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Spectral Properties of Plasma from a Planar Water 

Microjet Irradiated at Oblique Incidence  
 

 

5.1 Electromagnetic wave propagation in a homogeneous plasma 

 

Plasma, being a collection of positive and negative charges, responds to 

external electromagnetic disturbances and modifies the external fields. This forms 

the core of the discussion about the propagation of an electromagnetic radiation 

through a plasma. The transmission or reflection of an electromagnetic radiation 

of frequency ω in a plasma is basically decided by the plasma frequency. If the 

frequency of the incoming radiation is larger than the plasma frequency, which 

gives the fundamental timescale on which a plasma responds to an external 

electromagnetic disturbance, the radiation is transmitted by the plasma. If the 

frequency of the electromagnetic radiation is less than the plasma frequency, 

plasma will reflect the electromagnetic radiation. When there is a gradient in the 

plasma density the plasma frequency will also be varying. At the electron density 

where the plasma frequency becomes equal to the frequency of the 

electromagnetic radiation, the wave will be reflected from the plasma. This 

electron density is named as the critical density and it is given by 
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Let us now consider the propagation of a high frequency electromagnetic 

radiation through a plasma. The frequency of the electromagnetic radiation is 

chosen such that it is greater than the plasma frequency, thus allowing propagation 

through the plasma. The plasma is assumed to be devoid of any large imposed or 

self-generated magnetic field. The ions are considered to form a stationary 

neutralizing background. The propagation of a plane wave 
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through the plasma can be analyzed by obtaining the wave equation for the 

oscillating electric and magnetic fields in the plasma using Farady’s and Ampere’s 

laws. Since the current density in the plasma is given by the motion of the 

electrons under the electric field of the electromagnetic radiation, a linearized 

force equation for the electron will give the current density. Thus the Helmholtz 

equations for the electric and magnetic fields of the electromagnetic wave in the 

plasma are given by 
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respectively, where 
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pe
−=  is the dielectric function of the plasma. For a 

homogeneous plasma the electron density will be spatially uniform and hence the 

dielectric constant of the plasma will be uniform. There will not be any charge 

accumulation. As a result, for a homogeneous plasma 0=∇ε  and 0. =∇ E . Then 

the wave equations for the electric and magnetic fields in the plasma will become   
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respectively. The dispersion relation for the electromagnetic wave in the 

homogeneous plasma is given as:  
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5.2 Electromagnetic wave propagation in an inhomogeneous plasma 

 

In an inhomogeneous plasma the electron density is no longer uniform and 

hence the full wave equations have to be solved to get the electric and magnetic 

fields in the plasma. Under such a situation the waves will no longer be plane 

waves once they propagate through the plasma. Depending on the nature of 

polarization and angle of incidence on the plasma the fields will evolve to 

different solutions. The nature of the plasma density profile will be reflected on 

the nature of the solutions for the electric and magnetic fields that propagate 

through the inhomogeneous plasma. By assuming the plasma density profile, the 

propagation equation can be solved to get the field distribution. 

 

5.2.1 Oblique incidence of a plane electromagnetic wave 

 

Consider an electromagnetic wave whose propagation vector is at an angle 

to the electron density gradient in the plasma. For the analysis we can consider a 

plane electromagnetic wave incident on a plasma slab of electron density ne(z). 

The vacuum-plasma interface is taken as z = 0, where the angle of incidence θ is 

defined as the angle between the propagation vector and the direction of the 

density gradient ( ẑ ). The position of the electron critical density layer from the 

vacuum-plasma interface is denoted by L. The plane of incidence of the 

electromagnetic wave is defined by the vectors n∇ and k. For the analysis let it be 

the y–z plane, with the density gradient along the z direction. Under this labeling 

there is no variation along the x direction (i.e. kx = 0 and 0=
∂

∂

x
). At the vacuum-

plasma interface (z = 0) the y and z components of the propagation vector are 

given as θ
ω

sin



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
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k y  and θ

