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SYNOPSIS 

This Thesis is divided in two parts. 

Part I: is concerned with theoretical studies on the effects of dissipative coupling to the 
environmental degrees of freedom on certain quantum phenomena that strictly have no classical 
analogue. These include (a) Quantum diffusion on a lattice described by a tight-binding one band 
Hamiltonian involving tunneling between the sites (orbitals) coupled dissipatively to the the 
environmental degress of freedom, (b) Orbital diamagnetic motion of a charged particle moving 
on a three-center-annulene linking Aharonov-Bohm(A-B) flux and coupled to the environment 
dissipatively, (c) The system (b) on a continuous ring. While in (a) and (b) the dissipative 
coupling is treated phenomenologically using certain Lindblad operators that project on to the 
lattice sites, the treatment (c) is based on dissipative coupling treated with the Feynman Path 
Integrals. 

Part 11: is concerned with the theoretical investigation of the classical kinetics of the non- 
equilibrium distribution of non-degenerate gas of electrons photoexcited far from equilibrium in 
the metallic and the semiconducting samples in the presence of dissipative coupling to the bath--- 
the phonons . 

The questions posed and the answers obtained in the Thesis are summarized below. 

PART I : 
(a): The Lindblad operators are known to cause unphysical heating up of the system 

towards infinite temperature, even as they maintain the physical characteristics of the reduced 
density matrix , namely, its complete positivity, hermiticity, and the trace-class nature. The 
question, therefore, is whether or not we can still obtain physically meaningful diffusive quantum 
motion of a particle with the dissipative coupling to the environment realized through the 
lindblads . Our answer comes out in the affirmative under the condition that the system be band- 
width limited as in the case of a one-band tight-binding lattice Hamiltonian with the band-width 
much less than kBT. The latter is readily realized in the Wannier-Stark superlattices . We have 
obtained the mean-squired displacement as also the mean displacement, with and without the 
biasing field respectively. Also , with a time-harmonic drive , we have obtained a resonant 
enchancement of the diffusion coefficient. 

PART I: (b) and (c) The question was if the orbital diamagnetic motion of a charged particle on a 
(b) discrete , or (c) a continuous ring linking an Aharonov- Bohm (A-B) flux gets suppressed 
(decohered ) so as to kill orbital diamagnetism which is known to be a purely quantum effect . 
The question is all the more significant as the earlier treatments for the orbital motion in a plane 
perpendicular to the magnetic field gave the orbital moment as the decreasing function of the 
dissipative coupling , an effect over and above the temperature effect. In these systems the charge 
particle directly experiences the Lorentz force. In contrast to this , in our model systems the 



magnetic field enters only through the quantum phase --- geometric /topological. Indeed , our 
answer for the ring systems in question is that the orbital moment is not suppressed by the 
dissipative coupling , except for the temperature effects(heating) . Our treatment for the case (b) 
is based on the Lindblad coupling (phenomenological), while for the case (c) it is based on the 
Feynman path integral using the Euclidean action and the Caldeira-Leggett model of the 
dissipative coupling to the bath of harmonic oscillators. 

PART 11: 
The stochastic model for the dissipative granular gas has been generalized to the case of 

the relaxation of the distribution for a non-equilibrium non-degenerate gas of photo- excited 
electrons in a semiconducting sample . Analytical results have been obtained by us for the steady 
-state under continuous (cw) optical pumping, and the boundary condition of infinitely fast 
recombination across the band-gap. The distribution shows a single peak structure. Our 
generalized treatment holds for the full range of parameters involved. Thus it goes beyond the 
Two-Temperature model well known in the literature on photoexcited systems. We have also 
treated the relaxation of the distribution function for the case of multi-phonon processes where 
the phonon-bath temperature enter through the time -scale that involves the electron-phonon 
coupling and the phonon temperature. Finally , we have given an explicit calculation of the 
electron-surface-phonon interaction that dominates the relaxation process for nanometric scale 
particles. 
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