
Chapter 6 

On thermal relaxation of 

non-equilibrium electrons in the 

metal and the semiconductor 

nano-scale samples. 

6.1 Abstract 

In this Chapter we consider; (a) thermal relaxation of non-equilibrium electrons in 

the metal nano-scale samples(2D films and nanoparticles),(b)the energy relaxation be- 

tween non-degenerate electronsand t he phonons(e1ect ron- (mult i) phonon interaction). 

The fundamental assumption[50] of the theory of hot electrons in metal nano-particles 

is that, when the particle size is of the order of electron mean free path, the main 

channel of hot electron energy loss is through surface-phonon generation, rather than 

bulk phonon generation. A calculation for the hot electron relaxation by the generation 

of surface-phonons is given, assuming that electrons and surface-phonons are described 

by their equilibrium fermi and bose distribution functions. The assumption is valid 

because time required to establish equilibrium in the electron gas is much less than 

the time for achieving equilibrium between the electrons and the surface-phonons(see 



Figure 6.1: Electrons scattering from the metal surface. 
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introduction). The expressions obtained for low temperature and high temperature 

regimes are inversely proportional to the radius of the particle. This shows that size 

dependency of electron surface-phonon energy exchange arises from the geometric ef- 

fect. 
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Consider a degenerate electron distribution at temperature Te and a phono distribution 

(in 2-D) at  temperature T (T < T,). Our aim is to calculate how much energy is trans- 

fered/ second/volume from the hot degenerate electron distribution to the relatively 

cold phonon gas. The equilibrium distributions for electrons and phonons are 

Energy and momentum conservation conditions gives 



On simplifying 

Where q5 is the angle between kx-axis and plan of incidence. 4' is the angle between 

scattered phonon direction and k,-axis, and 0 between incident electron direction and 

k, direction as shown in FIG.l. 

The probability W per unit time that the electron in a state with wave vector kt 

will scatter to a state with wave vector k by emitting a phonon of wave vector f is; 

With Us as the electron surface-phonon interaction constant. Here p, V and Ss is the 

metal density, unit cell volume and surface sound speed respectively. The change per 

unit time per unit volume in the number of surface-phonons with wave vector f and 

energy tiw is (Bloch-Boltzmann-Peierls formula); 

Using the energy and momentum conservation equations, the delta function can be 

written as ~ ( E ~ I  - ~k - fW)  = ~6[(2k1s in0cos($J  - 4') - f )  - 91, and for a metal, 
li f 

we have (f .- 109m-l) >> (q .- 107m-l). So the above equation i.e.,(Eq.5) is 

X 
4rnlc12 

sin OdOdq5dkt. 
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x L*'~ sin OdO L2* 6[2kt sin 0 cos(q5 - 4') - f]d$J. 



The last integral in the above equation is 

2* 
b[2k1sinOcos(g- 4') - fldg = 

1 
12k1 sin 01 

- - 1 

kt sin OJ1 - f 2/(4k'2 sin2 8 ) )  

The above mentioned process will always happen, as from energy and momentum 

conservation, sine - f/2k1, which holds good in a metal as f < kt. By inserting for 

Ne and Nf in equation (5.8) we get 

Here, we will make an approximation to solve the integral in the above equation. The 

first approximation is that the phonon energy h f ( m e V )  << kBT'(eV), the electron 

energy. So, Pehwf 0. With this the integral in Eq.(5.9) is 

As 1- 
2m I << I P E ~ ~ ,  the quantity in the square brackets is order of unity. Finally, the 

integral in Eq.(5.9) is ?(A) - y ( l / ( e a e r w f  - 1)). With all this Eq.(5.9) takes 
Befiw f 

the form 

m2asw 
(6.10) 

The energy transfered by the electrons to the surface-phonons per unit volume per 

unit time is 

a2 fo, 
s f  = - %fwf 2a f df, a = lattice constant, 

( 2 4  
(6.11) 

where fD, is the Debye wave vector for the surface phonons. From Eq.(5.10) and 

Eq.(5.11) with relations WD, = SsfDs , hwDs = k B T ~ ,  and setting x = hf /keTe ,  we 



