
Chapter 2

Experimental Techniques

2.1 Introduction

In this chapter, we describe briefly x-ray diffraction and fluorescence microscopy techniques

used to study the phase behaviour of lipid–cholesterol mixtures. Section 2.2 describes the

theory of x-ray diffraction with two specific examples of crystal and lamellar phases of am-

phiphilic molecules. We discuss the phase problem in the context of lamellar structures.

The experimental setup used to study diffraction from oriented and unoriented samples are

also discussed in this section. Data analysis, including intensity corrections relevant to the

present experimental geometry, are discussed in section 2.3. The calculation of the electron

density map of the modulated phase, to be discussed in chapter 3, is also presented in this

section.

Fluorescence microscopy was used to observe morphological changes as well as phase

separation in giant unilamellar vesicles (GUVs). Basic principles of fluorescence confocal

microscopy and of two-photon microscopy are illustrated in section 2.4. The preparation of

GUVs used in the microscopy studies is described in section 2.5.

2.2 X-ray diffraction

2.2.1 Theory of x-ray diffraction

X-rays are electromagnetic radiation of short wavelength (∼ 1-10 Å). They are scattered by

the electrons in the irradiated material. Therefore, the intensity of scattered radiation depends
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Figure 2.1: Geometric representation of scattering event by two point objects separated by ~r.

upon the electron density distribution in the material. The interference of x-rays scattered by

different electrons gives rise to the observed diffraction pattern [1, 2, 3].

Let us consider a plane monochromatic wave, ψin = ψ0ei ~k0 .~r , incident on an electron at the

origin, where ~k0 is the incident wave vector. Scattering by the electron generates a spherical

wave, which at a distance R from the origin can be represented as ψsc =
ψinA

R eikR, where A

is the scattering strength of an electron. Now consider scattering from two electrons, one at

origin and the other at a distance r from it. Phase difference between the scattered rays can

be written as (~k − ~k0).~r = ~q.~r, where ~q is called the scattering vector. The magnitude of ~q is

given by, | ~q | = 4πsinθ
λ

(Fig. 2.1). The amplitude of the scattered waves can be described as

ψsc =
ψinA

R ei(kR−~q.~r) . If there are N electrons at positions ri (i=1, 2....N) then the total scattered

amplitude at a distance R is

ψsc =
ψinA

R
eikR

N
∑

i=1

e−i~q.~ri (2.1)

If we introduce the electron density function ρ(~r) =
∑N

i=1 δ(~r − ~ri), then the above equation

can be written as

ψsc =
ψinA

R
eikR

∫

ρ(~r)e−i~q.~rd~r (2.2)

Therefore, the amplitude of the scattered wave can be described as the Fourier transform of

the electron density function [1]. The scattered intensity is given by

I(~q) = | ψsc |2= |
ψinA

R

∫

ρ(~r)e−i~q.~rd~r |2 . (2.3)
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2.2.2 Diffraction by a periodic object

Electron density ρ(~r) of a periodic object can be described as the convolution of a lattice

function, ρlattice, which describes the periodicity, with a basis function, ρbasis, which describes

the motif present at each lattice point, i.e, ρ = ρlattice ⊗ ρbasis. It follows from the convolu-

tion theorem that the scattered amplitude, F(~q) is proportional to the product of the Fourier

transforms Flattice and Fbasis of ρlattice and ρbasis, respectively. Therefore, scattered intensity

I(~q) = S (~q).P(~q), where the structure factor S (~q) =| F lattice |2 determines the points in the

reciprocal space where the intensities are sampled, and the form factor P(~q) =| Fbasis |2 de-

termines the intensity at each of these positions. Two specific examples are described below.

2.2.2.1 Crystals

In the case of an infinite crystal, the lattice can be written as

ρlattice(~r) =
∑

n1

∑

n2

∑

n3

δ(~r − n1~a − n2
~b − n3~c) (2.4)

where ~a, ~b and ~c are the three primitive translation vectors, and n1, n2 and n3 are integers

running from -∞ to +∞. The basis function describing the group of N atoms in the repeating

unit is given by

ρbasis(~r) =
N
∑

j=1

ρ j(~r − ~r j) (2.5)

where ρ j(~r − ~r j) describes the electron density of each atom. The Fourier transform of

ρlattice(~r) is given by

Flattice(~q) =
∑

h

∑

k

∑

l

δ(~q − h~a∗ − k ~b∗ − l~c∗) (2.6)

where ~a∗, ~b∗ and ~c∗ constitute a set of basis vectors in the reciprocal space, and h, k and l are

integers running from -∞ to +∞. On Fourier transforming equation 2.5, we get

Fbasis(~q) =
N
∑

j=1

f je
−i~q.~r j (2.7)
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where f j is called atomic form factor, given by

f j =

∫

ρ j(~r)e−i~q.~rd~r. (2.8)

