
Chapter 1 

Introduction 

This Thesis is divided in two parts. Part I comprising Chapters 2 through 4 deals with 

certain model problems of quantum diffusion and decoherence caused by dissipative 

coupling to a bath of harmonic oscillators with a view to resolving certain conceptual 

issues. Part I1 comprising Chapters 5 and 6 treats the problems of electron relaxation 

in semiconducting and metallic particles. The aim is to obtain the electron distribution 

functions for the non-equilibrium non-degenerate gas of photoexcited electrons in the 

semiconducting particles as also for the "hot" electrons in the metallic particles. The 

introduction gives a bacground to the contents of the Chapters that follow. Besides, 

it also includes some technical material that will be made use of in the Thesis, but is 

not a part of the original work reported in the Thesis. 



1.1 Introduction to part I 

1.1.1 Quantum diffusion on a lattice with tight-binding one- 

band Hamiltonian in the presence coupling to the envi- 

ronmental degrees of freedom: Introduced phenomeno- 

logically through Lind blad operators. 

Quantum transport of a charge, or an excitation on a lattice which is potentially 

disordered in space and in time remains an open problem. Here, the disorder, that 

ultimately originates dynamically from coupling to the 'bath' degrees of freedom, is 

often introduced parametrically through a random potential which is generally corre- 

lated in space and time. The limit of infinite correlation time then corresponds to a 

disorder which is purely static. The latter causes multiple elastic scattering - a co- 

herent process. It causes no dephasing of wave interference no matter how strong the 

disorder is. It can thus, lead to the well known and extensively studied absence of 

diffusion on random lattices, the Anderson localization, as, e.g., in the impurity band 

of a doped semiconductor at  low temperatures. The opposite limit of zero correlation 

time and a short spatial correlation length, on the other hand, corresponds to a purely 

dynamical disorder. The latter involves decoherence, e.g., by inelastic scattering due 

to the electron-phonon coupling at  high temperatures, or to the entanglement with the 

many dynamical degrees of freedom of the 'bath7. This is an incoherent process that 

gives classical diffusion in the long-time limit, with a diffusion constant determined 

by the strength of the dynamical disorder[l, 2, 3, 4, 5, 6, 7, 8, 91. The general case 

of a finite correlation time is relevant to dynamics of the charge carriers in semicon- 

ductors, and to that of the energy- carrying (Frenkel) excitons in organic molecular 

solids(the diffusive excitonic verses the wavelike Forster transport[lO]), as also to the 

motion of light adsorbates bound weakly to certain substrates. The problem of quan- 

tum transport on dynamically disordered lattices is relatively(re1ative to the static 

disorder)much less extensively studied. There do, however, exist several exact analyt- 



ical results derived for 1-D lattices (generalization to higher dimensions being rather 

straightforward because of incoherence, though algebraically quite laborious). In all 

these studies the dynamical disorder is introduced through the stochastic modulations 

of certain matrix elements of a tight-binding model Hamiltonians. Thus, e.g., it may 

be the site-diagonal[l] modulation only, or may include the site-diagonal as well as 

the site-off-diagonal[2] modulation. The modulation, however was mostly taken to be 

a gaussian white noise (GWN), and spatially uncorrelated. The long-time( i.e., be- 

yond the time-scale of the initial wavepacket dispersion) mean-squared displacement 

is found to be diffusive, with a diffusion constant nontrivially depends on the strength 

of the two (diagonal and off-diagonal) modulations referred to above[2]. These model 

treatments, however, do not incorporate dissipation which is normally a concomitant 

of the fluctuations. This, while giving diffusion in the long time limit, also leads to 

a heating of the carriers. Indeed, treating the interaction of the degree of freedom of 

interest with the many dynamical degrees of freedom of the bath through a parametric 

modulation of the potential does not allow the particle to react back on to the bath 

variables. Such a back-action evasion is well known to give unbounded stochastic heat- 

ing (an interesting example being that of Fermi-acceleration [12] of charged particles in 

the astrophysical context). Thus, a delta-time correlated modulation of the potential 

corresponds to an infinite temperature, and for motion in a spatial continuum(infinite 

bandwidth), the resulting dynamics turns out to be superdiffusive (x2(t)) t3 unlike 

the diffusive behavior obtaining for the tight-binding one-band (bandwidth limited) 

lattice Hamiltonian[3]. This has been interpreted in terms of the discreteness of the 

lattice as providing a momentum(Umk1app)sink without exchange of energy, which is 

off course absent in a continuum. A different interpretation and the treatment of this 

discrete-vs-continuum behavior has, however, been proposed by Heinrichs[4, 51 through 

a lattice regularization. In any case, there is no first principle (microscopic) treatment 

of dissipation for a dynamically disordered lattice available. The treatments based on 

the phenomenological friction Hamiltonian do not conserve the canonical commutation 



relations[l3]. The present work is confined to a one-band-tight binding model lattice 