ω
cos







=

c
k z . The propagation of the 

electromagnetic wave in the plasma under oblique incidence will dependent on 

whether the electric field vector E of the incident radiation is in or out of the 

above defined plane of incidence [Kruer, W.L.]. 
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Figure 5.1: Light ray obliquely incident on an inhomogeneous plasma slab 

 

 

 S-polarized electromagnetic wave 

 

If the electric field vector is normal to the plane of incidence, the 

electromagnetic wave is called s-polarized. If we take xx
ˆE=E , following which 

the propagation vector and the plasma density gradient are taken at the y-z plane, 

then the wave equation of the electric field vector will become: 
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under the assumption that no variation occurs along the x direction. Since the 

dielectric function of the plasma is a function of z alone, ky should be conserved. 

Hence we get 
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E(z) will become zero or the wave will be reflected when θε 2sin)( =z  as it is 

clear from the wave equation with the substitution of Ex: 
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Reflection occurs at θωω cos=pe , which implies that an obliquely incident 

electromagnetic wave will reflect at a lower density than the critical density for 

that wavelength, i.e., at an electron density of θ2coscre nn =  . For a plasma with 

a linear density profile the wave reflects at z = Lcos
2θ. 

 

P-polarized electromagnetic wave 

 

When the electric field vector of the electromagnetic radiation lies parallel 

to the plane of incidence it is known as p-polarized. Under the coordinate 

consideration of figure 5.1, the electric field can be written as ( )zEyEE zy
ˆˆ += . It 

is obvious that the electric field has a component in the z direction, which is the 

direction of free electron density gradient assumed. This leads to a non-zero 

product ( )0. ≠∇ en
�
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.E . This component of the electric field 

of the obliquely incident electromagnetic radiation will make the electrons 

oscillate along the direction of the electron density gradient. Since this oscillation 

of electrons generates fluctuations in charge density, which can be resonantly 

enhanced by the plasma, the wave is no longer purely electromagnetic. Part of the 

energy of the incident electromagnetic wave is transferred to an electrostatic 

oscillation, the electron plasma wave (Langmuir wave), a phenomenon named as 

Resonance Absorption (RA).   

 

Consider a plane electromagnetic wave incident at an angle θ onto an 

inhomogeneous plasma slab with density ne(z) as shown in figure 5.1. Poisson’s 

equation gives ( ) 0. =∇ Eε
�

, which readily gives the divergence of the electric field 

of the incident electromagnetic radiation in the plasma as: 
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with ε as the dielectric function of the plasma. The electromagnetic field that 

satisfies this condition induces a charge separation in the plasma.  A non-

vanishing derivative of the dielectric function exists only when there is a spatial 

electron density gradient that reflects in the plasma frequency. Resonant response 

will be present when ε=0, i.e., when ωpe=ω. 

 

Physically, resonance absorption can be explained by considering 

electrons oscillating between regions of differing density. This directly creates a 

charge density fluctuation, eoscosc nnnn ∇≅−+=
�

.)()( xxxxδ . The amplitude of 

oscillation of an electron in the electric field of the electromagnetic radiation is 

given by ( )2ωm
e

osc
Ex = . When ωpe=ω, this imposed charge density fluctuation is 

just at the frequency where the plasma responds resonantly. Hence an electron 

plasma wave is excited at ε=0 (i.e. at the critical density), when an 

electromagnetic wave is obliquely incident on an inhomogeneous plasma. An 

obliquely incident electromagnetic radiation will be reflected from an 

inhomogeneous plasma at an electron density less than the critical electron density 

at the incident frequency. For a p-polarized electromagnetic wave the field will 

tunnel into the critical density region and excite the plasma wave resonance, even 

when it is reflected at a density less than the critical density.  