The scattered intensity can be written as

I(~q) ∝ |
∫

ρ(~r)e−i~q.~rd~r |2= 1

(~a × ~b.~c)2
| Fbasis(~q) |2

∑

h,k,l

δ(~q − h~a∗ − k ~b∗ − l~c∗). (2.9)

Therefore, the diffraction pattern of a crystal consists of a set of peaks, whose positions are

determined by the set of Miller indices (h, k and l), whereas intensities are determined by the

values of | Fbasis |2 at these reciprocal lattice peaks. ~a×~b.~c is the volume of a unit cell. Since

the intensity is non-zero only at the reciprocal lattice points, it can be written as Ihkl =| Fhkl |2,

where

Fhkl =

N
∑

j=1

f je
−i(hx j+ky j+lz j) (2.10)

and ~q = h~a∗ + k ~b∗ + l~c∗ ; ~r j = x j~a + y j
~b + z j~c.

It is important to mention that Fhkl is called the structure factor in crystallography. How-

ever, in the small angle scattering literature, intensity is often separated out into a structure

factor S (~q) and form factor P(~q), as discussed above.

2.2.2.2 Lamellar phases of amphiphilic molecules

As discussed in the previous chapter, the lamellar phases exhibited by lipid-water systems

have a one dimensional (1D) periodicity along the bilayer normal. The lamellar periodicity

(d) is the sum of the bilayer thickness and the water layer thickness. In the case of a lamellar

phase, consisting of N bilayers, the lattice function can be defined as

ρlattice(z) =
N−1
∑

n=0

δ(z − nd) (2.11)

The electron density in the methylene region of the bilayer is very close to that of water and

the two can be assumed to be equal to a good approximation. In comparison, the head group

region has a higher electron density and the central methyl region has a lower density. The

simplest basis function describing the bilayer can be taken to be

ρbasis(x, z) = δ(x)[ρH{δ(z + xh) + δ(z − xh)} − ρMδ(z)] (2.12)
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Figure 2.2: Structure of the lamellar gel phases and their corresponding diffraction patterns.
Hexagonal lattice of points shown in the box correspond to the arrangement of the hydro-
carbon chains in the plane of the bilayers. In the Lβ phase shown in (a) the molecules are
parallel to the bilayer normal (no tilt). For comparison the diffraction pattern of the Lβ′ phase
with tilt is shown in (b). The projection of the tilt vector (towards nearest neighbour) on
the plane of bilayer is indicated by the arrows at each lattice points. The tilt directions with
respect to the laboratory frame of adjacent bilayers are not correlated.
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where ρH and ρM are the electron densities of the head group and terminal methyl group

regions, respectively. xh is the position of the head group from the center of the bilayer. On

Fourier transforming the above expressions, we get

Flattice(qz) =
∫ N−1
∑

n=0

δ(z − nd)e−iqzzdz =
N−1
∑

n=0

e−iqznd = e−
iqzd

2 (N−1)
sin( qzNd

2 )

sin( qzd
2 )

(2.13)

and

Fbasis(qz) = 2ρHcos(qzxh) − ρM (2.14)

Total scattered amplitude is given by

F(qz) = Flattice(qz).Fbasis(qz) (2.15)

Maxima of Flattice(qz) occur when qzd
2 = nπ. Putting qz =

4π
λ

sinθ in the above condition, we

recover the Bragg’s law, 2dsinθ = nλ. Therefore, the diffraction pattern consists of a set of

equidistant spots along qz as shown in Fig. 2.2 [4].

In the fluid phase of the bilayers, the hydrocarbon chains are in a molten state and give

rise to a very diffuse peak in the wide angle region of the diffraction pattern. However,

as discussed in the previous chapter, in the gel phase the hydrocarbon chains form a two

dimensional hexagonal lattice in the plane of the bilayer. Therefore, in-plane structure in the

gel phase bilayer can be described as the convolution of a 2D hexagonal lattice and a basis

function representing a hydrocarbon chain, which can be taken to be a finite rod with uniform

electron density. Fourier transform of the 2D hexagonal lattice of points is a 2D hexagonal

lattice of infinite rods, which is rotated by 30◦ with respect to the real space lattice. The

Fourier transform of the basis function is a disc shaped function in the reciprocal space. The

product of these two functions gives the structure in the reciprocal space. Consider a gel

phase where there is no tilt of the hydrocarbon chains with respect to the bilayer normal. In

this case the disc will cut the 6 rods of the hexagonal lattice in the reciprocal space at qz =