Hamiltonian in which decoherence has been introduced through the Lindblad operators 

known well from quantum optics, that project onto the lattice sites. The point here 

is that what is essential to diffusion on lattice is the decoherence of quantum motion 

which is well represented by the Lindblad operators. The problem of heating is miti- 

gated by the fact that the lattice- hamiltonian bandwidth will be taken to be small as 

compared to keT. 

The present study, however, has a limited objective: It aims at  generalizing the 

earlier stochastic lattice models so as to incorporate, non-perturbatively, a uniform po- 

tential bias together with a time-harmonic drive of given strength and frequency. The 

generalization sought here is physically motivated by the now experimentally realizable 

superlattice heterostructures that support the narrow-bandwidth Stark-Wannier (SW) 

ladder states [14, 151 in the presence of a longitudinal electric-field bias[l4]. As is well 

known, a strong field normal to the superlattice planes can break up the extended 

Bloch-like band continuum into energetically well resolved states localized in the po- 

tential wells. The stronger the biasing field the more localized are the SW state [14, 151. 

The energy mismatch, or, the step between the neighbouring SW states is proportional 

to the biasing field, and hence is tunable. With this generalization, we have obtained 

analytical expressions for the time-dependent mean and the mean-squared displace- 

ments as function of the bias and the drive amplitude and frequency. Also, dynamical 

disorder (decoherence) is introduced through a set of Hermitian lindblads[l6, 17, 18, 191 

chosen so as to project on to the lattice sites. An interesting new result of our calcu- 

lation is the enhancement of the diffusion coefficient with increasing amplitude of the 

harmonic drive, and its variation with the increasing detuning of the drive frequency 

relative to the inter-site energy gap between the neighbouring sites of the lattice -- 

clearly a non-linear effect. The latter is tunable through the bias field. The analytical 

results obtained by us correctly specialize to the exact results known in the limit of 

zero drive and zero-bias. Besides, for such a bandwidth limited systems, the Lindblads 



provide a physically valid mechanism for decoherence, as noted above. 

1.1.2 Brief introduction to a phenomenological approach to 

environmentally induced decoherence-the Linbladian 

approach. 

In quantum mechanics the time evolution of a closed physical system (coherent quan- 

tum evolution) is given by a unitary time evolution. This is described by the time 

evolution of the density matrix 6 given by (for a time-independent Hamiltonian H): 

Once the reduced density matrix j is known, the quantum-statistical expectation of any 

one-particle observable A can be obtained as TT(~A) .  If 6 is a pure state (i.e., b2 = 6) 

at  any initial time to, then b(t) remains a pure state for all t .  For an open system, 

comprising the subsystem of interest coupled to the environment (of no direct interest), 

however, the time evolution of the subsystem (to be obtained ultimately by integrating 

out the environmental degrees of freedom) is given by a quantum Master equation (the 

Liouville equation) : 

which is local in time (the markovian approximation). Here, Lk is the kth Lindblad 

operator to be discussed below. The first part(the commutator) on the right-hand side 

of the above equation represents the unitary time evolution(Hamiltonian evolution), 

and the second term containing the Lindblad operators represents the non-unitary time 

evolution. The important point to note is that the Lindblad operators introduce the 

non-unitarity without, (a) violating the complete positivity, (b) hermiticity and (c) the 

trace-class nature of the density matrix (6). The choice of the Lindblad operator for 

any specific problem is dictated by the physics of the problem. Thus for the quantum 

motion of a particle on a dynamically disordered lattice, we will make the choice Lk = 



f i l l c )  (Icl projecting on the lattice site Ik) . It turns out that the Lindblad operator (used 

most extensively in quantum optics for the effects of radiation damping etc) actually 

heats up the system of interest to infinite temperature(it represents coupling to the 

bath at infinite temperature). This element of unphysicality is, however, rendered 

ineffective for a bandwidth limited system, with Band Width << IcT. This is indeed 

expected to be realized in the Stark-Wannier ladder in the superlattice structures. 