 

To obtain the electric field along the direction of the electron density 

gradient, the first step is to get the magnetic field of the p-polarized 

electromagnetic wave. At each position of the density gradient, the magnetic field 

of the electromagnetic radiation is xBx̂=B , which will be normal to both the 

propagation vector k and the direction of electron density gradient, which is taken 

as the z direction in the present treatment. Considering the conservation of the y 

component of the propagation vector, the magnetic field of the electromagnetic 

wave can be written as: 
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Applying Ampere’s law to the magnetic field as EB ε
ω

c

i
−=×∇

�

and 

equating the z components, the amplitude of the electric field along the z direction 

(i.e. the electrostatic field along the direction of electron density gradient, which 

will have a resonance behaviour near the critical density layer) is given as: 
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Since Ez is strongly peaked at the critical density, the resonantly driven field is 

approximated as 
)(z

Ed

ε , with Ed evaluated at the resonance point. Physically Ed 

is the field driving the resonance, i.e. the component of the electromagnetic wave 

that oscillates electrons along the density gradient at the critical density. To 

evaluate Ed, we need the magnetic field at the critical density. For this we need to 

calculate the magnetic field along the direction of the electron density gradient. 

This can be done by considering the wave propagation in an inhomogeneous 

plasma. Assuming a linear electron density profile, the value of the magnetic field 

B(z) at the critical density layer z=L can be obtained by multiplying the value of 

the magnetic field at the turning point of the obliquely incident p-polarized 

electromagnetic radiation (B(z=Lcos
2θ)) by an exponential decay from the turning 

point to the critical density. The value of the magnetic field of the electromagnetic 

radiation at the turning point can be estimated using the Airy function solution for 

an s-polarized wave. Hence ( ) 6
1

2 9.0)cos(
L

cELzB FS ωθ ≈= . Here EFS is the 

value of the electric field of the light wave in free space. The decay of the field as 

it is penetrated beyond the turning point is estimated by β−
e , where 
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For a linear density profile β  is ( ) θω 3
sin

3
2

c
L . Hence the magnetic field 

at the critical density layer of an obliquely incident p-polarized electromagnetic 

radiation is given as: 
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Hence the component of electric field that oscillates the electrons along the 

density gradient is given as ( θε sin)()()( zBzzE = ):  
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Which can be rewritten in terms of a parameter τ (defined as ( ) θωτ sin
3

1

c
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as: 
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with ( )
3

2exp3.2)(
3τττϕ −= . Hence the driver field vanishes as τ→0 and 

becomes very small for large τ. For τ to be large θ should be large, and under this 

condition the incident wave has to tunnel through a large distance to reach the 

critical density layer. Hence there is an optimum angle of incidence for a p-

polarized electromagnetic radiation to resonantly excite the plasma wave upon 

oblique incidence to an inhomogenous plasma. This is given approximately by the 

condition, ( ) 8.0sin
3

1

≈θω
c

L .  

 

Resonance energy absorption 

 

The resonantly driven electric field is )(/ zEE dz ε= . If we consider a 

damping of the wave with a damping frequency ν, which can represent dissipation 

by electron-ion collisions, linear or non-linear wave-particle interactions, or 

propagation of the wave out of the resonant region, the dielectric function of the 
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plasma can be written as 

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the electric field along the electron density gradient direction is proportional to ν-1
 

and the width of the resonance of Ez near the critical density layer is proportional 

to ν.  For a linear density profile the absorbed energy flux is given as 
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5.2.2 Normal incidence of a plane electromagnetic wave 

 

Exact solutions can be obtained for a plane electromagnetic wave normally 

incident on a plasma slab with a linear variation in density. Consider the electric 

field vector to be in the x direction and let Ex = E (s-polarized wave according to 

our conventions of figure 5.1). Considering the variations only in the direction of 

propagation of the plane electromagnetic wave (z direction), in cartesian 

coordinates, the wave equation for the electric field becomes, 
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Assuming that plasma density (electron density) is a linear function of position 

along the direction of propagation of the electromagnetic radiation under the 

condition of normal incidence to the plasma slab, 
L

zn
n cr=  , the wave equation 

will become: 
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and assuming a change of variable as ( )Lz
Lc
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become a differential equation given by 0
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 with a general solution in 

terms of the Airy functions as )()()( ηβηαη ii BAE += , where the constants α and 

β are determined from the boundary conditions. Hence, 
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with EFS as the free space electric field of the incident electromagnetic radiation. 