0. In our sample geometry the lattice is not aligned in the plane of bilayer. We assume that

there are many domains with different in-plane orientations in the irradiated volume of the

sample. Therefore, the 6 spots give rise to a single ring. The intersection of this ring with the
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Figure 2.3: A 1D array of tilted rods with tilt angle θ (a) gives rise to a 1D array of infinitely
long rods and a finite disc in the reciprocal space (b) corresponding to the Fourier transforms
of the lattice and basis, respectively. The disc cuts these rods at an angle corresponding to
the tilt angle resulting in two spots in the qx − qz plane. As both sign of θ are allowed, there
will be two sets of domains, and we get 4 spots in the complete diffraction pattern. A similar
analysis can be applied in case of a 2D hexagonal lattice of tilted rods in order to find the
tilt angle from the diffraction pattern of the lamellar gel phase. In (c), b∗ is the reciprocal
lattice vector of the hexagonal lattice. The disc-like function, representing the FT of the
chain electron density, is rotated by the tilt angle θ about qy. φ is the angle measured on the
diffraction pattern as shown in (d).
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Ewald sphere results in two spots on the qx − qy (equatorial ) plane as shown in Fig. 2.2 a.

For tilted hydrocarbon chains, the disc will cut the 6 rods at an angle θ corresponding to the

tilt angle with respect to bilayer normal (This has been illustrated for the case of a 1D array

of rods in Fig. 2.3 a and b). Therefore, we get 6 spots, three above the equatorial plane (qz

= 0) and three below it. As the lattice is unoriented in the plane, rotation of these three spots

form three rings. The intersection of these rings with the Ewald sphere will give 6 diffraction

spots, three on either side of the equatorial plane. These three reflections will be at qz , 0 for

an arbitrary tilt direction (Fig. 2.4 a) [5]. If the tilt direction is towards nearest neighbour,

then two spots will merge at the equatorial plane giving rise to one spot at qz = 0 and the

other at qz , 0 as shown in Fig. 2.4 b [6]. The tilt axis is along qy and makes an angle of 60◦

with respect to b∗ (Fig. 2.3 c). From the simple geometric consideration shown in Fig. 2.3 c

and d, we get tanφ = p
b∗ and tanθ = p

u . Now for a hexagonal lattice u
b∗ = sin60◦. Therefore,

the tilt angle can be calculated using the following equation

tanθ =
tanφ

sin60◦
(2.16)

In the case of tilt towards next nearest neighbour, two rings merge and give rise to a spot

at qz , 0 and the third ring results in a spot at a larger qz (Fig. 2.4 c). In this case the

tilt axis makes an angle of 90◦ with b∗ and hence tanθ = tanφ, where φ corresponds to the

reflection with larger qz. It is clear from the above analysis that the diffraction pattern of

the gel phase, shown in Fig. 2.2 b, corresponds to molecular tilt towards nearest neighbour.

The two additional off-axis weak reflections seen in the diffraction pattern are the secondary

maxima of the reflection at qz = 0. They arise from the secondary maxima of the chain form

factor.

2.2.3 The phase problem in crystallography

In general, the structure factor F(~q) =
∫

ρ(~r)e−i~q.~rd~r is a complex quantity. Therefore, to

calculate the electron density ρ(~r) one needs to know both the amplitude and phase of F(~q).

Since I(~q) =| F(~q) |2, only the magnitude of F(~q) is known from a diffraction experiment,

but the phase information is lost. For a non centro-symmetric system phases can be arbitrary,
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(a) (b) (c)

Figure 2.4: Wide angle chain reflections from three different types of gel phases as discussed
in chapter 1. The direction of chain tilt is towards arbitraty direction (a), nearest neighbour
(b) and next nearest neighbour (c) [5]. Reflections are indexed on a hexagonal chain lattice,
as shown.

but for a centro-symmetric system i.e, when ρ(−~r) = ρ(~r), phases are constrained to be either

0 or π.

There are several methods to retrieve the phase information from the experimental data.

Let us discuss the phase problem in the context of membrane structures. A bilayer possesses

center of symmetry and therefore, for n reflections, 2n combinations of phases are possible.

If there are only a few reflections (3 to 4), then the phase of one of the reflections can

be fixed and other phases can be determined by calculating the electron density with all

possible combinations. Ideally only one and in practice only few of these combinations

result in acceptable electron density profiles. For a large number of reflections this method

is extremely laborious and hence one needs some alternative methods to obtain the phases.

Two such methods are described below.

In the case of lamellar phase the repeat distance d is the only lattice parameter. Therefore,

on swelling and shrinking the lamellar phase without altering the membrane structure we can

essentially sample F(~q) at different points in the reciprocal space [7]. Since F(~q) is real, its

sign can be obtained from the distribution of zeros. Therefore, once the phase of the 1st order

reflection is fixed, those of others follow from the zeros of F(~q) (Fig. 2.5).
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Figure 2.5: Plot of the magnitude of the membrane form factor, | F(qz) | as a function of qz

obtained from a swelling experiment [7].

Another way to retrieve phases is to have an appropriate model for the electron density

with a few adjustable parameters. By fitting the calculated structure factor with experimen-

tally observed data, one can determine the unknown parameters of the model and hence the

electron density map [8]. This modeling approach will be described in detail in section 2.3.2.