Also, some physical aspects of the finite temperature can be imposed by adding certain 

phenomenological terms on the R.H.S. of the Lindblad equation that can ensure thermal 

equilibrium values for the diagonal elements of the density matrix[22] 

1.1.3 Quantum diffusion of a charged particle in a magnetic 

field and the orbital diamagnetic moment - a purely 

quant um phenomenon without the classical analogue. 

The orbital motion of a charged particle, in thermal equilibrium with a heat bath, 

moving under the influence of an external(static) magnetic field may well be expected 

to give a non-zero magnetic moment (Figure 4.2a). It is, however, known now that 

classically there is no orbital (dia) magnetism. This identically vanishing of the orbital 

diamagnetism in the classical limit is the celebrated Bohr-van Leeuven theorem[23,24]. 

Here, in the presence of an external magnetic field (and the associated local Lorentz 

force z(v x B)), the induced cyclic currents in the bulk (Maxwell cycles) and the 

skipping orbits (edge currents) at the boundary (internal as well as external) contribute 

equal and opposite magnetic moments. This classically exact cancellation may be 

visualized from the schematic in Figure 4.1. This result has been claimed to be one 

of the surprises of theoretical physics by Rudolph Peierls[25]. This makes the study of 

orbital diamagnetism in a quantum dissipative system interesting fundamentally. 

This vanishing of the orbital diamagnetic moment follows at  once from the fact 

that the equilibrium partition function Z(B, P )  for the classical system is independent 

of the magnetic field B (or equivalently, of the vector potential A(r)) inasmuch as the 



latter enters minimally through the replacement p + p - :A(r), and thus the classical 

trace (integration) over the canonical momentum p makes the partition function inde- 

pendent of A(r). This, of course, is not permitted quantum mechanically in that the 

operators p and 2 do not commute then. This exact cancellation was also derived in a 

stochastic real space-time treatment[27], where the cancellation was shown to occur in 

the asymptotic limit of time t +- oo (i.e., in the 'Einsteinian' approach to equilibrium 

statistical mechanics), and the subtle role of the boundary of the sample was clarified 

inasmuch as one had to take the limit t + oo before taking the thermodynamic limit 

of infinite length scale of the confining potential, assumed harmonic. This ensures 

that the particle 'sees' the boundary. This classical treatment, based on the stochastic 

equation of motion in the x - y plane perpendicular to the magnetic field (B): 

2 = -I'ieB + f (t) 
with z = x + i y ,  f( t)  = fi(t) +if2(t) 

(fi(t) fj(t)) = dij2kBTI'S(t - C) 

was subsequently extended to a quantum treatment[28] based on the phenomenological 

quantum Langevin equation in the presence of the magnetic field. Again, the above so- 

called Darwin boundary condition[26] was imposed. A non-zero orbital diamagnetism 

was obtained that, however, differed from what might be expected from the Landau 

diamagnetism for a single charged particle at  temperature T. For the latter, .having 

the Hamiltonian H = k(p - ( ~ / c ) A ) ~  + a harmonic confining term, with the cy- 

clotron frequency w, = (e(B/mc, and V x A = B along z-axis, the partition function 

Z(B, P) = ~ r [ e - B ~ ]  gives the diamagnetic moment[27, 291 

(where the harmonic confinement length scale is finally taken to be infinite.) Interest- 

ingly, the orbital magnetism derived from the (phenomenological) quantum Langevin 

Equation turns out to depend on the frictional coupling to the dissipative environment. 

In fact, the orbital diamagnetism-an equilibrium thermodynamic property- was found 



to decrease monotonically with increasing friction- a transport property[29]. It, how- 

ever, violates no principle (see Sub-section l. l .5).  The orbital diamagnetic moment, 

being a purely quantum phenomenon, with no classical analogue, provides an excel- 

lent 'laboratory7 for studying the effect of a dissipative coupling to the environmental 

degrees of freedom(the heat-bath). A much more subtle question that motivates our 

present study is the following: In the quantum Langevin-equation based approach to 

the motion of a charged particle in a given static magnetic field, the latter enter through 

a local Lorentz force ( e / c ) ( v  x B), with B = V x A. There is, however, another class 

of problems where the magnetic field enters as an Aharonov-Bohm flux (4) and acts 

non-locally through a geometric/topological phase. The  question now i s  whether or not 

the orbital diamagnetic moment induced by the purely geometric phase[30] be affected 

by the dissipative coupling to  the environmental degrees of freedom-a continuum of 

harmonic oscillators. We treat this problem microscopicaly in Chapter 3 using path 

integrals. Our calculation re-affirms our conjecture that this geometric-phase induced 

orbital diamagnetism is essentially unaffected by this dissipative coupling except pos- 

sibly for a small mass renormalization. It may be of interest to derive this orbital 

diamagnetism directly from the phenomenological quantum Langevin equation. 

