well ordered thin

film is a necessity. Although there are several techniques to obtain thin films, LB technique is a

convenient approach to obtain well ordered films under controlled conditions [9].

The successful long-term performance and reliability of these materials in practical devices

are usually limited by their mechanical properties. Hence, measurements of the mechanical prop-

erties of such materials are of paramount importance. These properties may vary significantly

depending on the length scale. Particularly, the properties exhibited by a material at the nanoscale

may differ from those exhibited at the macro scale. The conventional techniques to measure the

mechanical properties of materials are generally restricted to macroscopic length scale, whereas

the current trend in miniaturization of products and devices pose the need for characterization of

materials at the nanoscale. Therefore, it has become necessary to implement nanoscale property

measurement techniques. One of the convenient and reliable methods for the precise measurement

of mechanical properties of nanostructures is to employ an atomic force microscope (AFM). An

AFM can provide direct spatial mapping of surface topography, heterogeneity, and elasticity with

nanoscale resolution [10]. Compared with other tools, AFM can probe local surface elastic prop-

erties of soft systems quantitatively by indentation method with precise control of applied force,

down to few nanoNewtons [11, 12]. In addition, the phase shift measurements in tapping mode

AFM can be used to qualitatively characterize the material surface properties, such as stiffness and

viscoelasticity [13]. In tapping mode AFM, the tip intermittently touches the surface, minimizing

the destructive lateral forces; thereby making it suitable for the study of soft biological systems and

also for systems where the molecules are weakly adsorbed to the substrate (e.g., LB films). The

combination of nanoindentation and phase shift measurements with AFM is an useful approach

for studying the mechanical properties of film surfaces at the nanoscale [14].

In this chapter, we present our studies on the mechanical properties of the LB films of PyTp

as well as PyTp-DNA complex using an AFM. To measure the local elasticity of these films,

nanoscale indentation was performed in the contact mode AFM and force-distance curves were

obtained. It is a common practice to use the Hertz contact mechanics model to describe the inden-

tation of a non-deformable indenter into a deformable elastic surface [15]. We have used this model
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for quantitative analysis of the force-distance curves obtained in the indentation measurements. In

addition, both the PyTp and PyTp-DNA complex films were scanned in the tapping mode AFM

and simultaneous topography and phase images were acquired. The phase images were used to

construct the energy dissipation maps for qualitative characterization of stiffness variation in the

films.

4.2 Experiment

The monolayer film of PyTp was prepared at the air-water (A-W) interface in a Langmuir trough.

The PyTp-DNA complex monolayer film was prepared at the A-W interface with 10−8 M concen-

tration of DNA in the ultrapure water subphase. The details of film formation are presented in

Chapter 2 and Chapter 3. These films were transferred at a target surface pressure of 35 mN/m

onto polished silicon substrates by LB technique. We have shown in the previous chapters that, at

this surface pressure, the PyTp molecules in the monolayer exhibit an edge-on configuration. We

have carried out nanoindentation and phase shift measurements on these LB films using a multi-

mode AFM. For nanoindentation studies, we have used LB films with 2 layers and for phase shift

measurements, we have used LB films with 1, 2, 5 and 20 layers. All the films with odd number

of layers were transferred on hydrophilic silicon substrates, and those with even number of layers

were transferred on hydrophobic silicon substrates. All the measurements were carried out at room

temperature (∼ 25 0C).

To measure the elastic properties of the films, AFM was used in the contact mode to perform

nanoindentation. Instead of scanning with the tip laterally across the sample surface, the tip was

positioned above the surface and moved vertically down. The cantilever deflection, as measured

with the optical lever detection system, was plotted as a function of the vertical motion of the piezo-

electric scanner to produce a force-distance curve. The advantage of using AFM as a nanoindenter

is that we can have fine control on the applied load, down to fraction of nanoNewton. In addition,

it was possible to observe the deformation (elastic or plastic) by imaging the area before and after

indentation. In the previous chapter, we presented the indentation measurements performed under

plastic deformation and determined the hardness of the films. In the work described in the present
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chapter, we have kept the depth of indentation to be small to avoid any plastic deformation. Under

this condition, we have measured the elastic modulus of the films.

The measurements were carried out inside an environmental chamber in which dry nitrogen gas

was circulated to avoid capillary condensation of water at the contact point between the tip and the

surface. Freshly cleaned silicon wafer was used as a hard non-deformable reference substrate for

photodetector sensitivity calibration. V-shaped silicon nitride cantilevers with a tip radius of 15 nm

(Nanosensors) were used. The spring constant of the cantilevers were in the range of 0.06 to 0.10

N/m, as determined by measuring the free resonance frequency in air using ThermalK software

(Molecular Imaging). To determine the spring constant, the cantilever was taken away from the

sample (i.e., no tip-sample interaction) and its thermal fluctuations were measured. The cantilever

was driven by an AC signal to obtain its resonance frequency. A power spectrum of the AC signal

yielded the mean-square amplitude of the cantilever oscillation, which was then used to evaluate

the spring constant using the ThermalK software.