Direct methods have also been used to determine the phases of reflections from a lamellar

phase and to calculate the electron density profile [9].

2.2.4 Experimental setup

For diffraction studies, unoriented samples were taken in glass capillaries (Hampton Re-

search) having a diameter of 1 mm. They were placed inside a locally built heater, whose

temperature could be controlled using a standard PID (Proportion-Integral-Derivative) con-

troller program to an accuracy of ± 0.1◦C. Typical experimental setup for unoriented samples

is shown in Fig. 2.6.

For aligned samples, a locally built heater is used which is made up of a double walled

nickel-plated brass chamber through which water can be circulated [10]. Temperature of

the heater can be changed by circulating water at the desired temperature from a water bath

(Julabo). The inlet and outlet windows of the chamber were covered with mylar sheets. The
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Figure 2.6: Experimental setup for x-ray diffraction of unoriented samples.

chamber was made airtight to achieve a constant relative humidity (RH) inside (Fig. 2.7).

High RH close to 100 % was achieved by keeping a reservoir of water inside the chamber.

Lower values of RH were obtained using saturated salt solutions. A small electric fan is

used to maintain the temperature and RH uniform inside the chamber. Water condensation

on the inlet and outlet windows due to high temperature differences between the inside and

the outside was prevented by gently blowing hot air on the windows. A thermo-hygrometer

probe (Testo 610) was inserted into the chamber to monitor both the temperature and RH

close to the sample.

2.2.5 Preparation of oriented samples

All lipids, cholesterol and other chemicals used in the experiments were purchased from

Fluka and Sigma and were used without further purification.

Appropriate amounts of the lipid and cholesterol were dissolved in chloroform. Typical

total concentration was ∼ 5 mg/ml. The sample was deposited on the outer surface of a glass

beaker (radius ≈ 17 mm). The beaker was kept overnight inside an evacuated desiccator to

remove all traces of the solvent. Typical area density of dried lipid film was ∼ 5 µg/mm2. It

was then kept inside a sealed airtight container along with some Millipore (ultrapure) water

32



Body of
the heater

98.0

I
O

Electrical connections 
for the fan

6 Volts

and
Humidity sensor

water outlet

Sample
Electrical

Temperature

Water inlet

Lid

fan

X−rays

Figure 2.7: Humidity chamber used for x-ray diffraction from aligned samples
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Figure 2.8: Experimental geometry for aligned samples

for a couple of days. Cycling the temperature of the sample across the main transition a

few times while hydrating results in a well oriented sample, where the bilayers are oriented

parallel to the substrate. The sample was then transfered to the sealed chamber, described in

the previous section, for experiments.

2.2.6 Data collection

X-rays were generated from a rotating anode generator (Rigaku UltraX 18) operating at 50

KV and 80 mA. CuKα radiation (λ = 1.54 Å) was selected using a flat graphite monochroma-
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tor (Huber). Monochromatic x-rays then pass through a collimator which consists of two sets

of slits. Adjusting the slits we can obtain required beam size at the sample and avoid parasitic

scattering. Typical beam diameter after collimation was ∼ 1mm. X-rays were incident tan-

gential to the cylindrical substrate (glass beaker), with the cylinder axis normal to the beam.

Typical experimental geometry is shown in Fig. 2.8. Diffraction patterns were recorded on a

2D image plate detector (Marresearch) on cooling the sample. We have also recorded some

diffraction patterns during the initial heating of the sample. Diffraction patterns recorded on

the image plate detector (diameter 180 or 240 mm) were scanned and transfered to a com-

puter in the form of 16 bit binary data using a software provided by Marresearch for data

collection. The pixel size was 100 µm. Typical exposure time was ∼ 1 hour. Sample to de-

tector distance was determined using a standard sample. Typical sample to detector distance

(D) was ∼ 200-260 mm.

In the case of oriented sample on a flat substrate, one needs to rotate the sample in order to

obtain many diffraction spots. Using a curved substrate is equivalent to rotating the sample

by a small angle. This results in an increased effective mosaicity of the sample, which is

sufficient to obtained all the reflections from the lamellar phases.

2.3 Data analysis

Diffraction patterns collected on the image plate were viewed and analyzed using the soft-

ware provided by Marresearch. Diffraction pattern from an unoriented sample consists of

concentric rings as shown in Fig. 2.9. The corresponding values of d ( = nλ
2sinθ ) and q ( =

4πsinθ
λ

) were calculated from the radius (R) of the diffracted ring by evaluating θ (= 1
2 tan−1 R

D ),

where D is the sample to detector distance. The integrated intensity I(q) versus q was ob-

tained by integrating over the azimuthal angle.