1.1.4 Effect of dissipative coupling to the environment taken 

as a bath of harmonic oscillators on the quantum motion 

of a particle. 

Finding the microscopic quantum analogue of the phenomenological classical Langevin 

equation( that treats the classical Brownian motion as a physical Ornstein-Uhlenbeck 

Process rather than an idealized stochastic Wiener process), has been[33, 34, 35, 36,38, 

39, 40,41, 42,431 a continuing issue of theoretical physics-of the Einsteinian approach 

to the equilibrium statistical mehanics, where the equilibrium state is reached in the 

time t + oo limit of the quantum Brownian motion. it also address the question as to 

when the environmental degrees of freedom act as a heat bath. 



1.1.4.1 The open and the closed quantum systems and the heat bath 

An isolated quantum system evolves unitarily under its own time-independent 

Hamiltonian--an initially pure state will remain a pure state. By a closed system, 

however, we only mean that it cannot act on to the external environment. Thus for ex- 

ample, a given external field, electric or magnetic, may act on the system parametrically 

, i.e., the field regarded as not having its own degrees of freedom that may be reacted 

back upon. The closed system , of course, evolves unitarily. For an open system, or a 

system comprising the subsystem of interest and the rest of it, the environment with 

many degrees of freedom (of no interest), however, the subsystem exchanges energy 

with, and acts upon and is acted upon by the environmental degrees of freedom. Its 

'reduced' discription (time-evolution) is non-unitary in general. The environment, of- 

ten called the heat bath, usually has a large number of ( ideally infinitely many) degrees 

of freedom of which each is taken to be only weakly (idealy infinitesimally) coupled to  

the subsystem of interest. Thus, in particular, the energy can flow from the subsystem 

to  the environment and cascade away without ever getting refocussed back, on exper- 

imental time scales. This is an irreversible process(keeping in mind the all-important 

consideration of experimental time scales!). The coupling to the environment is then 

dissipative. Furthermore, while each of the many bath degrees of freedom is only 

weakly perturbed, and so the bath may be taken to remain essentially unchanged, the 

subsystem is affected appreciably due to the accumulative effect of the large number of 

the environmental degrees of freedom that can react back--even its equilibrium p r o p  

erties are afected due to, the renormalization effects (level shifts and level broadenings) 

that are always there. In fact, it is only in the limit of the coupling to environment 

+ 0 and the time t + oo, that we have the ideal heat bath[l8, 441. This dissipative 

coupling to an environment is important in all quantum motions. But, notably it be- 

comes a determining effect for subsystems which are essentially quantum mechanical in 

nature-have no classical counterparts. The canonical examples are the phenomena in- 

volving quantum tunneling out of a metastable state that has been extensively studied 



in the past in the context of macroscopic tunneling[38]. Also, the microscopic tun- 

neling inasmuch as it enters the tunneling matrix elements of tight-binding one-band 

Hamiltonian for the quantum motion on a lattice disordered dynamically by coupling 

to the vibrational degrees of freedom (the phonon bath). Yet another example is that 

of the orbital diamagnetic motion of a charged particle in an external magnetic field 

coupled dissipatively to the environment. The last two have been considered in part I 

of this thesis (Chapters I1 - IV). 

1.1.4.2 A microscopic model of the dissipative coupling to the environ- 

ment 

An extensively studied model of general validity for the dissipative coupling of the 

subsystem (coordinate x) to the environment (coordinates qj) involves the idea of 

a harmonic oscillator bath with strictly linear coordinate-coordinate coupling. This 

microscopic quantum model is described by the total Lagrangian[38]. 

Here a counter term is to be added in order to cancel out the unphysical potential 

x xj &? that gets generated by the above model (coordinate-coordinate) coupling, 

giving displaced oscllators. The coupling LsB is usually parametarized through the 

spectral function 

It turns out that for J ( w )  = ve-"/wc (for w << w, with w, a high frequency cut-off for 

the harmonic oscillator bath), the corresponding classical equation of motion reduces 

to that for a damped system (Langevin equation)with friction 7: 

with 

(f (t)f (t')) = 2kBTrlS(t - t') 



Thus, the above choice of J ( w )  is aptly called the 'ohmic bath'. Other choices are 

possible -the subohmic and the superohmic baths[38]. 