The amplitude of the electric field reaches a maximum at the cut off layer (ε=0, 

ne= ncr) due to the constructive interference between the incident wave and the 

wave reflected from the plasma critical density layer. This maximum value of the 

electric field is given by 
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The magnetic field of the electromagnetic wave in an inhomogeneous plasma with 

a density gradient along the direction of propagation of the incident plane wave is 

given as 
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where the prime denotes derivative with respect to η. At the reflection point,  
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In the case of normal incidence of a plane electromagnetic wave on 

inhomogeneous plasma, the wave propagation equations inside the plasma are not 

dependent on whether the electromagnetic wave is s or p polarized. In chapter four 

the situation of normal incidence (of a p-polarized laser pulse) to a planar water jet 

was considered. 

 

5.3 Mechanisms of plasma wave damping 

 

 As discussed in the previous section, in resonance absorption, large 

amplitude electrostatic waves are produced due to the field resonance at the 

critical layer. Transfer of energy from this electrostatic wave to the surrounding 

plasma occurs through damping [Kruer, W. L.]. There are collisional and non-

collisional ways of damping the energy of resonantly excited plasma waves, 



 109

leading to the generation of ‘hot’ (non thermal) electrons. Collisions between the 

electron wave and the ions of the plasma lead to the transfer of energy from the 

electrostatic wave to the ions. This is similar to the energy transfer from an 

electromagnetic radiation to the ions via electrons that undergo quiver motion in 

the incident laser field. The coherent motion of the electrons, as the plasma wave, 

will be changed to a random motion via this collision with the surrounding ions.  

 

 Even in the absence of collisions the electrostatic waves in a plasma can be 

damped. Landau damping is one such mechanism in which particles surrounding 

the electrostatic waves exchange energy with the wave depending on their 

velocity. The velocity of the particles in the plasma with respect to the phase 

velocity of the plasma wave determines the energy exchange. Those particles 

whose velocities are not resonant to the phase velocity of the plasma will not gain 

or lose energy. Those particles with velocities comparable to the phase velocity of 

the wave will see a nearly constant electric field from the plasma wave, and will 

thus get accelerated or decelerated. For particles with a velocity distribution f(ν), 

the rate at which the particle gains or loses energy from the plasma wave is given 

by 
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where the last term represents the slope of the velocity distribution of the particles 

at the phase velocity of the wave. The subscript ‘w’ in the above expression 

represents the parameters of the plasma wave as against those of the 

electromagnetic wave. This shows that particles with a velocity slightly less than 

the plasma wave phase velocity will gain energy from the wave, and those having 

slightly greater velocity will lose energy to the wave [Kruer, W. L.]. Landau 

damping addresses wave-particle interaction in the linear regime. 

 

 If the amplitude of the plasma wave is large, even extremely slow 

electrons can be accelerated in the electric field bringing their velocities in 

resonance with the phase velocity of the wave. This indicates that under such 
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conditions, any electron moving in the electric field of the plasma wave will be 

resonant with it. This leads to a strong, nonlinear damping of the plasma wave as 

many electrons are efficiently accelerated to resonance with the wave thus 

extracting energy from the wave. A maximum number of electrons is brought to 

resonance at the peak of the wave and hence maximum damping will occur there. 

As a result, different parts of the wave will have different velocities depending on 

the field amplitude at those positions. This non-uniformity in the velocity will lead 

to the breaking of the plasma wave. The wave breaking condition can be written 

as: 

 1
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5.4 Polarization dependent second harmonic emission from plasma 

 