The diffraction pattern from an oriented sample consists of isolated spots in the qz −

q⊥ plane as shown in Fig. 2.10. As discussed earlier, diffraction pattern from an oriented

lamellar phase consists of equidistant spots along qz. In case of lamellar phases exhibited

by lipid bilayers, these reflections are usually called the main reflections. Reflections in the
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Figure 2.9: Diffraction pattern from an unoriented sample in the gel phase. Concentric rings
in the small angle region correspond to the lamellar reflections . Sharp ring in the wide angle
region is the reflection from the in-plane hexagonal lattice of the hydrocarbon chains. The
diffuse ring at intermediate angles is due to the mylar window of the sample chamber.
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Figure 2.10: Small angle region of the diffraction pattern from an oriented sample. This
pattern corresponds to the modulated structure (Pβ phase) of the bilayers. The box shows a
rectangular unit cell of the reciprocal lattice.
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q⊥ , 0, known as satellite reflections, are seen in phases where the bilayers have periodic

modulations. (Fig. 2.10). Lattice parameters (a∗, b∗ and γ) can be directly read off from

the diffraction pattern in the case of a two dimensional lattice. To obtain integrated intensity,

a rectangular box which covers the entire spot was drawn with its edges parallel to q⊥ and

qz . I(q) versus q curves were obtained by integrating along one of the edges of the box

after subtracting the background. The background was assumed to be linear across each

diffraction peak. Intensity profile was obtained from a fit to a Gaussian after background

subtraction. Gaussian fit was especially required to resolve two partially overlapping peaks.

The diffraction pattern corresponding to the modulated structure of bilayers shown in

Fig. 2.10 was obtained from a DPPC-cholesterol mixture. This will be discussed in detail in

chapter 3. We refer to it as the Pβ phase. Below we discuss the intensity corrections relevant

to this phase in the present experimental geometry and then the model for calculating the

electron density map of this phase. The height modulation of the different bilayers in the Pβ

phase are correlated and form a rectangular unit cell (Fig. 2.11 a) with lattice parameters

~a = dẑ and ~b = λr x̂. d and λr are the bilayer repeat distance and the wavelength of the

modulation, respectively. The corresponding lattice parameters in the reciprocal space are

given by ~a∗ = 2π
d q̂z and ~b∗ = 2π

λr
q̂x.

2.3.1 Intensity corrections

2.3.1.1 Geometric corrections

In an ideal situation, diffraction from a 1D modulated structure (ripple), which forms a rect-

angular unit cell, gives rise to a diffraction pattern shown in Fig. 2.11 a. If the ripple direction

is not fixed in the x-y plane then the spots at qx , 0 become rings in the qx - qy plane around

the spots along qz, as shown in Fig. 2.11 b. Now let us consider a practical situation where

the modulated structure is formed by the lipid bilayers. In the present experimental geome-

try, bilayers are aligned parallel to the curved substrate but the ripple direction is not fixed.

In other words, there are domains in the plane of the bilayer with all possible orientations of

the ripple. Unlike the ideal situation discussed above, the diffraction spot obtained from an
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Figure 2.11: The reciprocal lattice structure of a modulated phase. (a) The rectangular unit
cell in the reciprocal space corresponding to the modulated structure when the modulation
is along x. If the modulation direction is not fixed in the x-y plane then each spot will form
a ring in the qx − qy plane as shown in (b). In practice, these reflections get broadened and
smeared out due to the sample mosaicity (c) as described in the text.
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Figure 2.12: Calculation of geometric correction for the main reflections. The circle rep-
resents the Ewald sphere. (hm, 0) is the highest order reflection observed in the diffraction
pattern. q is the distance of mth order reflection from the origin of the reciprocal space. q∆
is the linear spread of the mth order reflection, where ∆ is the sample mosaicity. From the
geometry, we get ∆ = 2θm, where the θm is the Bragg’s angle corresponding to the mth order
reflection. The estimated ∆ is found to be ∼ 10◦.

aligned sample is not a geometrical point, but is smeared out due to the finite extension of

the sample, the finite angular spread of the incident x-rays, and the mosaicity of the sample.

In practice, the lamellar reflections become arcs with an angle ∆ subtended at the origin of

the reciprocal space and the satellite reflections form distorted rings as depicted in Fig. 2.11

c. The cross section of the ring gets broadened due to the above mentioned reasons. The

observed reflections can be thought of as the intersection of these arcs and the rings with the

Ewald sphere. Therefore, the geometric correction for the lamellar reflections (main reflec-

tions) is different from that for the satellite reflections. Intensity corrections are required in

order to put all the reflections on the same intensity scale.

As ∆ is same for all the reflections, the length of the arc is larger for higher order main

reflections and hence the reduction in the intensity will be more at larger angles (Fig. 2.12)

[11]. Therefore, observed intensity (Io) needs to be multiplied by the length of the arc, given

by q∆. Due to the finite width of the arc, an additional factor of cosθ has to be included as

the Ewald sphere cuts the arc at an angle θ (Fig. 2.12). Therefore, the corrected intensity (Ic)
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for the main reflections can be written as

Ic = Ioq∆cosθ = Io
2π∆
λ

sin2θ (2.17)

Estimated value of ∆ (mosaicity) is about 10◦, as illustrated in Fig. 2.12. [11].

