
Chapter 2 

Quantum diffusion of a particle on 

a lattice in the presence of coupling 

to the environment modelled 

phenomenologically by a set of 

Lindblad operators 

2.1 Abstract 

I n  this Chapter, we consider the quantum motion of a particle moving on  a I D  lat- 

tice with site-diagonal dynamical disorder i n  the presence of a time-harmonic drive 

and a static uniform bias. Decoherence caused by the on-site dynamical disorder is  

treated through the introduction of a set of Hermitian Lindblad operators chosen so as 

t o  project on to the lattice sites. The resulting Liouville equation of motion for the 

reduced density matrix of the particle is  solved analytically for several physical quanti- 

ties of interest, i.e, the time-dependent mean and the mean-squared displacements as 

a function of the bias and the drive parameters. A n  interesting new result obtained by 

us is  the nonlinear enhancement of the diflusion coeficient with increasing drive am- 



plitude, and its variation with the frequency detuning relative to  the inter-site energy 

gap tunable by the static bias. Our expressions correctly specialize t o  the known exact 

results i n  the limit of zero drive and zero bias. A motivating physical realization of 

the above model is  the Stark- Wannier ladder of states localized in the potential wells 

of a heterostructure superlattice subjected simultaneously to  a strong electrostatic field 

(bias) and an  electromagnetic excitation (drive). Some open questions of equivalence 

of the incoherence caused by the stochastic on-site modulation and the decoherence due 

to  the Hermitian Lindblads, as also the question of dissipation are briefly discussed. I t  

is also argued out that despite the heating e$ects of the Lindblad opemtors[l9, 161 to- 

wards infinite temperature,, the band-width limited nature of the one-band Hamiltonian 

makes the use of the Lindblads physically meaningful 

2.2 Model hamiltonian and the reduced density 

matrix: evolution under Hermitian Lindblad 

operators 

2.2.1 Zero bias and zero drive 

We begin by considering first the simplest case of quantum motion of a particle moving 

on a dynamically disordered ID lattice (Figure 2.1) under a tight-binding one-band 

Hamiltonian 

where (-V) is the nearest-neighbour transfer matrix element, and the sum is over 

the N sites with N taken to be infinite. The effect of dynamical disorder, namely 

the incoherence, will be introduced through a set of Hermitian Lindblad operators, 

L1 = fi I 1 ) ( 1  I that project on to the lattice-site orbitals, I 1) .  The Lindblads 

represent coupling of the particle -- the dynamical degree of freedom of interest here, 

with the numerous environmental degrees of freedom, e.g., the thermal phonons. The 



Figure 2.1: The ID model of a dynamically disordered tight binding chain. 

reduced density matrix p for the particle then obeys the evolution master equation 

(written in the operator form)[?]: 

where the first term on the RHS gives the unitary evolution, while the second 

term gives the non-unitary (incoherent) evolution causing the initially pure density 

matrix (p = p2 at t = 0) to become mixed (p # p2 for t > 0). As is now well 

known, such a Lindbladian preserves the defining properties of the density matrix, 

namely, its positivity, Hermiticity, trace-class property (conservation of probability), 

and the gaussianity of the stochastic process. More explicitly, in the terms of its matrix 

elements, we have 

with the initial condition, 

Pmn (t = 0) = 6m08n0 - 

In the Fourier space, with ,O = -:. 

with 

We get 

a 7 "  
-P(kl, k2, t) = [i,O(cos k2 - cos kl) - 7]P(kl, k2, t )  + Ln P(ki - q1 k2 - q1 t)d!!. (2.7) 
a t  

26 



Defining center of mass and relative wave-vectors as p = (Icl + k2)/2, u = Icl - k2 

and writing b(kl, k2, t) --= p(p, u, t), we have 

d 
--p(p, u, t) = [2iP sin p sin(u/2) - y]p(p, u, t) + - at (2.8) 

We further define the reduced density matrix by 

As the dimensions of p and y are (time)-', we define the dimensionless parameters as 