In addition, the topography and phase images of the films were obtained simultaneously using

tapping mode AFM (TM-AFM). Here, the cantilever oscillates close to its resonance frequency and

the tip makes contact with the sample surface only for a short duration (∼10−7 seconds) in each

oscillation cycle. As the tip approaches the sample, the amplitude and phase angle of the oscillating

cantilever change due to the tip-sample interaction. The change in the phase angle produces the

phase image which can provide significantly more contrast than the topography image. We have

used super sharp probes made up of single-beam silicon cantilevers with a spring constant of 47

N/m and a tip radius typically of 2 nm. The cantilever was oscillated at a frequency of about 200

Hz below its resonance frequency (∼163 kHz) with a free amplitude in the range of 40 to 55 nm.

The images were acquired at a scan rate of 2 Hz. To represent phase shifts, we have adopted the

standard convention that assigns a 900 phase shift lag between the excitation and response when

the free cantilever is excited at its fundamental resonance [16]. Driving frequencies below the free

resonance would produce phase shifts between 00 and 900 yielding a repulsive interaction regime,

while frequencies above resonance would produce phase shifts between 900 and 1800 yielding an

attractive interaction regime. In all our measurements, the driving frequencies were below the free
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resonance producing phase shifts between 00 and 900 in the repulsive interaction regime.

4.3 Theory

4.3.1 Determination of Young’s elastic modulus

To determine Young’s elastic modulus, we have carried out nanoindentation measurements using

an AFM in the contact mode. Here, we obtain cantilever deflection (d) versus piezo displacement

(z) curves. These curves can be converted into force (F) versus indentation depth (δ) curves using

Hooke’s law,

F = kc d (4.1)

where kc is the spring constant of the cantilever. The indentation depth δ is given by,

δ = z − d (4.2)

For a precise measurement of the applied force, it is important to determine the kc accurately.

(The kc values provided by manufacturer may suffer from an error bar as high as 50 %.) Although

there are several methods to determine the kc of a cantilever [17], the thermal method is widely

preferred. This method is easy to use and is independent of cantilever’s geometry and material [18].

This is based on a fundamental physics theorem, i.e., the theorem of equipartition, which states

that the average value of each quadratic term in the Hamiltonian of a system is given by kBT /2,

where kB is Boltzmann’s constant and T is the temperature. Here, a cantilever can be treated as

a harmonic oscillator in equilibrium with its surroundings which fluctuates in response to thermal

noise. The Hamiltonian of such a system is given by

H =
p2

2m
+

mω2
oq2

2 (4.3)

where q is the fluctuation of the oscillator (cantilever), p is its momentum, m is the oscillating

mass, and ωo is the resonant angular frequency of the system. By equipartition, one can write,

85



〈mω2
oq2

2

〉

=
kBT

2 (4.4)

Since ω2
o = kc/m, the spring constant kc can be obtained from the above equation by measuring

the mean-square amplitude (< q2 >) of cantilever oscillation as

kc =
kBT

< q2 >
(4.5)

For a kc of 0.05 N/m, which is a typical value for relatively weak cantilevers, the thermal

fluctuations will be of the order of 3 Å at room temperature. For such small deflections, we can

approximate an AFM cantilever as a simple harmonic oscillator with one degree of freedom. The

mean-square amplitude of the oscillation can be obtained from the integral of the power spectra of

AC signal which is used to drive the cantilever.

From the F versus δ curves, it is possible to draw information about the elasto-plastic behavior

of materials [15]. For an ideally elastic sample (Figure 4.1(a)), when the tip approaches, i.e., from

O to A, it penetrates the sample upto a depth δ, causing a deformation. During the withdrawal,

the tip goes back from A to O, and since the sample is elastic, it recovers step by step its own

shape, exerting the same force on the tip. Hence, loading and unloading curves, i.e., the approach

and withdrawal lines, overlap. If the sample is ideally plastic (Figure 4.1(b)), it undergoes a de-

formation during the loading curve. When the tip is withdrawn, the sample does not recover its

own shape and the load decreases, whereas the indentation depth stays the same. Most of the

samples have a mixed behavior. Hence, loading and unloading curves seldom overlap. In par-

ticular, at a given penetration depth, the force of the unloading curve is lesser than the force of

the loading curve (Figure 4.1(c)). The difference between the approach and the withdrawal lines

is called “loading-unloading hysteresis”. The indentation depth H′ at which the force of the un-

loading curve equals zero is called “zero load plastic deformation”. The indentation depth H upto

which the sample recovers is called the “zero load elastic deformation”.