As shown in Fig. 2.11 c, satellite reflections form rings around the lamellar reflections

and the intersection of these rings with the Ewald sphere gives rise to two equivalent spots

in the observed diffraction pattern. Since the Ewald sphere cuts the ring at a small angle the

angular dependence of these spots is weak. Therefore, the observed intensity (Io) has to be

multiplied by the perimeter of the ring to obtain the corrected intensity (Ic). The radius of

the ring (R′) is given by 2π|k|
λr

, where k is the Miller index of the corresponding reflection.

Ic = Io2πR′ = Io
4π2

λr
| k | (2.18)

2.3.1.2 Absorption corrections

Since samples were aligned on a curved substrate, x-rays traverse different paths in different

parts of the sample. Therefore, the reduction of both the incident and scattered intensity due

to the absorption of x-rays by the sample are different for different reflections. However,

we have not applied absorption corrections as it is difficult to measure the thickness of the

sample accurately. Previous study on the Pβ′ phase has shown that the electron density map

is not affected much by neglecting absorption corrections [11].

2.3.2 Modeling of the electron density of the modulated (Pβ) phase

It is clear from the diffraction patterns that the Pβ phase has a simple rectangular unit cell

(Fig. 2.10). The bilayers in this phase, therefore, must have a periodic modulation (Fig.

2.13). We take this to be a height modulation, as in the ripple (Pβ′) phase. We rule out

a thickness modulation of the bilayers, since packing considerations in such a case can be

expected to favour a centered rectangular unit cell. The electron density can be calculated

from the diffraction data, once the phases of the different reflections are known. Since the

bilayer has a center of symmetry, the phases are either 0 or π, and can be determined using
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Figure 2.14: (a) Three delta function and (b) Gaussian models for trans-bilayer electron
density profile. ρH and ρM are the heights of the delta functions and Gaussian profiles corre-
sponding to the electron density of head groups and terminal methyl groups, respectively. xh

is the distance of head group from the center of the bilayer. σh and σm are the widths of the
Gaussians corresponding to the head group and terminal methyl group, respectively.
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a modeling procedure used earlier for the Pβ′ phase [8, 11]. The electron density within

the unit cell ρ(r) can be described as the convolution of a contour function C(x, z) and a

transbilayer profile T (x, z), i.e., ρ(r) = C(x, z) ⊗ T (x, z). C(x, z) = δ[z − u(x)], where u(x)

describes the bilayer height profile (Fig. 2.13). The calculated structure factors Fc are the

Fourier transform F(~q) of ρ(r) sampled at the reciprocal lattice points. From the convolution

theorem it follows that F(~q) is given by

F(~q) = FC(~q).FT (~q) (2.19)

where FC(~q) and FT (~q) are the Fourier transforms of C(x, z) and T (x, z), respectively. u(x) is

assumed to have a triangular shape, given by

u(x) =
2A
λr

(x +
λr

2
) −

λr

2
≤ x < −

λr

4

= −2A
λr

x − λr

4
≤ x ≤ λr

4

=
2A
λr

(x − λr

2
)

λr

4
< x ≤ λr

2

where A and λr are the amplitude and the wavelength of the modulation, respectively. On

Fourier transforming C(x, z), we get

FC(~q) =
1
λr

∫ λr
2

− λr
2

C(x, z)e−i(qx x+qzz)dxdz

=
1
2

sinω
ω
+

1
2

cos 1
2 ( qxλr

2 + ω)

cos 1
2 ( qxλr

2 − ω)

sin( qxλr

2 − ω)

( qxλr

2 − ω)

where ω = 1
4 (qxλr + 2qzA).

2.3.2.1 Transbilayer electron density profile (T (x, z))

We have considered different models for the transbilayer electron density profile discussed

below.

Simple delta function model (SDF):

T (x, z) consists of three delta functions, two with positive amplitude (ρH) corresponding to
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the head group regions at the surfaces of the bilayer, and one with negative amplitude (ρM)

corresponding to the methyl group regions at the center of the bilayer ( Fig. 2.14 a). It is

given by

T (x, z) = δ(x)[ρH{δ(z + xh) + δ(z − xh)} − ρMδ(z)] (2.20)

where xh is the position of the head group with respect to the center of the bilayer. Fourier

transforming the above equation, we get

FT (~q) = ρM[
2ρH

ρM
cos(xhqz) − 1] (2.21)

If the bilayers contain cholesterol, the electron density exhibits two more local maxima [12].

Therefore, the electron density of cholesterol containing bilayers can be modeled with five

delta functions. In this case FT (~q) can be written as

FT (~q) = ρM[
2ρH

ρM
cos(xhqz) +

2ρC

ρM
cos(xcqz) − 1] (2.22)

where ρC and xc are the amplitude and the position of delta function, respectively, from the

center of the bilayer corresponding to the cholesterol molecule.