T = t p  and I' = 5, and defining 

The evolution equation becomes 

We take the time(sca1ed) laplace transform 3(p, u, s)  = J,OO e-STp(p, u, r )dr  of the above 

equation(Eq. 2.11), and get 

Now we want to calculate the value of p(p, u, t = 0). We know that 

With this we get 

Summing the above equation i.e., Eq(2.14) over p, we have 



By re-arrangements we get 

Now, we want to find the mean and the mean-squared displacement of the quantum 

particle. For this we note 

Now, the mean displacement in the s-domain is given by C, npn,%(s), for 

Thus, we have 

Similarly, the mean-squared displacement is given by 

Now differentiating Eq.(2.16), w. r. t. (u) and finding the derivatives of the integral 

I at  u = 0, and using Eq.(2.18) and Eq.(2.19), we obtain 

Recalling, T = tP  and l? = y/P, where ,B = V/h,  y = 2gO/h2, we obtain 



Space - 
Figure 2.2: The 1-D model of a dynamically disordered tight binding lattice with bias. 

which reduces to the classical case in the large time (t >> 117) limit with (x2(t)) N 

(p2/y)t giving the diffusion coefficient D = P2/2y. In the small time limit it goes ballis- 

tically as t2 as expected, while the mean displacement (x(t)) is zero. The same results 

were obtained by solving the Schroedinger equation with a time-dependent random 

potential (Gaussian White Noise, GWN) [I, 21 by using the Novikov theorem[21]. 

This shows the equivalence of time evolution of the quantum particle obtained by 

solving the Schroedinger wave equation with a time-dependent GWN potential and the 

evolution by Lindbladian master equation for a tight- binding lattice Hamiltonian. 

2.2.2 Non-zero bias and zero drive 

Next, we consider the more interesting case where the model lattice hamiltonian has 

a systematic bias in that there is a constant energy mismatch between the successive 

site energies. The system hamiltonian in this case is, 

with a as the site-energy level spacing. With this hamiltonian, the Lindbladian master 

equation(Eq.2.2) for the time evolution of the density matrix is now, 

V -  1 a - - 
1 --- 1 

- , 7 ' .  
h time7 fL time tzme 



Now, we define 6 = $, I' = $, T = F 7  as dimensionless pararneters.So we have 

Writing the above equation in the Fourier space, by defining 

imkl ink2 P ( h  k2 t ) = C ~ m n  ( t)e-  e 7 

m,n 

we get 

-ink1 ink2 -imkl ink2 
- r C p m n ( ? - ) e  e + r C b r n n P m n ( ? - ) e  e 

m,n m,n 

Using the representation bmn = I?; eqrn-")qdq in the last term of the above equation, 

we obtain 

a(n17 k2. T) = [ pm+l,n (T)e-i(m+l)kl  e ink2 e 1.1 + c p m - l , n ( ~ ) e  -i(m-l)kl inkze-ikl e a7 2 m + ~ , n  m-l,n I 
imkl ink2 d pmn(?-)e- e + i- x pm, (?-)evimkl 

mn I 



Inserting the center-of-mass and the relative wave-vectors as P = and u = kl - k2 

respectively, and writing P(kl, k2, T) as p(p, u, T ) ,  the above equation transforms to 

As before, we take the time Laplace transform of the above equation, 

giving 

d 
@(p, u, s)-p(p, U, 0) = 6-p(p, u, s)-[r+2i sin(u/2) sin(p)]P(p, u, s)+rg(u,  s). (2.32) 

8~ 

Using the initial condition p(p, u, 0) = 1, we get 

d 
-6-P(p, u, s) = -[s + I? + 2i sin(u/2) sin(p)]P(p, u, s) + 1 + r f ( u ,  s). (2.33) 

a p  

Now writing u = y, f, = i s in  " 2 7 and -11 + r f ( u ,  s)]/2 = Q(u, s),  we obtain 

After solving the above first order P.D.E. in p, we obtain 

P(P, u, s) = Q(u, s)e 
up-i f, cosp e-up+i f, cosp 1 dp + C(u, s)eup-ifu (2.35) 

The integration 'constant' C(u, s )  is calculated by setting P = 0, in the above equa- 

tion(Eq.(2.35)) as 

The transformed density matrix in the s-domain a t  p = 0 is given as 

In the long-time limit, due to decoherence by the dissipative medium, the contribution 

of the off-diagonal elements to Pm,(s) becomes very small, and only the diagonal ele- 

ments (m = n) will contribute to the time evolution of the density matrix. Under this 

