
1 Introduction

In this thesis, we have studied different aspects of charge and energy transport in the presence

of disorder and interactions. The theory of transport is now almost a century old and still today

this field is one of the most active area of physics research. In this Introductory chapter, we first

give a brief commentary on the main approaches of transport developed in the last century. Next

part of the chapter is devoted to the essential and important ideas directly related to our work

and the problems studied in the thesis. Here we have developed and extensively used a method

based on Langevin equations and Green’s function (LEGF) to study transport phenomena in

different thermal and electrical systems. The problems addressed here can be divided in to two

relevant classes. (i) In the first class we have studied charge and energy transport in one, two and

three dimensional non-interacting systems (quadratic Hamiltonians). Apart from studying ordered

systems, we have studied the effect of disorder, and that of decoherence due to interactions with

other degrees of freedom. (ii) Next we have considered electron transport in mesoscopic systems

with electron-electron Coulomb interactions. Decoherence is a physical phenomenon in which

quantum mechanical interference effects get suppressed due to interactions between system and

its environment. The sections of this chapter are organised as following. We describe five

traditional transport approaches in Sec.(1.1). In Sec.(1.2) we introduce some interesting models

which have been studied here in the context of transport. Then in Sec.(1.3) we discuss three

more transport approaches which we employ in this thesis. In the final Sec.(1.4) we state the

problems, investigated in the rest of the chapters.

1.1 Commentary on transport approaches

Here we try to capture the essence of our understanding of electron and phonon transport in

solids through some popular transport approaches. The selection of approaches are based on

our understanding and the relevance to the problems studied in this thesis. So, we have left out

other important transport approches like random matrix theory (RMT) of quantum transport or

methods based on Feynman-Veron influence functionals. Physics in the second half of the last

century was controlled by the advancement of semiconductors and its applications to every parts

of modern life, including computers and tele-communications. Understanding of both electron

and phonon transport in these materials has significant contributions in that fantastic progress.
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1.1.1 Drude-Sommerfeld model of transport

One of the first model for charge and energy transport by electrons in metals was proposed by

Paul Drude in 1900 [1]. He applied the kinetic theory of gas to the mobile conduction electrons

wandering through the heavier almost stationary ions forming the underlying lattice. In the course

of their motion, electrons collide with the ions and get deflected. These instaneous collisions are

phenomenologically modelled by constant damping or relaxation time (τ). The crucial assumption

here is that the electrons are in local thermal equilibrium with their surroundings due to these

collisions. The last point has been critically re-examined in this thesis. We have provided simple

models which show local thermal equilibrium and studied the consequences of it on thermoelectric

transport. One main drawback of the Drude model is that here both electron-ion and electron-

electron Coulomb interactions are neglected. Yet the simple Drude model was quite successful

to explain Ohmic behavior of metallic conductor, nature of charge carriers in the classical Hall

experiment and phenomenological Wiedemann and Franz rule. Ohm’s law states that the charge

current density (jel) is linearly proportional to the applied weak electric field (E). The Drude

model gives an explicit form of this proportionality constant σ (called electrical conductivity or

inverse of resistivity).

jel = σE, with σ =
ne2τ

m
, (1.1)

where e,m, n are, respectively, the charge, mass and density of electrons. If local thermal equi-

libration is assumed to be achieved in collisions, then one can find an expression for thermal

conductivity (κe) due to electrons. It is given as

jth = −κe∇T, with κe =
1

3
v2τcev , (1.2)

where jth is the thermal current, ∇T is the temperature gradient across the sample. Here, v

and cev are, respectively, the mean electron velocity and electronic specific heat. Drude applied

classical ideal gas laws to evaluate v and cev. But this gives incorrect values of these parameters

as it ignores quantum statistics for electrons. Sommerfeld re-examined conduction in metals in

the Drude model using Fermi-Dirac statistics for the velocity distribution of electrons. The main

idea of Sommerfeld’s theory was to treat the electrons’ motion between collisions classically, with

various input parameters calculated from quantum theory of free electron gas. Some ingenious

thought will convince that classical dynamics of N noninteracting metallic electrons will not be

drastically affected by quantum postulates; so as long electronic velocity distribution does not

play a significant role, the predictions of the Drude theory are correct, such as for those DC or