The above Lagrangian model for the dissipatively coupled system(subsystem + 
environment) can be treated through the Feynman path integral approach[31, 371. 

Here the statistical mechanics(e.g., the partition function) can be obtained by going 

over to the negative imaginary t ime- the Euclidian action- as will be done in this 

Thesis in order to treat the problem of the orbital diamagnetic moment of a charged 

particle moving diffusively on a ring with Aharonov-Bohm magnetic flux. Another 

powerful, although phenomenological, approach to treating the subsystem dissipatively 

coupled to the environment is through the quantum Langevin equation in the operator 

form[l8, 431. 

where x, x, and x are to be regarded as the Heisenberg operators obeying the canonical 

commutation relations, with the quantum noise <(t) obeying 

and 
hv +" fiw 

([[(t), [(tl)]+) = - duw ~ o t h ( ~ ) e ~ ( ~ - " )  
;TT -00 

In this approach, the equilibrium (statistical mechanics) is recovered in the limit 

t + oo (the Einsteinian approach to statistical mechanics). Also, the commutation 

relations are preserved in time. This is not true of many other phenomenological 

equations proposed so far[l3]. It is important to emphasize, that for an ideal heat- 

bath, we must have y + 0 and t + oo. In general, the frictional parameter y shall 

enter the equilibrium properties[44]. 



1.1.5 Brief introduction to the Euclidean action in relation to 

the partition function. 

The partition function Z(P) for a system in equilibrium at  a temperature T( with /3 = 

l / k ~ T ) ,  and having (a necessarily time-independent) Hamiltonian H = ~ 1 ~ / 2 m  + V(x), 

say, is given by the trace of the canonical density matrix p = e-pH, i.e., 

where {Jx)) is a complete orthonormal basis. This suggests a comparison of the off- 

diagonal matrix element (xb le-Bk1x,) with the real time unitary evolution under the 

Hamiltonian H, namely, (xb le-'Ht/lL Is,), giving K(xb, T; x,, 0) = (xb (e-BB~x,) with 

time T +- -ihP ,i.e., the propagator K with negative imaginary time. Now the 

propagator(rea1 time), or the kernel, K(xb, T; x,, 0) can be written in terms of the 

Feynman Path integrals[31], 

where L(x, x) is the Lagrangian corresponding to Hamiltonian H, 

It is convenient to introduce here S = L(x, f )dt , the real-time action along the 

path [x(t)]. Thus, to go from K(xb, T;  x,, 0) to the partition function, all we need to do 

is to perform the analytic continution t + -ir to negative imaginary time (the Wick 

rot ation) that transforms the real-time action S to the imaginary-time (Euclidean) 

B h 1  & 2  action SE = - [5m(;i;) + V(x(r))]dr, and perform the trace. Thus, we have 

za,bfi 
K(xb, ,Bh; x,, 0) n / D [ X ( T ) ] ~ - ~ ~ E [ ~ ( ~ ) ~  and 

xa ,o 

~ ( 8 )  = 1 ~ ( x . ,  ~ h ;  x., 0)dxa (1.15) 

In effect, this is how one goes from the Lagrangian to the Hamiltonian description 

in statistical mechanics. This enables one to use the full power of the Feynman path 



integral approach. (It admits generalization to many- body systems, of Fermions as 

well as the Bosons). In this Thesis, we will make use of the Euclidean Path integral 

for evaluating the partition function of a charged particle moving on a ring, threaded 

by an Aharonov-Bohm magnetic flux, and coupled dissipatively to a bath of harmonic 

oscillators. 

1.2 Introduction to part I1 

1.2.1 Introduction to Two-Temperature model of thermal re- 

laxation of non-equilibrium electron distribution in met- 

als. 

The recent advancement in ultrafast (femto-second) laser technology has opened up 

a new field of time resolved studies of ultrafast thermal relaxation of electrons in the 

bulk and the nanoscale materials. In metals, because of the large difference between the 

electronic (C,) and lat tice(phononic C,) heat capacities (with C, >> Ce at room temper- 

ature), a femtosecond laser pulse creates nonequilibrium electron distribution, leaving 

the lattice temperature essentially unchanged T, = 300K. Then, over a time scale 

of a few pico-seconds, the nonequilibrium electrons redistribute their energies among 

themselves through electron-electron coulombic interaction, and return to a local equi- 

librium (among themselves) at  a somewhat elevated temperature Te > T,. This excited 

degenerate electron gas then cools(re1axes) via the electron-phonon interactions, giving 

up the excess energy to the phonon bath. Thus, the widely separated time-scales(the 

intra-electron and the intra-phonon relaxation times << the inter-electron-phonon time 

scale) justifies defining the two temperatures T, and T,. This motivates the Two- 