3 1 



condition, we get a closed solution of Eq. (2.35). By by putting m = n in Eq. (2.37), we 

now get 

Now, from Eq.(2.17) we have 

m 

and thus from Eq.(2.36) and Eq.(2.39), we get 

C (u, S) = Z(u, s) eafu - Q (u, s) [/ em(p9u)dp] , 
p=o 

where we have defined +(p, u) = -up + if, cosp. Next, we sum Eq.(2.35) over p and 

Now it is convenient to define the integrals 

With these definitions of the integrals, and using Eq.(2.36), we get 

I l I2p  - I 
2(u, s) = 8 + I'I - I'1112p - 811eifu * 

We know from (Eq.(2.17) and Eq.(2.18)) that (i(s)) = i [w] . Accordingly, 
u=o 

we differentiate Equation (2.44) w. r. t .  (u) and set u = 0. Finally, after some algebra, 

we obtain 

(i(s))  = 8 
sinh 7rv , z =  

7ru 



Figure 2.3: The plot of mean displacement x(r)(vertical-axis) vs. scaled time r = 

t/to , to = ti/V,(horizontal axis). The solid line is for I' = toy = 0.1, dotted(r = I ) ,  

and the dashed line(r = 2),with constant 6 = a/V = 0.5. 

The above equation (Eq.(2.45)) was numerically inverted to time domain, and the mean 

displacement vs. scaled time is plotted in Fig(2.3). 

2.2.2.1 Small 6 - limit: 

We can set 6 positive, without loss of generality. Small 6 limit means that energy level 

sepration o << transfer matrix element V. Under the limit 6 + 0, v = 9 + m thus 

Z - sinh .rrv 
- N 

eTV/2 
- - 

eTu/2 
N N  - 1. 

z - 1 sinh .rrv - .rrv eTu/2 - r v  eTu/2 

Thus, taking the inverse laplace transform of Eq.(2.45), we obtain 

r s2 - r2 26r -rT 

( ~ ( 7 ) )  16 [r2+s2 '+ ( r 2  + 62)2 (1 - e-rT cos 67) - (b2 + r2)2e  sin 61- . (2.47) I 
One further approximation can be performed for 6 << I' 

This is odd in 6 as it should be. Long time behaviour is 

Small time behaviour is 



2.2.2.2 Small s - analysis, long time behaviour: 

For small s we mean s << I' and sinh av -- s inh(y)  + s: cosh(y),  we obtain 

I 
For 6 << r, the Eq.(51) gives ( ~ ( 7 ) )  N $7 as expected. 

It is readly seen that the mean displacement is zero when 6 is zero,i.e., when all 

the lattice sites have same energy(as in case A with no bias). Also, the expression for 

( ~ ( 7 ) )  is an odd function of 6, as it should be. 

The expression for mean-squared displacement (x2 (s)) in the s-domain is obtained 

by doubly differentiating Eq.(2.44). We obtain 

The values of various integrals are given in the Appendix(2A). 

2.2.3 Non-zero bias and non-zero drive 
L 

Next we consider one more physically realizable case in which the lattice is present 

in an external electromagnetic drive(semiconductor heterostructure superlattice with 

Stark-Wannier ladder of states present in a tunable laser field). Our model is described 

by a tight-binding one-band hamiltonian 

with the evolution master equation 

where Eo cos wt is the time dependent drive of amplitude Eo and circular frequency w, 

appearing as the nearest-neighbour transfer matrix element. It may be noted, that in 



the limit w = 0, this simulates the usual transfer matrix element -V. In terms of the 

matrix elements 

(2.55) 

The quantities F, 9 ,  and y have a dimension of time-l. So, we define the scaled 

quantities to = &, 6 = I' = toy, and T = L. With this we have 
Eo ' t o  

a ~ m n  
- = i cos~T[~m+l ,n  + Pm-1,n - Pm,n-I - Pm,n+~] - id(mPmn - n~mn)  - r[l- 6rnnI~rnn a7 