AC electrical conductivities, but for thermal conductivity would be incorrect.
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1.1.2 Semiclassical Boltzmann transport theory

Electrons in metals are not completely free, but subjected to interactions due to ions making the

band structure, though we still do not consider electron-electron interactions. The semiclassical

transport theory of solids treats the dynamics of electron classically, with inputs taken from the

quantum mechanically calculated band structure using Bloch theory. Validity of the semiclassical

treatment strongly relies on the assumption that the external applied field varies on length scale

longer than the underlying periodic potential of the lattice. In the Boltzmann transport theory of

electrons [2], one starts with finding g(r,k, t), a non-equilibrium analog of equilibrium electronic

distribution function, where g(r,k, t)drdk/4π3 is the number of electrons in the phase space

volume drdk around (r,k) at time t. One can determine g(r,k, t) using relaxation time approx-

imation, where it is assumed that (a) the distribution of electrons after collision is independent

of g(r,k, t) just before the collision and (b) collisions do not change the form of the equilibrium

distribution of g(r,k, t) at local temperature. Both the assumtions are over estimation of the

efficiency of collisions. On the other hand in the kinetic theory of Boltzmann, one evaluates

g(r,k, t) from the differential Eq.(1.3) derived without the above assumptions.

∂g

∂t
+ v.

∂

∂r
g + F.

1

~

∂

∂k
g =

(∂g

∂t

)

coll
, (1.3)

where F(r,k) = ~k̇ is the external applied force and v(k) = ṙ. The collision term in the

right side of the equation is usually calculated using quantum theory like Fermi golden rule.

At high temperatures the main source of collision or scattering is intrinsic deviations from the

crystal periodicity, i.e., thermal lattice vibrations, whereas impurities, crystal defects are dominant

sources of collisions at low temperatures. Surface (or boundary) scattering is an important

collision mechanism in nanostructures, such as quantum dots, nanowires and graphene.

In solids, ions are arranged in a regular periodic array or lattice which themselves act as

dynamical entities. The quanta of lattice vibrations is known as phonon which carries heat energy

in metals as well as in electrical insulators. Similar to Drude model Debye first applied kinetic

theory for phonon gas. He expressed the phonon thermal conductivity (κph) as proportional to

cph
v vℓ where cph

v ,v,ℓ are, respectively, the phonon specific heat, velocity and mean free path.

Peierls formulated above Boltzmann type transport for heat conduction by phonons. Now, in

case of phonons, the main sources of scattering are impurities and phonon-phonon interactions.

Impurity scattering can arise because of randomness in the masses of the particles or in the spring

constants. In this case, the phonons still do not interact with each other and one can think of the

phonons of the original pure crystal getting elastically scattered by impurities. Alternatively, since

the system is still harmonic, one can think of heat transmission by the new normal modes of the

disordered system. The second mechanism for scattering is through phonon-phonon interactions

and this occurs if we include the higher order nonlinear terms (i.e, beyond quadratic order) of
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the inter-particle potential. Phonon-phonon interactions are usually classified into those which

conserve momentum and those which do not (Umklapp processes). Anharmonicity or phonon-

phonon interaction is necessary to get diffusion of energy through the momentum non-conserving

Umklapp processes. The Boltzmann-Peierls approach has become one the cornerstones in the

theory of lattice thermal conductivity. One can compute (κph) using this approach with different

approximations, like the relaxation-time approximation similar to electron case.