Here, TDs is the surface debye temperature. Now the equation (5.12) can be simplified 

in two special cases, first, for low electron and phonon temperatures as compared to 

debye temperature, i.e., T,  Te << TDs , Eq.(5.12) reduce to 

rU?m2 kgTDs Te4 - T 4 o" x3 

= [ ( ~ n ) 3 h ~ ~ ~ : ]  (7) [ T ] b Z T  dx. 
(6.13) 

An important point to be noted in the above equation is that the electron to phonon 

energy transfer rate depends upon 4th power of electron and phonon temperatures as 

compared to the corresponding case in the bulk(there it is 5" power of electron and 

phonon temperatures[51]). In second special case, when T, , T >> TDs , we get 

The above equation (Eq.(5.14)) is the basics of what is called the two temperature 

model. Next, we calculate the surface debye temperature To,. Clearly, for two acustic 

modes per atom we have 

which gives fDs  = , n is the number density per unit volume. Now, for the 

bulk case[51] 
m 2 U ; ~ h b k B  

= [2 (2,)3h3 pst] ITe - ' 

From Eq.(5.14) and Eq.(5.16) we have 

Usur ace = :71-(87r)~/~ [$I 2 1 4 = [3] 1 
Uhl, Ub anl13' 



6.2.0.1 results 

For a gold metal film, assuming Us = Ub, with a = 4.1 x 10-1°m , p = 19.3 x 

103kg/m3 , n = 5.9 x 1028m-3 , TD = 185 K , W D  = 2.42 x 10~~rads/sec ,  the above 

ratio is 0.088 or about 9 percent of electron energy goes to surface phonon modes. 

6.3 Hot electron relaxation in a metal nanoparticle: 

electron surface-phonon interaction. 

With the advent of femtosecond lasers, it has become possible to investigate 

non-equilibrium phenomena in bulk metals [55, 56, 57, 58, 59, 601 and metal 

nanoparticles[61, 62, 63, 641. The electrons can be preferentially excited keeping lattice 

at  the same temperature due to their much smaller electronic heat capacity as com- 

pared to that of phonons. The pump-probe femtosecond spectroscopy permits a direct 

access to the internal thermalization of the electron gas. The experimental results are 

explained on the basis of classical two temperature model[60], in which the metal is 

treated as a system, composed of two coupled subsystems, one Fermi-Dirac distributed 

electronic subsystem at a high temperature T,, and Bose-Einstein distributed phonon 

subsystem at  a lower temperature T. The energy transfer takes place from electronic 

subsystem to phononic subsystem. But their distribution functions remain at  their 

respective equilibrium values. The two temperature model holds good for the bulk 

metal case [51, 521. But when this model is applied to metal nanoparticles one should 

consider the following points: 

(1)in quantum size regime when the particle size is less than 5nm, the band structure 

splits into discrete levels and the equilibrium partition function of electrons will not 

be the function for the bulk. The function depends upon evenness or oddness of the 

number of electrons in the particle [65]; 

(2) Since electronic mean free path(severa1 hundred angstroms in metals) is more 

than the particle size, even at high temperatures, the scattering events from the surface 



of the particle will take place. If the time between two scattering events is less than 

the electronic internal thermalization time, one has to use non-equilibrium distribution 

functions to consider the problem of energy transfer from electrons to phonons[66]; 

(3)In quasi-continuum regime(partic1e size more than l0nm)the main channel of 

electron energy loss is through electron surface interaction, but the energy spectrum of 

electronic translational motion will be quasi-continuous. It can lose energy to surface 

modes of vibration or to external vibrational modes to which it can possibly couple 

due to sudden change of ionic potential distributions at the boundary of the particle. 

The present calculation is done in quasi-continuum regime, considering point (3). The 

points (1) and (2) are not included in the present calculation. It is assumed that two 

temperature model holds good, but replacing bulk phonons by surface phonons. This 

will not be applicable for small time scales when the electron distribution function is 

not Fermi-Dirac. It is to be noted that, as the hot electrons lose their energy to the 

lattice, and after some time, the lattice will become very hot, this heating will reduce 

drastically the electron mean free path and cause the failure of the applicability of the 

model. But for the case of metal particles it takes about 2 peco-seconds to transfer the 

energy to the lattice bath, so the present model is applicable within this time scale. The 

dispersion relation used for the surface phonons is linear under Debye approximation 

and surface sound speed is determined in terms of elastic continuum theory assuming 

stress-free boundaries [67]. 