In the following, we neglect the plastic deformations and review the models dealing with elas-

tic continuum contact mechanics, in which the tip and the sample are assumed to be continuous
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Figure 4.1: Force (F) versus indentation (δ) curves for (a) an ideally elastic material, (b) an ideally
plastic material, and (c) an elasto-plastic material. H′ is the ’zero load plastic deformation’, i.e.,
the indentation depth at which the force of the unloading curve equals zero. H is the ’zero load
elastic deformation’, i.e., the indentation depth upto which the sample recovers.

elastic media. The basic model which describes the elastic deformation of two surfaces touching

under load was developed by Hertz in 1881 [19]. Hertz model is commonly used to describe the

indentation of a non-deformable indenter (the AFM tip) into an infinitely extending deformable

elastic half space (the sample surface), subject to a number of important assumptions [20]. The

principal assumptions are: (i) a normal load exists at the contact between the tip and the sample,

(ii) the radius of contact area is small compared with the radius of the tip, and (iii) there is no

adhesion and friction between the tip and sample.

The AFM tip shape can be generally modeled by two geometries; a conical indenter and a

paraboloid or spherical indenter. For these two cases, the Hertz model predicts a different func-

tional relationship between the loading force needed to create an indentation. In the case of a

conical tip indenting a soft sample, the relationship between the loading force (F) and resulting

indentation (δ) is given by the following expression:
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Fcone =
2
π

tanα E∗δ2 (4.6)

In the case of a paraboloid or spherical tip indenting a soft sample, the Hertz model gives the

following relation between the F and δ:

Fparaboloid =
4
3 E∗R1/2δ3/2 (4.7)

In these relations, α is the half-opening angle of a conical tip, R is the radius of curvature of

a spherical or paraboloid indenter. E∗ is the reduced elastic modulus of tip-sample system and is

defined by the following equation

1
E∗ =

1 − ν2

E
+

1 − ν1
2

E1
(4.8)

where E and E1 are the elastic modulus, and ν and ν1 are the Poisson’s ratios, of the sample

and the tip, respectively. (When a material is stretched in one direction, it contracts in a direction

at right angles to the direction of stretching. The ratio of this transverse contraction in dimension

to that of the extension in the direction of stretching is the Poisson’s ratio of the material [21]. It

is usually a positive number less than 0.5.) The AFM tip made up of silicon has a bulk elastic

modulus [20] of 130-160 GPa and ν1 = 0.27. Assuming E ¿ E1, we can approximate the above

equation as

E∗ ≈ E
1 − ν2 (4.9)

where E is the Young’s elastic modulus of the sample and ν is its Poisson’s ratio [22]. From

expressions 4.6 and 4.7, one can see that if a quadratic relation is observed between F and δ, a

conical model should be used for the tip, while if the F versus δ relation is close to a δ3/2 variation,

the spherical or paraboloid model should be used.

The Hertz model can successfully describe the F versus δ curves whenever the surface forces

(e.g., adhesion) are negligible. This model needs correction, for the cases where the surface forces
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can not be neglected. Two models, Derjaguin-Muller-Toporov (DMT) and Johnson-Kendall-

Roberts (JKR), have been widely adopted to correct for the behavior of Hertzian contacts in pres-

ence of surface forces. The DMT model is applicable for systems with low adhesion and small

tip radii, whereas the JKR model is suitable for highly adhesive with low stiffness and large tip

radii. In all the indentation measurements , we have used the Hertz model since the adhesion was

negligible in our system. However, the detailed description of DMT and JKR models can be found

in a report by Cappella and Dietler [15].

4.3.2 Determination of Energy Dissipation

The energy dissipation was determined by measuring the phase shift using an AFM in the tapping

mode. Here, the cantilever is oscillated at a frequency close to its resonance. The cantilever

oscillation is driven by an external and sinusoidal signal. The dominant contributions considered

in the equation of motion of the cantilever are: (i) elastic response, (ii) hydrodynamic damping

with the medium, (iii) tip-sample interaction, and (iv) excitation force. The resulting second-order

differential equation is as follows [23]:

m
d2z
dt2 = −kcz −

mω0

Q
dz
dt
+ Fts + F0cosωt, (4.10)

where F0 and ω (ω = 2π f ) are the amplitude and angular frequency of the driving force,

respectively. Q, ω0 and kc are the quality factor, angular resonance frequency and spring constant

of the free cantilever, respectively. ω0 is related to kc and m by the relation kc = mω2
0. Fts denotes

the tip-sample interaction. The above equation implies several assumptions. (i) It considers the

cantilever as a point mass spring. (This assumption ignores the contribution of the higher flexural

modes of the cantilever motion [24].) (ii) The Q-factor used here is independent of tip-sample

separation. (This assumption neglects changes in the hydrodynamic damping of the cantilever

during its motion [25].) From this equation, we can derive expressions for the phase angle of

a freely oscillating (i.e., no tip-sample interaction) cantilever as well as the phase angle for an

interacting cantilever.
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For a freely oscillating cantilever, the phase angle (in radians) is expressed as:

φ f ree = tan−1
( mωω0

Q(kc − mω2)

)

(4.11)

The angle φ f ree varies sharply around ω0 as a function of ω. φ f ree is π/2 at ω = ω0, smaller

than π/2 at ω < ω0, and greater than π/2 at ω > ω0. When an oscillating cantilever is brought close

to a sample surface, the amplitude of oscillation and its frequency change due to the tip-sample

interactions. As a consequence, the spring constant of the cantilever changes to a new effective

value ke f f = kc + σ, where σ represents the sum of the force derivatives for all the forces F ts acting

on the cantilever;

σ = Σ
∂Fts

∂z
(4.12)

Here, z is the distance between the tip and sample. The phase angle of the interacting cantilever

can be expressed as

φint = tan−1
( mωω0

Q(kc + σ − mω2)

)

(4.13)

provided that σ is very small in magnitude compared with kc. From this expression, the phase

angle at ω = ω0 of the interacting cantilever is given by

φint = tan−1
( kc

Qσ

)

(4.14)

Therefore, the phase angle shift ∆φ0 between the free and the interacting cantilevers at ω = ω0

is given by,

∆φ0 = φ f ree − φint =
π

2 − tan−1
( kc

Qσ

)

≈ Qσ
kc

(4.15)
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where the approximate relationship holds when σ is very small in magnitude compared with kc.

It should be noted that the sign of the phase angle shift ∆φ0 coincides with that of the overall force

derivative σ. Thus, ∆φ0 (hereafter referred to as phase shift and denoted by φ) is positive when the

overall force acting on the tip is repulsive and negative when the overall force is attractive.

In tapping mode AFM, the elastic deformation of a sample surface associated with the tip-

sample repulsive force can be estimated by the Hertz model (section 4.3.1). Considering a spherical

tip under force F on a plane surface, the surface stiffness S is expressed as:

S =
∂F
∂δ
= ε a E∗; (4.16)

where a is the radius of the circular contact area, δ is the indentation depth, E∗ is the reduced

elastic modulus of the tip-sample system and ε is a constant [26]. When the tip and sample come

into contact and their repulsive force indents the surface, it is reasonable to approximate the overall

force derivative σ by the stiffness of the tip and the sample. The stiffness defined by the above

equation is valid when the tip is in contact with a sample surface. In tapping mode, the tip makes

only a momentary contact ( ∼ 10−7 seconds) in each cycle of oscillation, and the tip-sample contact

area varies with time throughout the duration of each contact. For the qualitative discussion of

phase angles, therefore, it is appropriate to use the time-averaged values of the contact radius a

(< a >) and stiffness S (< S >) over one cycle of oscillation. When the overall force derivative σ

is dominated by the surface stiffness (σ ≈ < S > = ε < a > E∗), the equation 4.15 becomes

φ ≈< S >

(Q
kc

)

= ε < a > E∗
(Q
kc

)

(4.17)

Equation 4.17 shows that the phase imaging provides a map of stiffness variation on the sample

surface such that a stiffer region has a more positive phase shift and hence appears brighter in a

phase image. In general, a softer material leads to a larger contact area < A >, and the duration

of the tip-sample contact is longer on a softer material than on a harder material. Consequently,
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< S > can be dominated by the contact area < A > rather than E∗ (i.e. < S > ∝ < a > ∝
√
< A >),

which makes the phase shift greater on a softer material than on a harder material [26].

However, these phase shift measurements depend more on the interaction regime than on the

tip-sample interactions [27]. This makes the direct phase shift measurements less sensitive to the

material properties. Martinez et al. have demonstrated that by converting phase shifts into energy

dissipation data, the material properties become more sensitive to the tip-sample interactions [16],

thereby giving the stiffness variation of the surface. A relationship between the phase shift and the

energy dissipation can be obtained [28] by considering that in the steady state

Eext = Eair + Edis. (4.18)

Here, Eext is the external energy supplied to the cantilever, Eair is the energy dissipated via

hydrodynamic viscous interactions with the environment, and Edis is the energy dissipated due to

the tip-sample interaction. From this equation, the following expression was proposed by Tamayo

and Garcia [29] that relates the phase shift angle (φ) to the Edis per cycle.

Edis =
πkcA0Asp

Q

(

sinφ −
f Asp

f0A0

)

(4.19)

Here, f and f0 are the excitation (driving) and natural (resonance) frequencies of the cantilever

respectively. Asp and A0 are the set point (tapping) and the free oscillation amplitudes respectively.

