
Chapter 4 

Quantum motion of a particle on a 

continuous ring linking 

Aharonov-Bohm Flux in the 

presence of dissipative coupling to a 

bath of harmonic oscillators - 

non-suppression of orbital 

diamagnet ism (microscopic 

approach) 

4.1 Abstract 

In this Chapter we consider the orbital(diamagnetic) moment associated with the quan- 

tum motion of a charged particle (the system) moving on a ring threaded by an 

Aharonov-~ohm(A-B) magnetic flux (+) coupled dissipatively to a continuum of bar- 

monic oscillators (the heat bath). Inasmuch as the purely gauge flux + here enters the 



quantum mechanical motion as a topological/geometric phase factor, i t  was our con- 

jecture that its quantum aspects (orbital diamagnetism) may not be suppressed by the 

dissipative coupling to  the bath. I n  order to  decide this conclusively, we have calcu- 

lated the partition function of the system (coupled to the bath oscillators) i n  terms of 

the Euclidean(imaginary t ime) path integral that incorporates the effects of the dissi- 

pative coupling to  the environment. W e  find from the resulting partion function that 

the eflect of the bath harmonic oscillators turns out to be essentially a renormalization 

of the inertia (mass) of the quantum particle moving on the ring. Thus, unlike the 

case of a particle moving i n  a simply connected region (the plane) under the influence 

of the Lorentz force, where the diamagnetic moment is known to  decrease monotoni- 

cally with increasing dissipation (resistivity[29, 30]), i n  this case for the motion on  the 

non-simply connected region (the ring) the orbital diamagnetic moment remains essen- 

tially unaffected by the dissipative coupling to  the bath. Thus, the normally expected 

classicalization does not occur. The  same conclusion is also derived from yet another 

calculation based on  the reduced density matrix evolving under the quantum master 

equation, known to  be valid in the high-temperature limit. 

W e  begin this  Chapter b y  recalling once again the  important fact tha t  t he  orbital 

diamagnetism is known t o  b e  a phenomenon o f  direct physical interest i n  the  molecular 

and the  condensed matter  physics, and is of purely quantum origin-it has no classi- 

cal analogue. T h i s  vanishing o f  the  orbital diamagnetism in  the  classical limit is the  

celebrated Bohr-van Leeuven theorem[24, 251. Here, i n  the  presence o f  an external 

magnetic field (and t he  associated local Lorentz force z(v x B ) ) ,  the  induced cyclic 

currents i n  the  bulk (Maxwell cycles) and the  skipping orbits (edge currents) at  t he  

boundary (internal as well as external) contribute equal and opposite magnetic mo- 

ments.  Th i s  classically exact cancellation may  be  visualized from the schematic i n  FIG. 

3.1. Th i s  makes t he  s tudy o f  orbital diamagnetism i n  a quantum dissipative system 

interestingfundamentally. T h e  vanishing o f  the  orbital diamagnetic moment  follows 

at once from the  fact tha t  the  equilibrium partition function Z (B ,  P)  for t he  classical 



system is independent of the magnetic field B (or equivalently, of the vector potential 

A(r))  inasmuch as the latter enters minimally through the replacement p + p- zA(r), 

and thus the classical trace over the canonical momentum p makes the partition func- 

tion independent of A(r) .  This, of course, is not permitted quantum mechanically in 

that the operators fi and i. do not commute then. We address here the general ques- 

tion: how does the diamagnetic behaviour (a property of the purely quantum system) 

change under the influence of the environment-induced decoherence-a case of quantum 

to classical crossover!. Thusly motivated, we study below some model quantum systems 

coupled (dissipatively) to the bath. Let us first recall in some detail the vanishing of the 

classical orbital diamagnetism in some detail. This equilibrium-statistical mechanical 

result can be re-derived more explicitly from a real space-time-dependent approach in 

which the classical motion is treated as a stochastic process (the Einstein Brownian, 

or the Langevin, approach to statistical mechanics), where the equilibrium orbital dia- 

magnetism is obtained in the time t + cc limit. This treatment also clarifies the role 

of the boundary(e.g., a harmonic confinement) through the ordering of the two limits, 

namely, that the t + cc limit is to precede the limit of the confining length-scale + cc 

(the so-called Darwin limiting procedure[27]). Thus, it has been shown explicity in 

a classical stochastic model system[28] that the orbital diamagnetism obeys Bohr-van 