(2.56) 

After applying the rotating-wave approximation[l8] with pmn = pmn e-i6(m-n)T th e 

evolution of reduced density matrix in co-ordinate space is 

(2.57) 

Here, we have defined 0 = wto, T = t/tO, and to = fL/Eo. By writing, A = 0-6. The 

A is the detuning wto - 6 between drive frequency w and scaled energy level spacing 

6. Noting that 

we obtain 

r 
a'(k17 k27 = ( i [ c o ~ ( k ~ + A ~ ) - c o s ( k ~ + A ~ ) ] - I ' ) ~ ( k l ,  k2, T)+- /. b(kl-q, k2-9, ~ ) d q .  a?- 2~ - A  

(2.59) 

Performing the co-ordinate transformations p = (kl + k2)/2 , u = k2 - kl and defining 

$(kl, k2, T) - ~ ( p ,  U, T ) ,  we have 



By defining 

the solution of the first order P.D.E (Eq.(2.60)) is 

e(p,  u , ~ )  = re-v(p*u7T) e v ( p ~ u ~ r ) ~ ( u ,  T ) ~ T  + Cl (p ,  u)e-v(p9u'r). J (2.63) 

Summing over p, we get 

c e(p ,  u ,  T )  = r c e-v(p9u9T) / e v ( ~ + ' T ) ~ ( u ,  T ) ~ T  + c c1 ( p ,  u )  e - 7  , (2.64) 
P P P 

To calculate Cl (p ,  u )  , we put T = 0 in Eq. (2.63), and use the initial condition (Eq. ( 4 ) ) ,  

i.e., pmn(t = 0 )  = pmn(t = 0 )  = 6m06no. We get 

Thus, 

Equations (2.66),  and (2.68) give 



Noting that (x(T)) = i ~ l , = o ,  in order to calculate the mean displacement, we 

differentiate w. r. t .  u and set u = 0. Using Eq. (2.61) we finally obtain(Apendex(2B)) 

Thus, the mean displacement is zero in the rotating wave approximation even for 

non-zero bias. To calculate mean-squared displacement (x2(r)) = - [w] we 
U=O 

solve Eq.(2.69) by doubly differentiating it w. r .t. (u) setting u = 0 (Apendex(2c)), 

and get 

d2x(~7  7) = r e r 7  1 . r ~  [ 
k2 

] dr - 1 (1 - e-rT cos AT) 
u=o (A2 +F2) 

Equation (2.71) is solved by the Laplace Transform method (Apendex(2c)). We 

finally obtain 

r + [(t22~:2;2] {1 - e-r7 COSAT} - 
2rA 

(x~(T))  = r2 + A2 ( ~ 2  + r 2 ) 2  e-r7 sin AT. 

(2.72) 

The above equation (Eq.(2.72))is an important result of the present work. The 

mean squared displacement from above equation is plotted in Figs. 2.4,2.5 and 2.6. 

For two special cases of interest, equation (2.72) gives: (A) On-resonance, i.e., 

A = - -  
Eo -07 

Eo2 (x2 (t)) = -t , (di f f usive). (2.73) 
ti2? 

(B) Off-resonance and long time t ,  

E,2? 
(x2(t)) = p y 2  + (b - 4 2  

t , (di f f usive - controllable) (2.74) 

which indicates diffusion, but with a diffusion constant 



Figure 2.4: The effect of dimensionless damping I' on mean-squared displacement. The 

top most curve is for high damping case I' = 0.3, central for r = 0.2, and lowest for 

I? = 0.1. With constant detuning parameter A = 2. As the damping decreases, the 

oscillations in the mean-squared displacement increase, but after a long time oscillations 

vanish and the mean-squired displacement goes linearly with time as it should. Note 

tL that, r = 7% , r = t?, and A = 
Eo ' 

Figure 2.5: Shows the effect of detuning (A) on mean-squared displacement. The 

top most curve is for the resonance case, detuning A = 0; central for A = 0.5; and 

the lowest for A = 1. Damping parameter I? = 0.08. As the detuning goes up, the 

oscillations in the mean-squared displacement increase, but the latter has the same 

overall evolution, namely, short time r2 rise, followed by oscillations, and finally the 

mean-squared displacement goes linearly with time. 