Q is the quality factor of the cantilever. Thus, the phase shift measurements can be conveniently

transformed into energy dissipation values by means of equation 4.19. Then these measurements

can be used to map variations in material properties like stiffness.
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4.4 Results

4.4.1 Young’s Elastic Modulus by Nanoindentation using AFM in the Con-
tact Mode

Quantitative measurements of local elasticity was performed on LB films with two layers for both

PyTp and PyTp-DNA complex. The cantilever deflection (d) versus piezo displacement (z) curves

were obtained at several regions on these films and were converted into load (F) versus indentation

(δ) curves using equations 4.1 and 4.2. Figure 4.2(a) shows the plot of d as a function of z obtained

on a hard reference silicon surface and PyTp film surface with two layers. Figure 4.2(b) shows

the plot obtained similarly for the PyTp-DNA complex film with two layers. For hard reference

silicon surface, the slope of the d versus z curve was equal to 1, whereas for the film surfaces, the

slope was less than 1. The difference between the cantilever deflection for the hard silicon surface

and that for the soft film surface gives the indentation depth δ of the tip into the sample surface.

Typical F versus δ curves obtained for the pure and complex films are shown in Figures 4.3(a) and

4.3(b) respectively. It was observed that for a given load, the depth of indentation was more on the

pure film than on the complex film. For example, at a load of 0.2 nN, the indentation depth was

0.6 nm for the pure film and 0.3 nm for the complex film.

In addition, the F versus δ curves were analyzed quantitatively with Hertz model from con-

tinuum mechanics of contact to extract the values of Young’s elastic modulus. We find that our

measured F versus δ curves followed a δ3/2 variation for both the pure and complex film surfaces.

Therefore, the curves were fitted using the paraboloid model (equation 4.7) and E∗ values were

extracted. More than 30 such curves were obtained at different positions on the film surfaces with

different applied loads. The solid lines in Figures 4.3(a) and 4.3(b) represent the fitting of typical

F versus δ curves with the paraboloid model to extract E∗ values. We find that, for both the pure

and complex films, the correlation between the data and the fit was better than 98%. Figures 4.4(a)

and 4.4(b) show the E∗ values obtained at different positions on the films with different loads .

From these plots, the average E∗ values obtained were 71.6 ± 3.2 MPa and 212.4 ± 3.0 MPa for

the pure and complex films respectively. Using these E∗ values and assuming a Poisson’s ratio

of 0.5 (which is expected for soft materials [12]) in equation 4.9, we have calculated the Young’s
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(a)

(b)

Figure 4.2: Cantilever deflection d versus piezo displacement z curves measured on LB films
with two layers of (a) PyTp film, and (b) PyTp-DNA complex film. The solid lines represent
the d versus z curves obtained on a hard reference silicon surface and the dotted lines represent
the curves obtained on the film surfaces. The difference δ between the curves is equal to the tip
indentation depth.
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(a)

(b)

Figure 4.3: Typical load F versus indentation δ curves obtained for (a) PyTp film, and (b) PyTp-
DNA complex film. The curves were fitted with the Hertz model (solid lines), yielding reduced
elastic modulus E∗ value of 77.1 ± 1.3 MPa for the pure film and 214.3 ± 1.8 MPa for the complex
film.
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(a)

(b)

Figure 4.4: Reduced elastic modulus E∗ values plotted for different loads: (a) PyTp film, and (b)
PyTp-DNA complex film. These E∗ values were calculated from the F versus δ curves acquired at
different positions on the film surfaces under different loads.
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elastic modulus, E to be 53.7 ± 2.4 MPa and 159.3 ± 2.3 MPa for the pure PyTp and PyTp-DNA

complex film surfaces respectively.

4.4.2 Topography and Phase Images using AFM in the Tapping Mode

Figures 4.5(a) and 4.5(b) show simultaneously acquired topography and phase images for PyTp

film with two layers on hydrophobic silicon substrate. The topography revealed a smooth and

uniform film surface. The phase image exhibited negligible variation in the values of phase shifts

on the film. Figure 4.5(c) shows the height and phase shift profiles corresponding to the lines

drawn on the topography and phase images, respectively. We have deliberately selected a region

which is partially covered with film so that the difference in phase shift between the film surface

and the exposed silicon substrate can be revealed. The film height is 4.5 nm as shown by the

height profile. The phase shift is greater on the film surface than on the exposed silicon substrate

by 20. The spikes in the phase profile at the edges of the film surface (Figure 4.5(c)) are due to

topographic effects which arise due to the finite feedback response time.

Figures 4.6(a) and 4.6(b) show the topography and phase images of LB film of PyTp-DNA

complex with single layer on hydrophilic silicon substrate. The height and phase shift profiles for

the lines drawn on the corresponding images are shown in Figure 4.6(c). The topography reveals

a compact film surface. The Fourier transform of the phase image (inset in Figure 4.6(b)) reveals

a 2-fold symmetry. In addition, the autocorrelation image (Figure 4.7(a)) constructed from this

phase image clearly shows a periodic structure. From the profile (Figure 4.7(b)) corresponding to

the line drawn across the peaks in the autocorrelation image, the periodicity is calculated to be 36

nm.