1.1.3 Kubo linear response theory

Until now, we have discussed approaches of transport based on either classical or semi-classical

dynamics, where accelerated electrons are balanced by scattering due to phonons and lattice

defects. Also, in the above theories, scattering events from different points in the phase space

are assumed to act incoherently. A full fledged quantum transport theory for weak external

perturbation can be developed applying the Kubo linear response theory [3]. Linear response

theory is a widely used concept in all branches of physics but we discuss here in the context

of transport only. Linear response theory implies that the effective motion (or velocity) of the

carriers is proportional to the external perturbation and one needs to find the proportionality

constant to quantify the transport behavior. It has been used both for mechanical perturbations

(perturbation of Hamiltonian) and thermal perturbations (perturbation of boundary conditions).

We now briefly describe linear response theory for mechanical perturbations. Let us start with a

quantum system in thermodynamic equilibrium, described by the time-independent Hamailtonian

Ĥ0. The expectation value of any physical observable Â in equilibrium (at temperature T ) is

given by

〈Â〉0 =
Tr[ρ̂0Â]

Trρ̂0

with ρ̂0 = e−βĤ0 . (1.4)

Here ρ̂0 is the equilibrium density operator and β = 1/kBT , with kB being the Boltzmann

constant. Then, at some instant, t = t0, an external weak perturbation is applied to the system

to drive the system out of equilibrium. The full Hamiltonian at time t > t0 is given by

Ĥ(t) = Ĥ0 + V̂ (t)θ(t− t0) . (1.5)

We are interested to get the expectation value of Â(t),

〈Â(t)〉 =
Tr[ρ̂(t)Â]

Trρ̂(t)
(1.6)

The time evolution of the density operator ρ̂(t) can be determined in the interaction picture

using Bloch equation, ∂β ρ̂ = −Ĥρ̂. Then one finds the response to linear order in the external
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perturbation V̂ (t) as

δ〈Â(t)〉 = 〈Â(t)〉 − 〈Â〉0 =

∫ ∞

t0

dt′CR
AV (t, t′) , (1.7)

with CR
AV (t, t′) = −iθ(t− t′)

〈[
ÂI(t), V̂I(t

′)
]〉

0
.

The previous equation is the famous Kubo formula where the response has been expressed through

equilibrium time-correlation function. In Eq.(1.7), I indicates that operators are given in inter-

action picture representation. Linear response theory has typically viewed the electric field as

a cause and the current flow as a response. We sketch here a derivation of a relation in the

frequency (ω) domain for electrical conductivity σ(r, r′, ω), with the equilibrium time autocorre-

lation function of the current density operator for small applied electric field E(r, ω). One starts

with

V̂ (ω) =
e

iω

∫

dr Ĵ(r).E(r, ω) , (1.8)

where Ĵ(r) = Ĵp(r) +
e

m
(A0 + Aext)ρ̂(r) , (1.9)

where A0 denotes vector potential in equilibrium before the external perturbation, E(r, ω) =

iωAext(r, ω), is applied. In Eq.(1.9), the first term Ĵp(r) is the paramagnetic current operator

while the second term is the diamagnetic contribution. ρ̂ is the particle density operator. Then

non-local electrical conductivity tensor σαβ(r, r′, ω) is defined as

Ĵα
e (r, ω) = −e〈Ĵα〉 =

∫

dr′
∑

β

σαβ(r, r′, ω)Eβ(r′, ω) . (1.10)

After some calculation using the Kubo formula Eq.(1.7) one finds an expression for the conduc-

tivity tensor.

σαβ(r, r′, ω) =
ie2

ω
CR

Jα
0 (r)Jα

0 (r′)(ω) +
e2〈ρ(r)〉
iωm

δ(r − r′)δαβ , (1.11)

where Ĵ0(r) = Ĵp(r) + eA0ρ̂(r)/m. The expression of Eq.(1.7) is exact and is given in terms of

microscopic quantities only.