 When an intense femtosecond laser pulse interacts with solid density 

matter (solid or liquid) a very thin layer of high temperature, high-density plasma 

is generated on the surface of the material. During the laser pulse, the plasma 

density drops from nearly solid density essentially to zero in a distance much 

shorter than the wavelength of the laser light. Oblique reflection of p-polarized 

electromagnetic wave from an overdense, inhomogeneous plasma will be 

accompanied by a second harmonic (SH) emission [Eidmann & Sigel]. When 

resonance absorption takes place in a plasma, SH is generated by an electron 

plasma wave at the critical density layer. The frequency of the SH under such a 

situation will be exactly twice that of the fundamental frequency, with the 

signature of the Doppler motion of the critical layer. SH in the specularly reflected 

direction and nearly twice the frequency of the fundamental are characteristic of 

resonant absorption processes [Hansen et al.]. When the characteristic size of the 

underdense plasma is small ( )10≤λL  the primary consideration is the energy 

absorption near the critical density surface. If the length of the under dense plasma 

is large ( )100≥λL  phenomena like inverse Bremsstrahlung absorption, Brillouin 

and Raman scattering will be significant. Electron plasma waves generated by 
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resonance absorption account for the SH emission.  The formation of SH from 

plasma can be explained in a simple manner as given below. 

 

 When p-polarized light is incident on an inhomogeneous plasma slab, 

electron plasma waves are excited at the critical density layer via resonance 

absorption mechanism. The density oscillation of the excited plasma wave non-

linearly couples with the oscillatory velocity of the plasma electrons resulting in 

an ac electronic current in the plasma that eventually radiates the SH of the 

incident light. By considering perturbation theory, the current density at 2ω can be 

written as: 
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where )1(

ωv
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and )2(

2ωv
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are the first and second order electron velocity perturbations at 

ω and 2ω respectively, )1(

ωn is the first order perturbation of the electron density, 

and )0(
n is the unperturbed density profile of the plasma [Linde et al.]. By 

combining Maxwells equations, the continuity equation and the plasma equation 

of motion, the SH current density is found to be related to the local electric field in 

the plasma as  
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where locE
�

 is the local electric field oscillating at the laser frequency, and )0(
n∇
�

is 

the longitudinal electron density gradient [Gizzi et al.]. Solving the wave equation 

with ω2J
�

as a source term will show that SH emission will occur from the plasma. 

Thus, the coherently driven nonlinear current acts as the dominant source for SH 

from the plasma. Conservation of the wave vector component parallel to the 

surface leads to the emission of the SH in the form of a coherent beam collinear 

with the specularly reflected fundamental beam [Gizzi et al.],[Linde et al.]. Since 

the electron density and velocity perturbations referred in equation 5.26 are 

directly driven by the fundamental laser field at ω, the SH spectrum is directly 
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related to the fundamental spectrum through the current density at 2ω. Plasma 

expansion will introduce Doppler shift to the SH frequencies, which in the static 

model, is centered at 2ω [Linde et al.]. A red shift of the SH is possible due to the 

phase change of the nonlinear current in the plasma during its evolution. The 

major component of the red shift of the SH arises from the second order current 

density shown above. The red shift of the SH can be attributed to the changes of 

the phase of the nonlinear current during the evolution of the plasma. In the initial 

stages of the plasma the light is essentially interacting with a supercritical electron 

density, and the induced electron density oscillations are in phase with the laser 

field. Once the plasma begins to expand, the laser will be interacting with critical 

density or sub-critical density electrons. The induced electron density oscillations 

are out of phase with the field in this condition. Thus the nonlinear current density 

will have an increasing phase lag with the laser field as time progresses. This 

phase lag will be reflected as a red shift in the SH spectrum since 
dt

dφ
ω −=∆ . 

Since this time varying phase is for the second order current density, the first 

order optical properties, i.e. responses in the fundamental frequency, will be 

unaffected. Thus the red shifted SH is consistent with a blue shifted fundamental 

[Linde et al.].  