Temperature model[51, 52, 531. The Two-Temperature model tries to describe this 

relaxation process, and has been used extensively by the workers in the field of ultra- 

fast laser spectroscopy in nanoscale materials. Briefly, the two-temperature model 

assumes 



(a) The electron-electron(cou1ombic) and the phonon-phonon(anharmonic) pro- 

cesses are much faster than the electron-phonon processes, so as to  define T, and 

T,(# Te ingeneral) and maintain their local equilibrium distributions giving 

(for electrons) Nk = 
1 1 

e ~ e  ( F - E O )  + 1 ' e  = - 
BT, 

(for phonons) Nf = 
1 1 

e p f i w f  - 1 P = - 
kL?Tp 

with a fermionic electron distribution at temperature T, and a bosonic phonon distri- 

bution a t  temperature Tp (Tp < T,). 

(b) Homogeneous excitation and no spatial diffusion. 

(c) Delta-pulse laser excitation. 

Using the Bloch-Boltzmann-Peierls formula[55] for phonon generation rate per unit 

volume,i.e., 

Here, a = ( T U ~ / ~ V S ~ ) .  One can show that the rate of energy transfer per unit volume 

by the electrons to  bulk phonons is[52] 

This can be cast in the following form 

The above coupled differential equations are the defining equations of the two- 

temperature model of hot electron cooling. Here Q is the specific power absorbed 

by the photo-excited sample and aint is the electron-phonon interaction coefficient. 

In Chapter 6, the problem of hot electron relaxation in nanoscale metal films and 

nanoparticles is considered within two temperature model. 



1.2.2 A general stochastic model for the relaxation of the non- 

equilibrium distribution of a dissipative granular gas: 

application to photoexcited electrons. 

The above Two-Temperature model has a well defined range of applicability-It is a p  

plicable under the conditions mentioned in the previous section, i.e., when re-, << re-, 

and also T,-, << re-,. Here, re-,, re-, ,and 7,-, are the electron-electron, electron- 

phonon and the phonon-phonon relaxation time scales respectively. Typically , 

re-, N sub picosecod N tens of picosecods, and 7,-, N a few picosecond. In 

Chapter 6 we develop[45] a stochastic kinetic model which is applicable for all ranges of 

the electron-phonon interaction strength. Our analytical treatment is based on a gen- 

eralization of the stochastic model known for a driven dissipative granular gas[48]. This 

is an interesting model for a granular gas where the particle-particle and the particle- 

bath collisions are parametrized in detail. More specifically , the total rate of collisions 

suffered by a given ('tagged7) particle is partitioned into the particle-bath collision rate 

(fraction f )  and the particle-particle collision rate (fraction 1 - f) .  Further, a fraction 

a of the total energy of the colliding particles is partitioned randomly between the col- 

liding particles, while the remaining fraction (1 - a) is dissipated through the frictional 

contact during the collisions. The system is kept in the dynamic (non-Boltzmannian) 

non-equilibrium condition by a constant drive. In our generalization to the electronic 

system,the bath has the obivious identification with phonons, and the drive is to be 

identified with the photo-excitation. Also, the possibly dissipative electron-electron 

interaction has to be interpreted in terms of the coulomb interaction as screened by 

the dissipative polarization of the lattice. We have, however, confined our treatment 

to the case of a = 1. Our generalization is physically realizable in a semiconducting 

sample where electrons are injected into the conduction band by photoexcitation and 

removed at  the bottom of the conduction band through the electron-hole recombination 

process. (we assume the sample to be disordered so that energy is the only label for the 



1.3 PART I 



electronic state). Here the kinetics of the electron-electron and the electron-phonon 

(bath) scattering processes, as also the partitioning of the total energy in the inelastic 

collisions, are duly parametrized by certain rate constants. Our analytical results give 

the steady-state electron distribution function, and the mean energy of the classical 

non-equilibrium electron gas as function of the phonon (bath) temperature and the 

rates of injection (cw pump) and depletion (recombination). While, our generalization 

of the stochastic granular gas model to the electronic system covers time-dependent 

process relavent to the transient femtosecond photoexcitation, we have actually treated 

the steady state electron distribution under the cw(continuous wave) drive. 