A number of attempts (see Ref.[4]) have been made to formulate general linear transport

coefficients in the form of Eqs.(1.7,1.11). The viscosity coefficients, thermal conductivity are

some of the examples of linear coefficients arising in reponse to inhomogenieties which are not

generally expressible as mechanical perturbations of the form of Eq.(1.8). These are generally

known as thermal transport coefficients and the derivation of exact formulas for these coefficients

are more involved.
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1.1.4 Conductance viewed as transmission: Landauer formalism

All three previous transport approaches deal only with the sample through which charge or energy

is being transported. But transport is a dissipative phenomenon where charge or energy is

exchanged either with the reservoirs at the ends of sample or with the environment at the bulk

of the sample. So, for a complete understanding of transport phenomena, one should consider all

parts of the full system. Landauer formalism is based on this principle. Here, one assumes that

the system in question is connected to large reservoirs, where all inelastic scattering processes take

place. Consequently, transport through the system can be formulated as a quantum mechanical

scattering problem. Thus, one can reduce the nonequilibrium transport problem to a quantum

mechanical one. Landauer [5] derived a formula which connects the resistance or conductance

of a sample with the reflection or transmission coefficient of the carrier through the sample. Of

course, the value of the resistance or conductance depends on the way one probes the system.

In the thesis we have used the Landauer two-probe and four-probe resistance formule. We briefly

discuss the formulae here.

Four-probe formula : In a four-probe measurement, current is sent through the two outer

probes, and one measures the voltage across the two inner probes. It can be proved that the

resistance (ρ = g−1) of a 1D (single channel) conductor in units of π~/e2 is

ρ(L) =
1 − t(L)

t(L)
, (1.12)

where t(L) is the transmission coefficient of the sample of length L. It gives correct zero resistance

of a perfect metal with unit transmission.

Two-probe formula : A two-probe measurement is done with same voltage and current probes

and it can be shown that the two-probe resistance of a single channel is

ρ(L) =
1

t(L)
(1.13)

In the absence of scatterer, the four-probe formula gives zero resistance; but the two-probe

resistance is unity (in the unit of π~/e2). This is to maintain the contact potential difference in

the two-probe measurement, as the voltage and the current probes are the same and the particles

have to work to transmit ballistically from one lead to other. This constant resistance is known as

the Sharvin contact resistance. One of the earliest and important experimental verification of the

Landauer formalism came from the celebrated studies of conductance of narrow two dimensional

channels, called quantum point contacts (QPC) connecting wide reservoirs [6, 7]. The channel

width can be controlled by externally applied gate voltage. As the conducting channel is widened,

the number of transverse conducting eigenstates N in the conductance, g = Ne2/π~, of perfectly

conducting channel, increases. Conductance steps corresponding to increasing values of N are

clearly observed in experiments. Today, the Landauer formalism is the most widely used approach

for electron and heat transport in nanostructures.
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1.1.5 Non-equlibrium Green’s function formalism (NEGF)

The non-equilibrium Green’s function formalism is a highly developed technique to investigate

quantum transport in coherent mesoscopic systems far away from equilibrium [8]. It is also a

complete transport theory (like the Landauer approach) as it describes time evolution of any

observable with the full Hamiltonian of the system and the resrvoirs. The main advantage of

NEGF over the Landauer approach is that weak interaction between carriers like electron-electron

(e-e), phonon-phonon (ph-ph) or electron-phonon (e-ph) can be studied here. This technique has

been developed to the present stage by several physicists including Kadanoff, Baym, Schwinger,

Keldysh, Meir and Wingreen. NEGF has been formulated in structurally equivalent fashion fol-

lowing equilibrium Green’s function of many body quantum theory. It relies on Wick’s theorem

and perturbation technique using Feynmann diagrams. But the crucial difference here from the

equilibrium case, is that finite bias in non-equilibrium problem breaks down the time reversal

symmetry between the initial and final states, which has been exploited heavily to construct per-

turbation theory in equilibrium. In NEGF, one can tackle the problem by allowing the system

to evolve from time t = −∞ (if one is not interested in transient behaviour) to a time t = ti

when one is interested to study the system (or in general, after steady state has been reached),

and then to continue the time evolution from t = ti back to t = −∞. In this scheme, all the

expectation values are defined with respect to a well-defined initial state at t = −∞. But one

should treat both the time braches on equal footing. Now, we ouline the scheme of constructing

perturbation theory in NEGF.