 

 The blue shift of the fundamental light frequency upon reflection from the 

inhomogeneous plasma can be attributed to the Doppler shift induced in the 

plasma heating pulse (in femtosecond laser-matter interaction, the part of the laser 

pulse after plasma creation) by the motion of mass from the target surface 

[Milchberg & Freeman]. The heated target material will move away from the 

original interface during the evolution of the pulse. The expanding interface acts 

as a moving mirror. Thus the reflected spectrum of the laser pulse is a convolution 

of the laser pulse history and a time-dependent frequency shift set by a time-

dependent expansion speed. The spectral function of the reflected light depends on 

the spectral function of the incident light as follows: 
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where )(ωiS is the spectral function of the incident light, I(t) is the laser pulse 

intensity, and R(t) is the reflectivity of the material. The Doppler shift in 

frequency is given as: 
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with θ being the angle of incidence and )(tv  the spatial average velocity, along the 

transverse to the expansion direction,  of the reflection surface in the beam focus. 

Thus the reflected spectrum depends on the change of )(tv during the pulse. At the 

typical plasma density resulting from femtosecond laser interaction, the plasma 

pressure exceeds the light pressure, and hence the expansion is solely determined 

by the plasma pressure. The spectrum of the reflected light represents the time-

integrated effect of an expansion speed averaged over a velocity profile and 

transverse direction of the laser pulse. Thus the temperature obtained from the 

reflected pulse spectrum is a time average over these space averaged expansion 

speeds. The spectral shift is given by 
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where expν is the average expansion velocity, c is the velocity of light in free 

space, θ the angle of incidence, and λ is the central wavelength of the fundamental 

input laser pulse. The assumption of plasma as a fluid will give an expansion 

speed of  

scv
1

2
exp

−
=

γ
        (5.31) 

with the consideration that the initial sharp boundary of a semi-infinite fluid will 

expand with this speed. Here γ is the ratio of the specific heats of the fluid, which 

can be chosen to be 1.7 for the plasma of interest pertaining to this experiment. 

‘cs’  is the sound speed of the fluid. The plasma sound speed can be given as 



 114

 
2/1







=

i

eB
s m

TZk
c        (5.32)  

where Te is the electron temperature, kB is the Boltzman constant, Z is the average 

ion charge state and mi is the ion mass. Thus from the spectral blue shift of the 

fundamental frequency reflected from the expanding plasma, the plasma electron 

temperature can be inferred [Milchberg & Freeman]. 

 

5.5 Experimental results and discussion 

 

 We investigated the effect of input laser pulse polarization on the emission 

from plasma created in a water jet in atmospheric pressure, when irradiated at an 

oblique angle of incidence. This study essentially addresses the effective coupling 

of laser to plasma formed on a liquid surface. The previous studies were on 

metallic, glass or thin plastic film targets [Engers et al.], [Linde et al.], [Gizzi et 

al.], [Sandhu et al.].  In our experiment, laser pulses centered at 797nm have been 

focused to a planar water jet at an angle of 45
0
 using a plano-convex lens of 20cm 

focal length. The water jet thickness is 250µm and the input laser intensity is 

4.2x10
15

 W/cm
2
. The polarization of the incident laser pulse is varied from s to p 

by using an achromatic half wave plate before the focusing lens. The red shifted 

second harmonic signal is observed at 406nm with increasing intensity as the 

input nears p-polarization.  The SH emission was seen only at the specular 

reflection direction. The observed SH emission at 406nm is approximately 8nm 

red shifted from the expected SH position of the excitation wavelength at 797nm. 

The incoherent white light emitted along with the SH also is polarization 

dependent, as it peaks when the input is p-polarized. However the polarization 

dependence of SH is found to be sharper than that of the incoherent white light. 

For instance, the SH signal is enhanced about 3.5 times for the p-polarized input 

laser pulse compared to that for the s-polarized input, where the corresponding 

enhancement of the incoherent emission (450 – 600 nm) is only about 1.75 times. 

Both the SH and incoherent emissions start increasing from a half wave plate 

angle of ±30
0
 (where the input polarization is between s and p) to the completely 

p-polarized state (angle = 0
0
). Figures 5.2a and 5.2b show the SH emission from 



 115

the plasma for different input laser polarizations. Near the p-polarization a small 

dip in the SH signal can be seen though it is not so prominent in comparison to 

previous reports by Gizzi et al., where the input laser intensity was 5x10
17

 W/cm
2
. 