6.3.1 Electron surface-phonon interaction within two temper- 

ature model 

Consider the case of homogeneously(no spatial diffusion) photo-excited metal nanopar- 

ticle, consisting of two inter penetrating subsystems namely electronic(at temperature 

T,) and surface-phononic(at temperature T << T,). We calculate the energy transfer 

rate Usurface from electronic subsystem to phononic subsystem at  the surface consid- 

ering one phononic process. The equilibrium distribution functions of electrons and 
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Figure 6.2: Scattering of electrons from nanoparticle's surface. 

phonons are l/(epe('-'0) + 1) and l/(eafw - 1) respectively, here, ,Be = l /KTe and 

We procede on similar lines as in the previous section. We use the conservation of 

energy and momentum for one phonon scattering as shown in Fig.(2)). The change 

per unit time in the number of surface-phonons with wave vector f and energy hw is 

(Bloch-Boltzmann-Peierls formula); 

We obtain the number of phonons generated per second 

Now, we calculate the energy transfered by electrons per unit volume per unit time to 

surface phonons. We use the elastic continuum theory assuming stress-free boundaries 

[67], for density of states on the particle surface, Clearly 



Where wDs is the Debye frequency for the surface phonons and Ds(w) is the surface 

phonon mode density[67]. 

The surface Debye frequency and surface Debye temperature will be, 

WD, = \ /32ras:/~ and TDs = ( h s S / k ~ ) \ / 3 2 ~ a / v  respectively. 

The above equation (5.23) can be simplified in two special cases, first, for low elec- 

tron and phonon temperatures as compared to debye temperature, i.e., T, Te << TDs , 

Eq. (5.23) reduce to 

dx. 

An important point to be noted in the above equation is that the electron to phonon 

energy transfer rate depends upon 4th power of electron and phonon temperatures as 

compared to the corresponding case in the bulk(there it is 5th power of electron and 

phonon temperatures[51]). In second special case, when Te , T >> TDs , we get 

The above equation (Eq.(5.25)) is the basics of what is called the two temperature 

model. The popular electron surface-phonon coupling coefficient in femtosecond pump- 

probe experiments for nano-particles is 



For a gold nanoparticle of radius R = lOnm, with Us = 10-lg joule , a = 4.1 x 

10-1°m , p = 19.3 x 103kg/m3 , n = 5.9 x 1028m-3 , TD = 185 K , UD = 2.42 x 

1013rads/sec, 

aint - 7.1 x 1013 joule m-3sec-1~-1 (6.27) 

Which agrees with experiments[68]. The electron-phonon coupling coefficient for the 

case of bulk is - 5 x 1016joule m-3sec-1K-1(Anisimov et al. 1970). So, aint(sur f ace) 

is less by a factor of lo3 from that of bulk, which indicates suppression of electron 

energy transfer to phonons in case of nano-particles. The present results show that 

the electron surface-phonon coupling constant will increase with the reduction of the 

particle size. So the hot electron thermalization time will reduce with decreasing size 

of the nanoparticle[61, 621. The calculation does not include the effect of electron 

surface-phonon screening, but the fact that, due to electron wave function spill out 

and d- electron localization[69] in nanoparticles, the screening will be comparatively 

less as compared with the bulk. The question regarding the weight of the two factors, 

namely, surface to volume ratio (geometric factor), and reduction of electron phonon 

screening, in the thermalization of hot electron distribution is still open. 

6.4 A model for electron- (mu1ti)phonon relaxation 

in a regime where two temperature model is 

not applicable 

A model calculation is given for the energy relaxation of a non-equilibrium distribution 

of hot electrons prepared in the conduction band of a polar indirect band-gap semicon- 

ductor, which has been subjected to homogeneous phot o-excitation by a femtosecond 

laser pulse. The model assumes that the photoexcitation creates two interpenetrat- 

ing electron and hole subsystems, initially comprising a non-degenerate hot electron 

subsystem in the conduction band and a similar hole subsystem in the valence band. 