Gaussian model:

The SDF is an oversimplified model to represent head groups and chains. In the Gaussian

model, the three delta functions described above are replaced by three Gaussians of widths

σh and σm corresponding to the head group and terminal methyl group regions, respectively

(Fig. 2.14 b). The transbilayer electron density using the Gaussian model can be described

as

T (x, z) = δ(x)[ρH{e
− (z+xh)2

2σ2
h + e

− (z−xh)2

2σ2
h } − ρMe

− z2

2σ2
m ] (2.23)

Fourier transforming the above equation, we get

FT (~q) = σmρM[
2ρHσh

ρMσm
{e−

q2σ2
h

2 cos(qzxh)} − e−
q2σ2

m
2 ] (2.24)

The observed structure factor magnitudes (| Fhk
o |) were obtained from the integrated

intensity calculated from the diffraction data (| Fhk
o | =

√
Ihk). Geometric corrections to

the observed intensities, relevant to the present experimental geometry, are discussed in the
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Figure 2.15: Schematic flow diagram of the fitting procedure. FT and IFT represent the
Fourier transforms and inverse Fourier transforms.

previous section. Let the calculated structure factor evaluated at each q, corresponding to

each observed diffraction spot be Fkh
c . Then we define a quantity, given by:

Σ =
∑

h,k

|| Fhk
c | − | Fhk

o ||2 (2.25)

The best fit of the calculated structure factors with the observed ones can be obtained by

minimizing Σ. This was done by using the standard Levenberg Marquardt technique for

nonlinear least squares fitting [13]. Flow diagram for calculating electron density map is

shown in Fig. 2.15. Parameters in these models, such as ρH, ρM, ρC and the bilayer thickness,

are determined from the best fit. The calculated structure factors, Fhk
c using best fit model

parameters carry the phase (Φhk) information, i.e, eiΦhk
=

Fhk
c

|Fhk
c |
= ±1. The calculated phases

(Φhk) obtained from the model with best fit parameters were combined with the observed

magnitudes, and inverse Fourier transformed to get the two-dimensional electron density

map, using the expression,

ρ(x, z) =
∑

h,k

Fhk
o eiΦhk

cos(qhk
x x + qhk

z z) (2.26)

2.4 Light microscopy

We have studied giant unilamellar vesicles (GUVs) which are single bilayer shells having a

diameter in the range 10 - 100 µm (Fig. 2.16), using optical microscopy. The results of these
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studies are described in chapter 7. Here we discuss the basic principles of confocal fluores-

cence microscopy and the preparation of GUVs. GUVs are transparent to light and hence

cannot be visualized using conventional bright field light microscopy. Therefore, one needs

to use phase contrast or differential interference contrast (DIC) to observe GUVs [14]. Fluo-

rescence microscopy can also be used to visualize them [15]. Changes in the morphology of

GUVs can be directly observed using phase contrast or DIC. However, phase separation in

the bilayers in GUVs made up of a lipid mixture can only be visualized using fluorescence

microscopy. Preferential partitioning of a fluorescence dye into one of the coexisting phases

creates a contrast between the two phases and hence phase separation can be detected in the

microscope.

2.4.1 Fluorescence microscopy

When electrons from a fluorescent material are excited from the ground state to a higher

electronic energy level, they undergo a non radiative decay and relax to a lower vibrational

level of the same excited state. The electrons then return to the ground state via emitting

photons of a higher wavelength relative to the incident photons. This process is termed as

fluorescence. The fluorescent material are also known as fluorophores. Typical fluorescence

life time (the average time spent in the excited state before it returns to the ground state) is

∼ 10 ns [15].

In fluorescence microscopy, a specimen which is labeled with fluorophores is excited by

radiation of an appropriate wavelength and the emission is detected using a charge couple

device (CCD) or photomultiplier tube (PMT).

2.4.1.1 Principles of confocal fluorescence microscopy

Confocal microscopy is a widely used experimental tool for imaging thick samples (like bi-

ological cells, tissues etc) at high resolution which is not possible to achieve in conventional

bright field light microscopy. In conventional bright field light microscopy, the image of a

thick specimen (5 to 10 µm thickness) will be blurred due to the presence of light emerging
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Figure 2.16: Schematic diagram of a unilamellar vesicle

from outside the focal plane of the objective lens and thereby the image resolution is poor.

In other words, information from different planes of the specimen cannot be resolved with

high resolution in conventional light microscopy. This problem is solved with confocal mi-

croscopy and light from outside the focal plane of the objective (objective plane) is blocked

using a confocal aperture (pinhole) placed in the plane conjugate to the focal plane of the

objective in front of the detector.