4.4.3 Energy Dissipation Maps Constructed from the AFM Phase Images

The energy dissipation map provides qualitative insight of the mechanical properties of a film

surface. The energy dissipation map constructed from the phase image of the pure PyTp film with

2 layers is shown in Figure 4.8. Similar maps for the PyTp-DNA complex films with 1 and 5
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Figure 4.5: Tapping mode AFM images of the PyTp LB film with two layers; (a) topography
image, (b) phase image, acquired simultaneously. (c) The height (dotted line) and phase (solid
line) profiles corresponding to the lines drawn on the topography and phase images, respectively.
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(b)

Figure 4.6: Tapping mode AFM images of the PyTp-DNA complex LB film with one layer; (a)
topography image, (b) phase image, acquired simultaneously. The Fourier transform of the phase
image (inset in (b)) shows a 2-fold symmetry. (c) The height (dotted line) and phase (solid line)
profiles corresponding to the lines drawn on the topography and phase images, respectively.
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(a) (b)

Figure 4.7: (a) Autocorrelation image of Figure 4.6(b). (b) The profile corresponding to the line
drawn across the peaks on the autocorrelation image gives a periodicity (λ) of 36 nm.

layers constructed from the respective phase images are shown in Figures 4.9(a) and 4.9(b). For

20 layers of the complex film, we have shown the topography, phase image and energy dissipation

map in Figure 4.10. The average values of energy dissipation (Edis) calculated from these maps

and the variation in energy dissipation (∆Edis) values are presented in Table 4.1. It can be seen

that, for the pure film, the average value of Edis was higher compared to that for the complex films.

For the complex films, the ∆Edis values increase with increasing number of layers. Also, they

are high compared to the pure film. In addition, similar calculations for LB films with different

layers of the pure film show that ∆Edis value is small and remains almost the same with increasing

number of layers. For the complex film with 20 layers, the topography image (Figure 4.10(a))

shows well aligned DNA bundles. The phase image (Figure 4.10(b)) shows a phase shift variation

of about 160. The energy dissipation map (Figure 4.10(c)) shows comparatively less Edis values at

the regions of DNA bundles.
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LB film No. of layers Average Edis (eV) ∆Edis (eV)
Pure 2 1565 8

Complex 1 974 16
Complex 5 711 74
Complex 20 462 109

Table 4.1: The energy dissipation values obtained from the phase shift data of pure PyTp and
PyTp-DNA complex LB films.

Figure 4.8: The energy dissipation (Edis) map for the pure PyTp LB film with 2 layers constructed
for a scan range of 1 × 1 µm2. Tapping mode data: f0 = 162.8 kHz, f = 162.5 kHz, A0 = 54 nm,
Asp = 35 nm and Q = 125. Figure was constructed using MATLAB software.
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(a)

(b)

Figure 4.9: (a) The energy dissipation (Edis) map for the PyTp-DNA complex LB film with 1 layer
with a scan range of 1 × 1 µm2. Tapping mode data: f0 = 162.95 kHz, f = 162.75 kHz, A0 = 43
nm, Asp = 31 nm and Q = 181. (b) The Edis map for the PyTp-DNA complex LB film with 5 layers
with a scan range of 1.25 × 1.25 µm2. Tapping mode data: f0 = 162.94 kHz, f = 162.73 kHz, A0
= 42.4 nm, Asp = 31.2 nm and Q = 179.7. Figures (a) and (b) were constructed using MATLAB
software.
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Figure 4.10: Tapping mode AFM images of the PyTp-DNA complex LB film with 20 layers: (a)
Topography image, showing height profile. (b) Simultaneously acquired phase image, the scale
bar shows phase shift in degrees. (c) The energy dissipation (Edis) map constructed from the phase
image. Tapping mode data: f0 = 162.95 kHz, f = 162.75 kHz, A0 = 40 nm, Asp = 30 nm and Q =
183. Figures (b) and (c) were constructed using MATLAB software.
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4.5 Discussion

In the previous chapter, we have estimated the hardness of the film surfaces under plastic defor-

mation. We have shown that the PyTp-DNA complex film is two times harder than the pure PyTp

film. However, hardness is a qualitative measurement which has a considerable error bar (±25%).

This is due to two reasons; firstly, the indent formed by the tip on the film surface is generally

not uniform. This makes it difficult to measure the area accurately. Secondly, we are imaging

the indent with the same tip that was used for indentation which may result in imaging artifacts.

Therefore, we can only comment qualitatively on the relative hardness values [22, 30]. In this

chapter, we have presented the quantitative analysis of the cantilever deflection (d) versus piezo

displacement (z) curves obtained for elastic deformation of the film surfaces. We have used Hertz

contact mechanics model for the analysis and determined the Young’s elastic modulus (E) of the

films.