Consider the Hamiltonian

Ĥ = ĤS
0 + ĤS

I + ĤR + V̂ C (1.14)

where ĤS
0 , Ĥ

S
I are, respectively, the noninteracting and the interacting part of the system Hamil-

tonian and ĤR defines Hamiltonian of the reservoirs. The system is coupled to the reservoirs by

the coupling V C at time t = −∞. Before the coupling is turned on, the full system is described

by the equlibrium density matrix

ρ̂(Ĥ) =
e−βĤ

Tr[e−βĤ ]
, (1.15)

where Ĥ = ĤS
0 + ĤS

I + ĤR. Now, the expectation value of any operator A(t) corresponding to

a physical observable (like steady state current) at time t is given by

〈Â(t)〉 = Tr[ρ̂(Ĥ)ÂĤ(t)] (1.16)

Here, ÂĤ(t) is written in Heisenberg picture. Also, note that we have used equilibrium density

matrix in Eq.(1.16). One can even use time evolution of the density matrix instead of Â as we



12 Introduction

have done in case of linear response theory. Now, one needs to apply perturbation technique to

find the time evolution of ÂĤ(t). In most of the cases, we can find exactly the propagator for

noninteracting part of the Hamiltonian Ĥ0 = ĤS
0 + ĤR, we need to apply the perturbation to it

twice with respect to ĤS
I and V̂ C using Wick’s theorem to determine the full propagator. Also,

one should be careful in defining time ordered Green’s functions in different branches of the full

time contour, and it is carried out using Langreth theorem. In this thesis, we have developed a

simpler approach based on Langevin equations where it is possible to derive NEGF-like expressions

for the steady state quantities for noninteracting systems.

1.2 Some models of interest

In this section, we describe the models which have been studied in this thesis. We also briefly

summarize previous important results related to these models. Resistance against transport arises

due to elastic or inelastic scattering of carriers. Scattering of electrons or phonons from quenched

disorder such as static random potential, is elastic and energy of scattered electrons or phonons

remains the same. Inelastic scattering caused by dynamical interactions, where carriers exchange

energy with other degrees of freedom. For electrons, electron-phonon interactions and electron-

magnetic impurity interactions are some important sources of inelastic scattering. Usually in

solids, inelastic scattering due to electron-phonon interactions dominates in high temperature

transport and the transport follows classical Drude-like behaviour due to lack of phase coherence.

In the absence of magnetic impurity, low temperature electrical transports in a noninteracting

disordered medium is dominated by interference of the electron waves along the alternative time-

reversed paths, which leads to quantum correction to the classical Drude conductivity. This

phenomenon, known as coherent back-scattering, causes weak localization correction which, un-

der certain circumstances, leads to localization in disordered conductor, and metallic conductor

becomes insulator [9]. In Sec.(1.2.1) we also discuss models of disordered phononic systems. In

our work we have introduced inelastic scattering in the transport channels phenomenologically

through voltage probes as in Sec.(1.2.2).

In real systems, long range Coulomb interaction between electrons or phonon-phonon interac-

tions due to anharmonic lattice vibrations at finite temperature are always present. Still, in many

cases, for extended syatems (such as good metals or electron gases), it is valid to investigate

at low temperatures in the almost non-interacting limit as long range interactions effectively get

screened. But this is not true when charge tends to be localized on the nanostructures and the

flow of electrons become correlated due to Coulomb interactions [10]. We study a simple model

of strongly interacting electrons in the last chapter of this thesis. We have chosen to study simple

but nontrivial models, since this enables us to derive many exact and accurate results. We believe

that the models still keep basic essential features of real systems and our analytical studies enable
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Figure 1.1: Plot of a typical wave function of an extended state with mean free path le and a
localized state with localization length ξ.

one to understand underlying physical mechanisms of system of practical interests.