In a laser scanning confocal fluorescence microscopy, a laser of an appropriate wave-

length is used to excite the fluorophore attached to the sample. Laser is focused onto the

specimen at a point in the focal plane of the objective. The point of focus acts as a point

source and the diffracted light at the back focal plane of the objective forms concentric Airy

discs. Therefore, the image of a point source will not be a point but is spread out (point

spread function). Confocality is achieved by allowing light only from the first Airy disc

using a pinhole aperture before the detector. This is equivalent to the collection of emitted

light only from the focal plane. The optimum pinhole size is dependent on the objective

magnification and the numerical aperture (NA) of the objective. Typical optical path of a

laser scanning microscope is shown in Fig. 2.17. In brief, light of an appropriate wavelength

is reflected by the dichroic mirror and gets focused onto the specimen by the objective. The

emitted light passes through the dichroic mirror and is detected using a PMT via a pinhole.

Light emerging from outside the focal plane is not detected by the PMT as shown by the
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Figure 2.17: Light path in the laser scanning confocal fluorescence microscope.
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green rays. In order to obtain entire image of the specimen plane, the specimen is scanned

by deflecting the laser focus along the X-Y plane. Once the entire plane of the specimen is

scanned, the stage can be moved using the z-control in order to scan another plane along the

z direction. In this manner a three dimensional image of the specimen can be constructed.

Pixel size is optimized using Nyquist criteria, pixel size = resolution
2.3 . The resolution of the

microscope in the X-Y plane and along the z direction are given by dxy =
1.22λ
2NA and dz =

2nλ
NA2 ,

respectively, where n is the refractive index of immersion liquid used for the objective and

λ is the wavelength of emitted light. It is clear that the z-resolution is poorer than the X-Y

resolution for a given NA of the objective and wavelength of light.

Multiphoton excitation can also be used to excite the fluorophore instead of single pho-

tons. In that case confocality can be achieved without a pinhole, as the probability of exci-

tation is proportional to the square of the incident intensity and emission from out of focal

planes is extremely low. Using multiphoton excitation we can also avoid photobleaching of

the entire sample although beaching occurs at the focal plane.

2.5 Preparation of giant unilamellar vesicles (GUVs)

There are several methods for the preparation of giant vesicles, reported in the literature

[16, 17, 18, 19]. Vesicles in a aqueous solution can have heterogeneity in thickness (mul-

tilamellar with varying number of layers) and can be polydisperse in thier sizes. There are

some necessary conditions associated with vesicle formation. For example, vesicles form

only when the lipid is in the fluid (Lα) phase, which can be achieved by maintaining the tem-

perature above the main transition of the lipid used. This is because the formation of vesicles

involves bending of the membranes which is energetically expensive in the gel phase where

the membranes are very rigid. High ionic strength of the solutions and high osmolarity can

also prevent vesicle formation.

Electroformation method, first described by Angelova et al., is a popular and widely

used protocol to prepare giant unilamellar vesicles [19, 20, 21]. Electroformation of vesicles

produces mainly unilamellar vesicles of 10-100 µm diameter. Yield of unilamellar vesicles
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Figure 2.18: Schematic diagram of the chamber used for electroformation of GUVs.

Figure 2.19: A photographs of the chamber used for electroformation.

using eletroformation method is very high (95%) compared to other preparation methods

[22]. We have designed a chamber for electroformation whose temperature is controlled by

using a circulating water bath (Julabo). It consists of a hollow metal Cu block with an inlet

and outlet for water circulation ( Fig. 2.18). Two platinum wires were inserted through two-

bore nonconducting ceramic tubes to avoid contact between the two electrodes. A circular

coverslip is attached from the bottom using silicon glue, as shown in Fig. 2.18. The whole

chamber is covered with a thin teflon sheet to increase its thermal stability. Fig. 2.19 is a

photograph of the chamber used for electroformation of vesicles.
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Figure 2.20: Electroformation of vesicles. Top black region is the image of part of the
platinum electrode. Scale bar represents 10 µm.

2.5.1 Electroformation of vesicles

Stock solutions of the lipids and lipid–cholesterol mixtures of concentration 0.5 mg/ml were

made in chloroform and were stored below 0◦C. 1-2 µl of the stock solution was taken out

using a Hamilton syringe and coated onto each platinum electrode and then the solvent was

allowed to evaporate. For this technique to work the lipid film should not be too thick.

The optimum thickness is in the range 10-100 bilayers. After removing all traces of the

solvent, about 500 µl of Millipore water was added to the chamber and a 10-15 Hz alternating

electric field (AC) of 1-3 volts amplitude was applied through the platinum electrodes. The

temperature was maintained above the main transition of the lipid used. After about 1 1
2 hours

the AC field was switched off. Vesicles form near the platinum wires, as shown in Fig. 2.20,

and then they detach from the wires and form giant vesicles via coalescence (Fig. 2.21).

Vesicles are poly-dispersed in size ranging from 10 - 100 µm.
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Figure 2.21: Phase contrast image of GUVs made from DOPC. Scale bar represents 10 µm.
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