In the cantilever deflection versus piezo displacement curves (Figures 4.2(a) and 4.2(b)), the

slope is 1 for the reference silicon surface because silicon is an infinitely stiff surface compared

to the cantilever stiffness. On the other hand, when the tip indents the film surface, the cantilever

deflection becomes smaller than the piezo vertical displacement. This results in a slope smaller

than 1. From the load (F) versus indentation (δ) curves (Figures 4.3(a) and 4.3(b)), it can be seen

that for a given load, the depth of indentation was more on the pure film than on the complex film

indicating the pure film to be softer than the complex film. This is in accordance with the hardness

(plastic deformation) measurements of these films described in Chapter 3. Here, we are interested

in measuring the elastic modulus of the film surfaces quantitatively. Therefore, we have carried out

indentation precisely under small load (∼ 1 nN) to avoid any plastic deformation. The film surface

was imaged before and after indentation to ensure that the deformation was elastic. Hertz model is

valid for elastic deformations and does not take into account tip-sample adhesion. Since adhesion

forces were negligible in this study (using dry nitrogen gas atmosphere) and the deformation was

elastic, it was reasonable to use this model. It was observed that the F versus δ curves for both

the films fit well with the paraboloid model. Hence, we have fitted all the F versus δ curves with

paraboloid model to calculate the Young’s modulus values. We have repeated the measurements
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several times for different loads and at different positions on the films (Figures 4.4(a) and 4.4(b)).

From all these measurements, we find that the Young’s modulus value is 53.7 MPa for the pure film

and 159.3 MPa for the complex film. This indicates that the complex film is about 3 times stiffer

than the pure film, since the elastic modulus of a film is directly related to its stiffness (equation

4.16). The elastic modulus of films are important in surface mechanical properties of materials and

in understanding the role of interface in defect production [31].

The phase imaging in tapping mode AFM is known to be a powerful method for mapping

the variations in composition, viscoelasticity, stiffness and adhesion of the sample surface at high

spatial resolution. However, the phenomenon affecting the contrast in a phase image is complex.

The changes in phase shift during scanning depends on several factors like tip-sample separation,

deformation at the tip-sample contact, interaction regime, cantilever properties (spring constant,

quality factor), tip geometry and the level of tapping force [16]. Also, the phase shift can be

affected by changes in topographic features. Therefore, extracting information contained in a

phase image should be done carefully.

For correct interpretation of phase images, the level of tapping force must be taken into ac-

count. The level of tapping force used during imaging is related to the set-point ratio (r sp) which

is defined as the ratio of set-point amplitude (Asp) to free-oscillation amplitude (A0). The force

levels corresponding to a rsp of 0.9-0.8 is light tapping (attractive regime) and 0.8-0.4 is hard tap-

ping (repulsive regime) [32]. The phase shift can be dominated by the tip-sample contact area.

In light tapping, the hard and soft parts show similar phase shifts close to zero because the tip-

sample contact is minimal. Here, the probe response is not dominated by the tip-sample repulsive

force but is strongly influenced by surface attractive forces such as capillary force and adhesion.

In addition, the phase imaging with light tapping may record only the changes in the gradient of

the topography [33]. On the other hand, for hard tapping, phase shift of the softer part becomes

larger than that of the harder part, because the contact area becomes much larger on the softer

part. Here, the probe response is dominated by the tip-sample repulsive interaction. Imaging at

hard tapping is known to be best suited for mapping stiffness variations on sample surfaces [26].

We have performed phase imaging at hard tapping. Therefore, in all our phase images, the soft
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region appears brighter (more phase shift) compared to the hard region. For the PyTp film (Fig-

ure 4.5(b)), the phase shift was found to be greater on the film surface by 20 than on the exposed

silicon substrate indicating the film surface to be softer. We would like to mention that the phase

image exhibited comparatively less contrast since both the PyTp film surface as well as the exposed

silicon substrate were hydrophobic [34]. Additionally, phase imaging can give information about

the organization of molecules on a surface. In literature, phase images of LB films of some single

component systems (e.g., fatty acids, cholesterol) have been reported to reveal regions of different

polarity due to the flipping of the constituent molecules [35, 36]. In our system, the phase image

of PyTp LB film (Figure 4.5(b)) showed negligible variation in phase shifts suggesting uniform

polarity of the film surface. This may be due to the fact that the strong π-π interaction between the

adjacent discotic cores inhibit flipping of constituent molecules in the film.

Phase imaging is known to improve the resolution and contrast of images as compared with the

topography image [33]. For the LB film of PyTp-DNA complex on hydrophilic silicon substrate,

the phase image (Figure 4.6(b)) revealed a periodic structure which was not clearly resolved in the

topography image. We have performed autocorrelation of the image to find the periodicity [37].