Leeuven's theorem. Quantum mechanically, however, this cancellation is incomplete, 

and this has indeed been demonstrated for a charged quantum particle moving in a 

plane normal to the external magnetic field, in the presence of a harmonic confine- 

ment and dissipative coupling to a harmonic oscillators heat bath1291 treated through 

a stochastic quantum Langevin equation. In fact, the orbital diamagnetism turns out 

to be a decreasing function of friction (dissipative coupling)[30]. Interestingly, this im- 

plies that an equilibrium thermodynamic property(orbital diamagnetism) is controlled 

by friction (a transport property)! Indeed, for the simple model above, the orbital dia- 

magnetism was found to be a monotonically decreasing function of the properly scaled 

electrical resistance of the sample[30]. 
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Figure 4.1: Skipping orbits at  the boundary (the edge currents) contribute oppositely 

to  the Maxwell cycles (the bulk currents) shown for the particle carrying a charge 

(assumed positive in the figure ). The magnetic field B(e) is comming out of the plane 

of the paper in this figure. 

There is, however, no other analytically solvable model known that addresses this 

problem. This has motivated us to explore the orbital diamagnetism in the presence of 

decoherence (due to coupling to the bath degrees of freedom) for a model of a charged 

particle moving on a ring with the A-B flux 4 threading the ring (FIG. 4b). Here, 

the flux enters the wave function as a geometric (or topological) phase factor. The 

decoherence will be introduced through a strictly linear coordinate-coordinate coupling 

to the harmonic bath oscillators. This is essentially different from the earlier case for 

a particle moving in a plane (simply connected region) in the presence of a magnetic 

field perpendicular to the plane[29] where the particle experiences the local classical 

Lorentz force (v x B). 
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Figure 4.2: Motion of a particle carrying a charge (assumed +ve in the figure) in a plane 

normal to the magnetic field B under the Lorentz force, Figure 4.2(a); and no Lorentz 

force for the motion on a ring with an Aharonov-Bohm flux 4 threading through the 

ring, Figure 4.2(b). 

4.2 A charged particle with its coordinate coupled 

linearly to the co-ordinates of a bath of har- 

monic oscillators and moving on a ring with 

an A-B flux threading the ring: The Euclidean 

Pat h-Integral Approach. 

4.2.1 The Lagrangian and the Euclidean Action 

Our model now consists of a free particle moving on a ring(the system) which is 

threaded by an Aharonov-Bohm flux. The particle is coupled to a continuum of har- 

monic oscillators(the heat bath). The coupling is strictly linear in the system coordinate 

x(t) and also in the bath co-ordinates qj(t), with the coupling, coefficient cj for the jth 

harmonic oscillator. The total Lagrangian (L) for the system (S) and the bath (B) is 



1 
LB = 5 C[Mjqj2 ( t )  - M~w:~: (t)] 

We also have to include a counter term to cancel out a certain unphysical potential 

term(generated by the dissipative coupling) involving the system coordinate x(t) as 

discussed in Chapter 1, and will be treated later below. The corresponding Euclidean 

action can now be written by introducing the imaginarry time T = it 

It is be noted here that we have retained "i" in the expression for the Euclidean action. 

Our objective now is to calculate the partition function Z(P, B). To this end, we carry 

out the following steps: (a) Wick rotation as in Eq. (4.2)to the negative imaginary 

time, i.e.,t = - i ~ ,  with 0 5 T 5 hp ;(2) integrate out the system coordinate X(T) with 

x(0) = x, x(fi,B) = xb; (3) trace out the bath variables qj(7) with qj(0) = qj(h/3),(4) 

integrate out qj(0)(= qj(tiP)); and then compare the resulting Euclidean path integral 

with a reference-system path integral in order to discern the effects on the system of the 

system-bath dissipative interaction. Finally, we must integrate over the system variable 

x(0) (= x(fiP)), to obtain the partition function. It is this last step that introduces the 

(geometric) phase associated with the A-B flux and the ring topology, namely, that 

x(0) = x(hP) will imply x(hP) = x(0) modulo n27ra; that is to say that we introduce 

the winding number 'n' in the trace operation. Thus, we will proceed till the last 

step as if we are working on a one-dimensional unbounded space (infinite line), and 

finally identify the points which are multiples n of 27ra apart (a = ring radius), where 

n = 0, f 1, f 2 . .  .. The winding number n will give the phase factor eind/+O in tracing 

over x(0) = (x(fiP)). Here $o = hcle is the flux quantum, with e > 0 



Figure 4.3: A few possible paths that the particle may take in ;eal time evolution from 

initial space-time point (x,, 0) to final space-time point(xb, T). 