Figure 2.6: Diffusion coefficient D in the long time (classical) regime as a function of 

the damping parameter I' (scaled system-bath coupling parameter). It is a maximum 

for the detuning parameter A equal to damping parameter r, i.e., when the drive 

frequency w, = y + alh. 

Figure 2.7: Diffusion coefficient D as a function of scaled time T .  It oscillates intially 

and in the long time limit it takes on a constant value. Here, we have taken I? = 0.1, 

and A = 0.5. 



Figure 2.8: Diffusion coefficient D vs scaled time T and detuning parameter A. It is 

clear that after the initial oscillations, diffusion coefficient takes on a constant classical 

value in the long time limit. Here F = 0.01. 



tunable with the external derive. This is one of the main results of this work. The 

energy-level spacing 'a' between the sites can be controlled by the external electrostatic 

field E as a = eE.a , where a is the lattice vector[l4]. Thus a and w act as control 

parameters in an experiment. Diffusion coefficient becomes maximum at 

All our analytical expressions specialize correctly to the earlier exact results in the 

proper limits. 

Discussion 

We have studied the quantum diffusion on a dynamically disordered lattice described by 

a tight-binding one-band Hamiltonian in the presence of static bias and harmonic drive. 

The usual site-diagonal guassian white noise is replaced by a set of Lindblad operators 

that project on to the sites and cause decoherence. With the Lindblad master equation 

we reproduce several known exact results based on the Gaussian white noise stochastic 

models. An interesting new result obtained by us is the nonlinear enhancements of 

the diffusion coefficient yEi/2(fiy2 + (fiw - a)2) with increasing drive amplitude, and 

its variation with the frequency-detuning relative to the inter-site energy gap which 

is tunable by the static bias. A physical realization of the above model is the Stark- 

Wannier (SW) ladder of states localized in the potential wells of a heterostructure 

superlattice (SL), subjected simultaneously to an electrostatic field E (the bias) normal 

to plane of the layers and an electromagnetic excitation (the drive). Unlike the usual 

atomic lattices, for the SW states in the SL, the energy-level spacing 'a' between the 

sites can be controlled by the strong external electrostatic field E as a = eE.a, wherea 

is the lattice vector.13 Thus the mean displacement is controllable. Our expressions 

correctly specialize to the known exact results in the limit of zero drive and zero bias. 



The various s-domain integrals and their derivatives for calculating the mean-squared 

displacement in Section 2.2.2 (Eq.2.52) are: 

1 = I=-J e-d(p9")~2dp , Il = e-m(ps)dp , I2 = ed(p9u)dp , IZp = [12]p=0 , I3 = 1112p. 271. -7r / 
Here, d(p, u) = -vp + if, cosp , v = , f, = $ s in(up)  , z = e. X u  

iv2 1 ie-"P(sin p - v cos p) 
Ilu = 2 , II 

- 
lU - 6(v2 + 1) , '2up = -; , I;, = 

6(v2 + 1) 7 

On differentiating the equation(2.67) with respect to (u) and putting u = 0,we get 

We have defined (Eq.(2.61)) 

The value of ~ ( u ,  T) at  u = 0 comes out to be 

The integrals in Eq.(2.78) have the values 



The notation 14, means [14]u=0. Inserting the calculated integrals, we obtain 

Defining g(r) = erTX1(O, r )dr ,  the above equation becomes 

g(r) = r g(r)dr + constant. J 
Which readily gives (x(r)) = constant. Since (x(r = 0)) = 0 we have 

In equation (2.71), we define erT [w] ,=, = f (r). With this, f ( r )  takes the follow- 

ing form 

err cos AT sin AT 
f (7 )  = r / f ( r ) d r  - A ~ + I ' ~ + A ~ + ~ ~  + a(a2+r2) + constant. (2.80) 

Differentiating the above integral equation, we get 

With the initial condition f (r = 0) = 0, i.e., mean-squared displacement is zero at  time 

r = 0, the above equation can be readily solved to get the mean-squared displacement 

as given in Eq.(2.72) 