 

The maximum SH signal is observed at an angle of ±5
0 

from
 
the fully p-

polarized state,
 
unlike Gizzi’s observation in which it is near ±20

0
. The input 

intensity in our studies is two orders of magnitude less than that of Gizzi et al. 

Therefore resonance absorption will be relatively less in our case so that an 

enhancement happens in the SH emission when more p-polarization is present in 

the input laser pulse.  The dip in SH near p-polarization can be attributed to 

plasma wave breaking, even though the dip is not very prominent.  Figure 5.3 

gives the strength of incoherent emission in the visible region detected 

simultaneously with the SH emission in the specular reflection direction. The 

incoherent emission also is found to peak for p-polarized input. 
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Figure 5.2: (a) Intensity of SH emission at 406nm plotted as a function of the 

input laser polarization. 0
0
 corresponds to p-polarized state of the input laser. (b) 

Area under the curve measured for emission between 400 and 425 nm.  
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Figure 5.3: Area under the curve for emission between 450 nm and 600 nm 

(incoherent white light emission) observed in the specular reflection direction. 

 

Both the incoherent emission and SH emission are plotted together in fig. 

5.4. As the input approaches p-polarization, resonance absorption enhances the 

coupling of laser intensity to the plasma and the yield of SH is enhanced 

compared to that of incoherent emission. This can be attributed to the fact that the 

coherent SH process will be maximized as the plasma waves undergo resonance. 

The absence of an equal enhancement in the incoherent emission suggests that the 

plasma waves are still sustained under the resonance condition in the intensity 

regime of these experiments. The waves are either intact or can be considered to 

suffer only a weak breaking. The enhancement in incoherent radiation observed 

near p-polarization can be attributed to the increase in laser energy coupling to the 

electrons imparting them more energy, which eventually results in an increased 

emission. 

 

Figure 5.5 gives the Doppler shifted fundamental laser pulse, reflected 

from the plasma. The Doppler blueshift of 4nm suffered by the fundamental laser 

pulse reflected from the plasma for the oblique incidence of 45
0
 suggests an 

expansion velocity  of  2.66x10
5
m/s, according to  equation  5.30. By  considering   
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Figure 5.4: Plot of SH emission and incoherent emission. The emission intensities 

are normalized to a value of 1 for s-polarized input. 

 

equations  5.31 and 5.32 and substituting for the expansion velocity the electron 

temperature can be obtained. The plasma of water in the present experiment 

contains H
+
 ions and O

+
 ions as seen from the recombination lines. Hence 

assuming that the expansion velocity calculated above results from contributions 

of both of these ions, the average electron temperature can be estimated as 130eV. 
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Figure 5.5: Doppler shifted fundamental frequency. A blue shift of 4nm is 

observed in the fundamental that is reflected at 45
0
 from the plasma. Here the 

input is p-polarized. Inset shows the spectrum of the original laser pulse. 
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Figure 5.6 shows the red shift of the SH which can be attributed to the time-

dependent phase change of the second order current density as described in 

section 5.4. 
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Figure 5.6: SH emission observed at the 45
0
 specular reflection direction. An 

expanded SH is shown in the inset. The peak is at 406nm for this p-polarized 

incidence.  

 

In conclusion, we have investigated laser energy coupling to 

inhomogeneous plasma under oblique incidence, using 100 femtosecond laser 

pulses to irradiate a thin planar waterjet. The coupling arising from resonance 

absorption of the laser photons by the plasma waves has been observed. The 

coupling is maximized as the input laser pulse approaches p-polarization. Detailed 

polarization dependence studies are done by varying the input polarization from s 

to p in steps of 2
0
. From a simultaneous detection of SH and incoherent visible 

radiation, it is shown that SH has more enhancement near the p-polarization than 

incoherent emission. This suggests that at the investigated input laser intensity 

regime, there is no significant plasma wave breaking. Therefore the coherent SH 

emission process is more favoured compared to the incoherent emission process. 

Doppler shift of the fundamental suggests that the expansion velocity is 

approximately 3x10
5
 m/s.  