4.2.2 The path integral 

The partial path integral for the system variable x(T), with X(T = 0) = x, and 

X(T = pfi) = xb involves the Euclidian actions Ss + SSB representing the free par- 

ticle interacting linearly with the bath degrees of freedom (FIG.4.3). Accordingly, we 

introduce the kernel 

with 

f (7) = C cjqj (7)- 
j 

Here the ellipsis (. . .) denotes the un-integrated bath varibles (qj(T)). 

Using the standard results from the path integral for a free particle coupled linearly 

to harmonic oscillators, we obtain 

where again the ellipsis (. . .) denotes the factors that involve the purely bath action SB. 

Let us now consider the various terms in the exponent. The last term in the exponent 



on the RHS of the above equation (Eq.(4.5)) involves only the bath variables and 

represents the effect of the single degree of freedom X(T) of the system of interest(i.e., 

the particle on the ring) on the very (infinitely) large number of the bath variables 

qis. As discussed in Chapter 1 (Introduction), due to the (infinitely) large number of 

degrees of freedom of the bath, this renormalization effect is negligible. We, therefore, 

neglect the last term $- JtP d J ds f (T) f ( ( h  - 7)s in the exponent. The middle 

two terms, which involve both the system variable x(r)  and the bath variables qj(7), 

can be re-written as 

With this definition of F~(T), we now path-integrate out the bath variables, leading to 

the kernel 

Here now the ellipsis (. . .) denotes the factors from the Kernel above that do not involve 

the bath degrees of freedom. On performing the path integration[32], we get 

- M . w .  2q . ( 0 )  
,n sinbJwjns [-4q;(0) s inh2(wj f iP /2 )+kra -**b l  

xe 3 3 with 

hP 
Ia = - 1 F, (T) sin w j h g d ~  - 1'' F, (r)  sinh wj (hp - r ) d ~  , 

It, = Ah' d~ lT d s 4  (T) Fj(s) sinh wj(hp - T) sinh W ~ S  . 

The values of the integrals I ,  and Ib above are given by 



and 

1 1 sinh wjti/3 
Ib = a2[xaxb-- C O S ~  ~jh/3(x:+x~)+-~jh/3~inh w ~ ~ / ~ ( x : + x ~ + x ~ x ~ ) +  

2 6 2wjIi/3 (xa-~b)~] .  

Next, we integrate out the bath variable qj(0) from -oo to +oo, which is equivalent 

to taking a trace over the bath degrees of freedom: 

The above Gaussian integral gives the full effective kernel of the system 

-1 
and Po = 

hMJwj sinh wjh/3' 

Now, on substituting the values of I, , Ib , a 0  , and Po, the full effective kernel for the 

system can be written as 

2 r n ~ . w ~  -A8 [ - ~ - ~ o t h ( ~ ~ f i / 3 ) - t /  sinh wjhB+wj~B/6+2/wj~B) (za-xb)' 

xe 3 3 1 . (4.11) 

4.2.3 The winding number and the partition function 

Now we have to consider the factor invoving the sum (x, + xb)/2 in the exponent 

on the RHS of Eq.(4.11). This is where the counter terms come in. Indeed, for 

x, = xb, this term is readily seen to be a potential(harmonic), quadratic in the system 

coordinate, generated by the integration over the bath oscillator coordinates. This 

term is unphysical in that it destroys the translational symmetry of the system-it 

tends to specially treat the particle position at  x = 0. This unphysical term must be 

considered as cacelled out by a counter term assumed to have been introduced in the 

system Lagrangian as discussed in the introduction (Chapter 1). We assume this to 



have been done and ignore this term for the time being, and return to it later (see 

Appendix at the end of this Chapter). Thus, we are finally left only with integration 

over the relative coordinate (xb - x,), before setting x, = xb modulo n.27ra. Thus , we 

consider the second part of the exponent (in Eq.(4.11)) which involves the system mass 

m in it and the system co-ordinate difference (x, - xb),. and consider now the effect of 

the Aharonov-Bohm magnetic flux when setting xb = x, to get the partion function 

Z(P, B). As dissused above, this means xb - x, = 27ran where n = 0, f 1, f 2, .  . . , the 

winding number, and, accordingly, the J:ab A . dx = n4. Hence, the effective system 

partition-function is 

Z(B, ,f?) - K(xb, fiP; xa, 0) lzb=za modulo n.2na = 

+ corrections from the counter term. (4.12) 

It is to be noted here that what is really important for analyzing the orbiatl moment 

is the term -alphal in the exponet of Eq. (4.12) that involves the magnetic flux 4. 