1.2.1 Disordered systems

Quatification of disordered samples is done by specifying some macroscopic properties of the

system, such as the concentration of the impurities (like doping atoms in semiconductors). Now,

one can have many different microscopic realisations of the disordered samples, keeping the

average macroscopic characters fixed. A model of disordered system is constructed by an ensemble

of such different microscopic realisations together with the information of occurance of the sample

system in the ensemble. In short, models of disordered systems are described by a Hamiltonian

with the distribution of the disorder. We include here models of disordered systems both for

electron and phonon.

Model 1. Anderson Model :

Consider a disordered noninteracting electronic system of tight-binding Hamiltonian [11] on a

d-dimensional lattice,

Ĥ = −
∑

l6=m

tlm|l〉〈m| +
∑

l

ǫl|l〉〈l| , (1.17)

where l is a d-dimensional vector. Disorder can be realized by making on-site potential ǫl random

from site to site (site-diagonal disorder), or, by inserting random tunneling matrix element tlm

(off-diagonal disorder). For the case of site-diagonal disorder with disorder distributed uniformly

over a band of site energies over ±∆/2 (i.e., width ∆) and a tunneling bandwidth W = 2Zt0

(where t0 is nearest-neighbour tunneling and Z is co-ordination number), the Anderson theorem

predicts that for η = (∆/W ) ≥ (∆/W )critical, all states are localized.

All states of 1D Anderson model are localized for any finite fraction of disorder potentials of

any strength [12]. For 3D Anderson model, all eigenstates get localized with sufficient strength

of disorder potential for a given ordered band width. The disorder induced transition from
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conducting to insulating phase is known as Anderson transition which is a mechanical or quantum

phase transition. For highly disordered media, waves undergo multiple coherent scatterings and

produce localised states due to interference effects. In FIG.(1.1) we have shown typical examples

of localised and extended states. The wavefunction for a localised state has an envelope which

decays exponentially from the peak point with a characteristic length called the localisation length,

ξ. Extended states are described by the typical length scale called the coherence length, le, over

which phase coherence is retained. le is generally the elastic mean free path in a good metal. In

Chapter (3), we will have more discussion on the different regimes of disorder and scaling theory

of localization.

Model 2. Lloyd Model :

In the one dimensional tight-binding Hamiltonian of the form of Eq.(1.17), if the site energies

ǫl are chosen to be distributed randomly with a Cauchy probability distribution

P (ǫl) =
1

π

Γ

(ǫl − ǫ0)2 + Γ2
, (1.18)

and only nearest-neighbour hopping elements tl,l+1 = 1 are present, then the disordered electronic

model is called the Lloyd model. Here, ǫ0 and Γ are, respectively, the mean value and width of

the distribution. This is an exactly solvable model of disordered electronic system, where one can

calculate the localization length ξ(E) and the average density of state ρ(E) as a function of the

energy E [13].

Model 3. Isotopically disordered harmonic lattices :

This model has been nvestigated in this thesis extensively. The Hamiltonian of a disordered

d-dimensional harmonic lattice is given by

H =
∑

l

( p2
l

2ml

+
1

2
k0x

2
l

)

+
∑

l6=n

1

2
kln(xl − xn)2 (1.19)

where l is again a d-dimensional vector. Here, {xl, pl,ml} denote the scalar displacements about

equilibrium positions, momentum, and mass of a particle at the site l. The mass {ml} in Eq.(1.19)

is random and usually chosen from a uniform distribution. Similar to Anderson model, one can

have random spring constant {kln} also. We need to specify boundary conditions for xl. We

use either fixed or free boundaries in Chapter (4). For the case k0 = 0, the total momentum

is conserved and thus, there exists a zero frequency translational (Goldstone) mode; then the

Hamiltonian in Eq.(1.19) has at least one phonon branch whose frequency vanishes for vanishing

wave number and this model (i.e., the case k0 = 0) is known as acoustic model. In the presence

of finite k0, the total momentum is no longer a constant of motion and all branches of the

dispersion relation have a gap at zero wavenumber. Then it is referred to as the optical model

[14].
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Figure 1.2: Plot of a two-channel voltage probes coupled in between two reservoirs at different
chemical potentials and temperatures.