The relaxation process is taken to be dominated by the electron (mu1ti)phonon inter- 

action resulting in a quasi-continuous electron energy loss to the phonon bath. Due 

to this electron - (mu1ti)phonon interaction, electrons after losing their energy, tend 

to accumulate at  the conduction band minimum. Similarly holes tend to accumulate 

below the valence band maximum. The final relaxation (recombination) involves, a 

relatively slow, phonon-assisted radiative interband transition across the indirect gap. 

This leads to a peaking of the calculated hot electron distribution at  the bottom of 

conduction band, and similarly for the holes in the valence band. This feature, as 

also the entire evolution of the hot electron distribution, may be time resolved by a 

pumpprobe study. The model is particularly applicable to a divided (nano-metric) po- 

lar indirect band-gap semiconductor system with a low electron concentration, strong 

electron-phonon coupling, where the usual two temperature model[7l, 72, 73, ?] may 

not be appropriate. 

6.4.1 The model 

Consider the kinetic evolution of a photoexcited non-equilibrium system of electrons in 

the conduction band of a polar, indirect band-gap semiconductor with a low electron 

density, strong electron-phonon coupling, and having high anharmonicity, such that, 

re-, >> re-p >> rp-p. Here,re-,, re-, ,and rp-p are the electron-electron, electron- 

phonon and the phonon-phonon relaxation time scales respectively. This is  the regime, 

i n  which the usual two-temperature model is not applicable[71, 72, 73, ?]. 

The femtosecond photoexcited non-degenerate hot electron distribution then 

evolves predominately through the non-radiative electron-phonon processes. Due to 

this electron - (mu1ti)phonon interaction, electrons after losing their energy, tend to 

accumulate at  the conduction band minimum. Similarly, holes tend to accumulate at  

the valence band maximum. The final relaxation (recombination) involves, a relatively 

slow, phonon-assisted, radiative interband transition across the indirect gap. There is 

then a pile up of the hot electrons/holes at the bottom/top of the conduction/valence 
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Figure 6.3: A polar, indirect band-gap semiconductor. 

band. Thus, the entire relaxation process proceeds on two timescales, namely, the 

initial, fast time scale involving the non-degenerate intraband electron-phonon inter- 

action, and the final, slow time scale involving the phonon-assisted radiative interband 

transition across the indirect gap. We have derived an analytical expression for the 

entire time evolution of the non-equilibrium hot-electron distribution, following the 

initial preparation by the femtosecond laser pulse. These two, the fast and the slow 

relaxation processes, can, in principle be time resolved using pump-probe experimental 

technique. Here, we are not considering the process of hole energy relaxation in the 

valence band. 

Consider the sample is photoexcited homogeneously (i.e. no spatial diffusion) by 

a laser pulse. This generates a gas of electrons in the conduction band with the non- 

equilibrium distribution function f,(~, t ) .  This non degenerate, classical gas of electrons 

will relax predominantly through the non-radiative process in which the hot electrons 

undergo a quasi-continuous energy loss through multi-phonon processes (phonon fric- 

tion). In the present work, two models of phonon friction are considered. A linear 

model in which the +phonon friction is taken to be linear in velocity of the hot elec- 

trons, and the other, in which the phonon friction is non-linear in electron velocity. The 

nonlinearity considered here is a power-law type. In the following, we drive analytical 



expressions for the time-dependent non-equilibrium hot-electron distribution for the 

two models of electron-phonon friction. 

6.4.1.1 The phonon friction is proportional to the electron velocity V: 

linear model 

The kinetic equation is: 

Here,& = (mir2)/2 = -ypv2 = -6/rp , where T,. and T, are the radiative(photon) 

and the non-radiative(phonon) relaxation times, and T = t/rp and a,-, = r,./rp are 

dimensionless variables/parameters. With this, equation (5.28) reduces to, 

Equation (5.29) can be solved analytically to give: 