Thus the magnetic moment M = ;-&lnZ(~,p), with 4 = ?ia2B, and , therefore, all 

other factors independent of B simply drop out. Thus, finally we have 

where meff is given by (see Appendex 4.5) 

with w, the bath high-frequency cut-off, and 7 the frictional coefficient as introduced 

in the Appendix 4.5 to be in line with the convention[39]. The RHS of Eq.4.13 (apart 

from the pre-factors involving the bath parameters) can be readily identified with the 

path integral for the charged particle on the ring threaded by the A-B flux, except for 



bare mass m replaced by the effective mass mef f .  Thus the latter is the only effect of 

the dissipative coupling on the orbital magnetic moment. This essentialy vindicates 

our conjure. 

4.2.4 Discussion 

The Eqs. (4.13) and (4.14) are the important final results of ihe present study. These 

clearly show that the effect of the dissipative coupling to the bath oscillators on the 

motion of the charged particle moving on a ring threaded by the Aharonov-Bohm flux 

4 is only to change its effective mass. Thus, the effect of bath on the system can be 

incarporated as a renormalized mass of the particle. 

Now, using the identity 

for the factor with n2 in the exponent of Eq.(4.13), we get 

This is essentially (to within trivial factors independent of $1 the partition function 

for the charged particle moving on a ring threaded by the A-B flux, known from 

equilibrium statistical mechanics. Hence, the orbital diamagnetism (dependence of 

Z(B, P )  on 4) persists, with a change only of the effective mass, despite the frictional 

coupling to the bath. The change, of course, vanishes rapidly(quadratical1y in P )  at 

higher temperatures. This is in contrast to the results known[30] for the case of motion 

of a charged particle on a plane perpendicular to the magnetic field, where the particle 

is subject to  the Lorentz force unlike our case for the ring. 



4.3 Orbital diamagnetism of a charged particle 

moving on a ring with Aharonov-Bohm Flux: 

Density matix treatment based on quantum 

brownian motion master Equation. 

4.3.1 The density matrix and its equation of motion 

We reconsider our model consisting of a free particle on a ring(the system), threaded by 

an Aharonov-Bohm flux. The particle is coupled dissipativelyto a system of harmonic - - 
oscillators(the bath). In the following we use the quantum Brownian motion master 

equation to study the effect of this dissipative coupling on the orbital dimagnetism. 

The Quantum Brownian Motion master equation for the density matrix operator p 

is[l8](in the absence of the vector potential) 

For the motion on the ring threaded by the A-B flux 4, we introduce the density matrix 

in the 8-representation (BlIjlO2) I hl,& = j?;2,e1, with x = as, and 2 on the R.H.S. of 

Eq. (4.16) replaced by &($e - :As) . The system Hamiltonian is 

with a = ring radius. The unitary evolution part, i.e., the first term on the R.H.S in 

the master equation (Eq. (4.16)), gives 

The non-unitary part, i.e. the second and the third terms on the RHS in Eq.(4.16), 

give 



Thus, we have 

iye$ 
- { Y ( O l  - 0 - ( 0  - 02) - 

m h c  

It is conveniwnt at  this stage to introduce a gauge transformation; pelre, = 
* * 

e @ o  je1,e2e 60 . Substituting this in Eq.(4.20), we obtain 

4.3.2 The t + w limit. Steady-State Solution for the density 

matrix 

Next, we transform the above equation by defining the center-of-mass u = + 02)/2 

and the relative co-ordinates 0 = (01 - 02). The transformed equation is 

A s  our particle is  a free particle(no confining potential) and we are interested i n  the 

steady-state condition, we set 9 = 0, i.e., i n  the steady state (which is the equilib- 

r ium state in the t ime t + oo limit) the density matrix ji can not depend upon time. 

Also, because of the un$ormity i n  the 0-space i t  can not depend on the center-of-mass 

co-ordinate u = (81 + 02)/2. The density matrix will then be a function of the relative 

co-ordinate 0 = O1 - 02 onlp. Thus, we get 

It is now seen from Eq.(4.23) that in the steady state of the system, the friction 

coefficient y drops out !. This already means that the orbital magnetization, to be 

obtained from the density matrix, will be independent of the frictional coupling y. 

For completeness, however, we derive below the expression for the partition function 



obtained from 6, and thus show explicitly its dependence on the external magnetic 

field, ( or flux 4).  

Equation (4.23) gives the solution for p(0): 

or for p(8) - p(81 - 82) : 

m k  T ~ ~ ( O ~ - O ~ ) ~  -{ 262  hc P(& - 02) = e e'+lh, 4, = - , the flux quantum . 
e 

(4.25) 

4.3.3 The partition function 

We now make a transition from the unbounded line -00 < 6 < +oo to the bounded 

ring 0 < 0 < 27r. This is realized by formally identifying the points 8 and 0 + 27rn, for 

integer n (the winding number) that gives the topologically distinct paths (differing in 

the winding number) connecting and 8, and must be counted as such in calculating 

the density matrix for the ring. (Distinct here means that the paths differing in n can 

not be deformed continuously into each other). Thus, we get for the density matrix on 

the ring bring. 