In Chapter (4), we study the random mass disordered harmonic chain with constant nearest

neighbour elastic couplings in case of the acoustic model, with a few on site quadratic pinning

potentials. In contrast to Anderson model, all states of the acoustic model, even in one dimension,

are not localised and low frequency modes are extended, which can conduct significantly [15–

18]. It has been shown [19], using field theoretic treatment for the disordered harmonic lattices

with vector displacement, that all finite-frequency phonon-modes in one and two dimensions are

localised with low-frequency (ω) localization lengths diverging as 1/ω2 and e1/ω2
respectively,

and there exists Anderson like transition from extended to localised modes at finite frequency in

three dimensions. In Chapter (4), we study the scalar displacement model analytically as well as

numerically and obtain many interesting results.

1.2.2 Self-consistent reservoirs or voltage probes

In most of the transport theories like the Drude model or the semiclassical Boltzmann trans-

port theory with relaxation time approximation, one attributes all the efficacy of collisions to the

phenomenological parameter, namely, the relaxation time τ , without bothering much about the

scattering mechanism closely. Though in modern perturbation theory and numerical studies, it

is possible to take into account the microscopic Hamiltonian causing scatterings, still it is hard

in many cases to have a simple understanding of the role of inelastic and quasi-elastic scatter-

ing mechanisms in transport behavior. Self-consistent reservoirs (SCR) or voltage probes are

introduced phenomenologically in microscopic theory of transport to have a better understanding

of the role of scatterings in transport with less complication. The SCR model was introduced

in the early seventies of the last century by Bolsterli, Rich and Visscher [20–22] to study heat

conduction in ordered and disordered harmonic lattices. The SCRs incorporate phenomenologi-

cally interactions of phonons with other degrees of freedom such as electron’s charge and spin

present in the physical system. The temperature of the SCR, connected to the transport channel
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of phonons, is determined self-consistently by the condition of net zero heat current from the

SCR to the transport channel. The SCR of thermal transport matches in many sense to the

dephasing probes (of electrical transport) which introduce incoherent quasi-elastic scattering into

a mesoscopic conductor.

Engquist and Anderson [23] introduced the concept of potentiometer probes in transport chan-

nel to have a physical understanding of the Landauer four probe formula and removed the para-

dox arising from the derivation of Landauer-like formula from the Green-Kubo formula. But the

present form of voltage probes was originated by M. Büttiker [24, 25] to study dephasing in

persistent current in a metallic ring. Voltage probes coupled to a coherent conductor permit in-

coherent inelastic scattering processes. A particle entering the probe is thermalized by dissipation

and, later on, fed back into the system to conserve the number of particles in transport channel.

Voltage probe models are widely used to address mostly the disappearance of quantum coherent

nature in transport, such as to show the transition from quantum combination of scatterers to

the series addition of resistances, the transition from the quantum Hall effect to the classical

Hall effect or to incorporate the effect of inelastic effects on quantum pumping. In FIG.(1.2.2),

we show a double-channel voltage probe (with chemical potential µ and temperature T ) coupled

to a transport channel which conducts between two reservoirs at different chemical potentials

and temperatures. Here, µ and T will be determined by the net zero particle and heat current

respectively, but it also depends on the coupling matrix between the voltage probe and trans-

port channel. In Chapter (3), we present some example of coupling matrices and calculate the

potential of the voltage probe.