Here Q() is a step function, and we have assumed an initial delta-function laser 

pulse of photon energy EL that excites electrons in the energy interval 6, < E 5 6, + EL, 

in the conduction band and a similar hole population in the valence band. 6, is the 

conduction band minimum energy, and EL > eg(the band-gap energy). Inasmuch as 

Eq. (5.29) has only the forward propagating solutions (in energy space) we can readily 

incorporate the slow process effective at the bottom of the conduction band by simply 

introducing a longer relaxation time rPe > rP there. This gives rise to the peaking effect 

referred to above. Equation (5.30) is our basic result. In terms of it, we can calculate 

the total number Npe(r) of the hot electrons piled up in the bottom of conduction 

band, and also the total number of hot electrons Nhot(r) above 6,. The number of hot 

electrons in the pile-up, N,(T) = Nhot(r) - Npe(r), with energy E > 6, (for uniform 

excitation of scale height, fo) is: 



Figure 6.4: Pile-up of hot electrons at the bottom of the conduction band(7 = 0.5) .  

NOW N > ( r )  = J:CL f e ( € , r ) d €  = foe T a r -  J Q -  - ~ ( E E  + d .  We consider 

energy loss through phononic friction only, with this we get 

N > ( r )  = f o ( G  +  EL)^-^ (6.32) 

From equations (5.31) and (5.32) we have 

Solving by Laplace transforms we have 

and the total number of hot electrons 

Nhot ( T )  = Npe (7)  + N> (7)  = fo  ( E ~  +  EL)^-^ ( 1  - e - ( l - ~ b )  ] . (6.35) 

Time evolution of these two populations are plotted in Figs. (5.4) and (5 .5 ) .  

6.4.1.2 The phonon friction is nonlinear (algebraic) in the electron velocity 

: nonlinear model 

With i = -'[LIn and EO is an associated energy scale. In line with the linear model, 
TP, €0  

this kinetic equation has the solution, 



Figure 6.5: Decay of hot electrons, Nhot (T), for 77 = 0.5. 

The number of hot electrons N>;,(T) with energy greater than f C  is 

With B = !(x)", x = &. AS in the linear model, the number of hot electrons in 

the pile-up near the bottom of the conduction band comes out to be: 

The total number of hot electrons " Nhot;n(~)" is Nhot;n(~) = N>;~(T)  + Nc;n(~). In the 

limit r << 8, or t  << 2 (&)n. The expression for hot electrons in the pile up, and 

total number of hot electrons will reduce to: 

In the limit n going to zero, we recover the results of the linear model. 

6.4.1.3 Incorporating pump-pulse duration 

Here, we consider the system being pumped by a rectangular femtosecond pulse of 

duration tp .  The effect of the pulse can be taken as the convolution integral of the 

rectangular pulse with the respective hot-electron time-evolution curves(for the case 



Figure 6.6: Decay of hot electrons Npeip(r) in the pile up as a function of T in the 

presence of a rectangular laser pulse with width T, = 3. Top most curve is for 7 = 0, 

lowest for 7 = 0.9 with a step of 0.1 

Figure 6.7: Decay of hot electrons N h o t ; p ( ~ )  as a function of T ,  with same set of pa- 

rameters as in Fig.5.6 

6.5 Conclusion 

The distinctive feature of our calculated time evolution of the photoexcited electron dis- 

tribution in the conduction band is its peaking effect, and is readily seen in Figs.5.4 and 

5.5. It reflects the effect of a slow indirect transition. This can be, and should be probed 

in a pumpprobe experiment. This calculation refers to a situation not describable by 

the usual two-temperature model[71]. Here, non-degenerate system of electrons relaxes 



towards the bottom of the conduction band by energy loss to the phonons(intraband 

relaxation). This model is applicable under the condition 7,-, << re-,, re-, >> T,-, and 

S N KbTO(mev) << ~ ~ ( e v ) ,  here 6 is the intraband energy level spacing. The lower limit 

to the size of a nanoparticle for the application of this model is, approximately given 

as ( t i / d m  rn 2nm) for To rn 200K. But such a situation is expected in a polar, 

indirect band-gap semiconductor, with a low electron concent ration, strong electron- 

phonon coupling, and having high anharmonicity. The photoexcited electrons should 

accumulate at  the bottom of the conduction band as one needs a phonon-assisted 

radiative interband transition for the final relaxation across the indirect gap. 
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