Autocorrelation is defined as, G (k1, k2) = Σ f (x, y) f (x + k1, y + k2) where f(x,y) is the image

matrix. This equation takes the image and the same image shifted at a distance k1 and k2 in the

X and Y-axis with respect to the center of the image. The more similar the image and the shifted

image are, the higher the value of the autocorrelation. The highest value in autocorrelation is

obtained at the center of the image (where k1 and k2 are zero). Any periodicity in the original

image will be shown as a periodic pattern in the autocorrelation. We have obtained a periodicity

of 36 nm from the autocorrelation of the phase image of PyTp-DNA complex film (Figure 4.7(b)).

This value is much greater than the diameter of a DNA double strand (∼2 nm) suggesting these to

be DNA bundles. The strong π-π stacking interaction between the discotic cores brings multiple

DNA strands together forming bundles. Additionally, the alignment of these DNA bundles in the

periodic structure was observed predominantly in the film deposition direction. In literature, this

has been attributed to the possibility that when a substrate is withdrawn from the subphase in the

process of LB film deposition, the receding meniscus force tries to align the DNA strands parallel
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to its direction [38, 39].

The nanoindentation technique using an AFM gives local elastic modulus [40]. For a qualita-

tive understanding of the variation in elastic properties over a sample surface, the phase imaging in

the tapping mode AFM is very useful. Magonov et al. have shown that the phase shift arising from

the damping in the tip oscillation due to the tip-sample interactions can be related to the surface

stiffness [26]. It is to be noted that the phase shift data depends on the interaction regime. This ren-

ders direct phase shift measurements less useful to map material properties. Therefore, it is more

convenient to transform phase shift data into energy dissipation values by means of equation 4.19

to map the variations in material properties like stiffness [16]. From the energy dissipation maps

(Figure 4.8 and Figure 4.9), we find that the PyTp film exhibited higher Edis value as compared to

the PyTp-DNA complex films. This may be attributed to the larger damping in tip oscillation for

the pure film due to its soft nature which leads to a larger energy dissipation. This result confirms

the nanoindentation result that showed the pure film to be soft as compared with the complex film.

In addition, we find that, for the complex films, the ∆Edis values increase with increasing number

of layers, whereas, for the pure films, it remains almost the same with increasing number of layers.

This suggests that unlike complex film, the surface stiffness of the pure film remains uniform irre-

spective of the number of layers. This may be attributed to the fact that the pure film is composed

of well packed discotic molecules due to the strong π-π interaction between the cores. This leads to

a uniform film surface with the molecules arranged in a two-dimensional columnar structure on the

substrate [41]. For the complex film, such an ordering may not be possible due to the presence of

DNA. The non-uniformity in the surface stiffness for the complex film can be clearly seen from the

energy dissipation map for 20 layers (Figure 4.10(c)) which shows comparatively less Edis values

at the regions of DNA bundles indicating these regions to be stiffer. Thus, with the help of phase

imaging, we could continuously map the variation in elastic properties over the film surfaces.

On the basis of these results and the results from nanoindentation measurements, we suggest

that the pure film is soft and comparatively uniform, whereas for the complex film, the surface

is stiff and becomes more and more non-uniform with increasing number of layers. Nanoinden-

tation measurements can give elastic modulus values only at a point, whereas the phase imaging
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provides continuous maps of variation in stiffness over a sample surface. Hence, the nanoinden-

tation technique, when used together with phase imaging, provides a better understanding of the

mechanical properties of film surfaces. The PyTp and PyTp-DNA complex films have potential for

applications in devices like field-effect transistors and biosensors [4, 42]. Therefore, the mechani-

cal property studies of such films at nanoscale are of importance in the design and development of

nanodevices.

4.6 Conclusions

We have studied the nanoscale mechanical properties of LB films of the pure PyTp as well as

the PyTp-DNA complex using an AFM. From the nanoindentation measurements, we have calcu-

lated the Young’s elastic modulus values to be 54 and 160 MPa for the pure and complex films

respectively. In addition, phase shift measurements were carried out for these films and energy

dissipation maps were constructed. The phase image for the LB film of PyTp-DNA complex with

single layer clearly resolved a periodic structure. The qualitative analysis of the energy dissipa-

tion maps showed that the surface of the pure film is soft and uniform, whereas, the complex film

surface is stiff and non-uniform. Nanoindentation measurements gave local elastic modulus of the

film surfaces, whereas with the help of phase imaging, we could continuously map the variation in

elastic properties over the film surfaces.

Discogens are considered as a new generation of organic semiconductors. They possess unique

molecular electronic features, like the two-dimensional delocalization of electrons, that are not ob-

served in linear oligomers and polymers. The known examples of successfully operating electronic

devices based on discotic semiconductors are field-effect transistors, photovoltaic solar cells and

light-emitting diodes. Therefore, the electrical property measurements of the films of discogens

are of prime interest. In the next chapter, we investigate the electrical properties of pure PyTp film

and PyTp-DNA complex film using a special mode of AFM, i.e., the current-sensing AFM.
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