Here we have introduced the suflix 'ring7 to emphasize the winding-number aspect, 

and made use of the fact that a winding number n links the flux($) n times. The ring 

current Iring is then obtained from bring as 

giving the ring magnetic moment Mring = .rra21ring. Clearly, the Ring Magnetic Moment 

does not involve the dissipative coupling y in that jrin, is independent of y, as already 

demonstrated. The partition function for the ring Zring(B, ,8) can now be expressed in 

terms of the density matrix as 



This can be cast in a more familiar form by use of the identity for the gaussion 

factor occuring in Eq. (4.28) 

followed by an identity for the Shah function (the Dirac comb) I I I (y)  

We obtain 

This is, of course, the elementary expression for the partition function at temperature 

T for a charged particle on a ring of radius 'a' threaded by a magnetic flux 4. This is 

independent of the friction coefficient y. But it depends upon the the Aharonov-Bohm 

magnetic flux 4, and hence gives the non-zero diamagnetism. 

4.4 Discussion 

In this Chapter we have derived the orbital magnetic moment for a charged particle 

moving quantum mechanically on a ring threaded by a given magnetic flux in the 

presence of a dissipative coupling to the bath of harmonic oscillators. We first treated 

the problem through the Euclidean path integral and found that the pa.th integral 

reduces to that of a free particle in the absence of the dissipative coupling, except for 

a renormalization of the inertia(mass) of the particle. Thus, the frictional coupling 

to the bath does not suppress(decohere) the quantum orbital diamagnetism, unlike 

the case known for the motion in a plane. We attribute this qualitative difference to 

the fact that in the case of the ring, the flux is a purly gauge flux (Aharonov-Bohm 



flux) and enters the path integral as geometrical/topological phase factor. There is no 

dynamical (Lorentz) force E(v x B) acting locally on the particle, as is the case for the 

motion in a plane (or any simply connected region). This result is also recovered from 

the density matrix for the ring obtained by solving the Quantum-Brownian master 

equation. Again, the friction coefficient drops out and we obtain the non-zero orbital 

diamagnetism, as for the free particle without any dissipative coupling to the bath. 

The latter treatment, however, is valid only in the high temperature limit(as is the 

quantum master equation) on which it is based. 

4.5 Appendix: Cancellation of the unphysical term 

in the action ( generated by the dissipative cou- 

pling to the environmental degrees of freedom 

eliminated or integrated out) by the counter 

terms introduced in the system Lagrangian. 

We will show analytically how the unphysical terms involving ( X , + X ~ ) ~  in the exponent 

on the R.H.S. of Eq. (4.11) get cancelled by a term to be introduced in the system 

Lagrangian Ls as a potential I/,,,, = tmR2x2 , quadratic in the system co-ordinate 

x. For simplicity, we will consider this in the high temperature limit. The introduction 

of this counter term generates two distinct terms in the exponent on the R.H.S. of Eq. 

(4.11), one containing (xb - x , ) ~  and the other containing (x, + x ~ ) ~ .  The latter can 

then be made to cancel out the unphysical term in Eq. (4.5) by a proper choice of 

the parameter R. We are then left only with the other (physical) term containing the 

factor (x, - x ~ ) ~ ,  which, of course, combines with (-m/2ti2,0)(xb - x , ) ~  present there 

in the exponent. More explicitly, consider the effect of introducing the counter term 

LmR2x2 2 in Ls on the exponent in the R.H.S. of Eq.(4.5) obtained by integrating over 

the [x(t)] path intergral. The exponent gets modified additively by a term 



(where we have considered the high-temperature limit, hRP << 1). These terms carry 

over to  the exponent on the R.H.S. of Eq. (4. ll), and combine there with the (x, + xb)2 

and the (x, - xb)2 terms to give 

and 

Now, with the choice of the counter term parameter 

the unphysical term containing (x, + xb)2 is cancelled out, while the physical term 

containing (xb - x , ) ~  gets renormalized as 

This is nothing but a renormalization of the inertia(mass) of the system particle: 

Following the convention[39], we introduce the spectral function for the dissipative 

coupling to the bath-oscillator continuum 

with w, = a high frequency cut-off, and q the friction coefficient due to the dissipative 

coupling to the environment. We can re-write me f f as 

The correction is, however, of second order in P, and decreases to zero as ,B + 

0 , (temperature + m). 
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