1.2.3 Electron-electron interactions in mesoscopic systems

Until now our discussion has been confined to the single particle picture. Here, we briefly review

some mesoscopic models with electron-electron Coulomb interactions. The main focus here is

to find how does the transport behavior modify in the presence of many-body effects. We study

electron transport through an interacting region (such as quantum dot) connected to two non-

interacting leads at finite potential difference. Quantum transport through quantum dots with

Coulomb interactions has been extensively investigated for many years, but most of the studies are

either perturbative for weak interactions or within linear response regime. Many popular methods

like NEGF, numerical renormalisation group or functional Bosonisation have been employed for

these studies [26]. Recently, Bethe ansatz technique has been extended to study nonequilibrium

transport through interacting resonance level model for arbitrary interaction. We have studied a

very simplified model of interacting electrons in Chapter (5), and our scope of discussions here

is also limited. We briefly introduce two popular models of correlated electron transport through

quantum dots.
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Our first example of Hamiltonian comprises metallic quantum dot, where many energy levels

are present near the Fermi energy (i.e., internal dimensionless conductance g >> 1). Using RMT,

one can express the universal quantum dot Hamiltonian [27] in terms of single particle energy

level α as

ĤD =
∑

ασ

ǫαâ
†
ασâασ + Ec

(∑

ασ

â†ασâασ −N0

)2
+ Js

(1

2

∑

ασ1σ2

â†ασ1
~σσ1σ2 âασ2

)2
. (1.20)

Here Coulomb interaction between electrons is included through the charging energy Ec = e2/C,

with C being the effective capacitance of the dot. Js is the strength of exchange spin interactions

between electrons. σ denotes spin level and ~σ is the Pauli spin operator. We have discarded

Cooper and spin-orbit interaction channels. Many of the earlier important results like Coulomb

blockade have been studied with this form of Hamiltonian. This model is also known as constant

interaction model or capacitor model.

The second model is similar to the popular Anderson impurity model which was originally

proposed by P.W. Anderson [28] to study the well-known Kondo problem, the behavior of single

magnetic impurity coupled to a conduction band of electrons. Now, for the case of quantum

transport through dot, the conduction band acts as the two leads and the magnetic impurity is

replaced by the quantum dot. The full Hamiltonian of the dot, leads and dot-lead couplings is

given by

ĤD =
∑

σ=↑↓

ǫdâ
†
dσâdσ + Uâ†d↓âd↓â

†
d↑âd↑ +

∑

k,σ=↑↓

ǫkâ
†
kσâkσ +

∑

k,σ=↑↓

Vk(â
†
kσâdσ + â†dσâkσ) , (1.21)

where d denotes dot level. Here, U is the Coulomb interaction energy and Vk is the coupling

between dot level and leads’ levels denoted by the subscript k. In the case of linear dispersion

relation for the band and Vk = V =constant, the equilibrium problem of this model was solved

using a Bethe-ansatz method. Recently, Bethe-ansatz technique has been extended to study the

nonequilibrium transport in a similar model called interacting resonance level model for arbitrary

interaction exactly [29]. In the final chapter of this thesis, we study the transport problem with

a simple model of quantum dot for spinless interacting electrons, similar to the Anderson model.

1.3 Approaches applied in the thesis

In Sec.(1.1), we discuss about five transport theories. These are indirectly related to the work

in the present thesis. Here, we illuminate three different approaches which have been employed

to study heat and charge transport problems in this thesis. We have developed and applied a

formalism based on Langevin equations and Green’s function [4] to most of the problems here.

For noninteracting thermal and electrical systems, this formalism is quite easy to implement
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analytically as well as numerically. Invariant embedding technique (see Sec.(1.3.2)) suits better

to investigate weakly disordered electronic systems analytically. Our study of electrical transport

in the presence of strong Coulomb interaction is based on the Lippmann-Schwinger scattering

theory. We briefly illustrate the Lippmann-Schwinger scattering theory at the end of this section

in Sec.(1.3.3).

1.3.1 Langevin equations and Green’s function (LEGF)

The LEGF approach allows to study systems in steady state arbitrarily away from the linear

response regime and includes the system, reservoirs and system-reservoir couplings explicitly.

This method, based on Langevin equations and Green’s functions was first applied by Ford, Kac

and Mazur [30] to the case of coupled oscillators. Recently, this method has been extended to

study quantum and classical transport in noninteracting systems by Dhar and co-workers [31–33].

Idealized reservoirs act as perfect blackbody with zero reflection. The LEGF has been devised to

elucidate the role of reservoirs and system-reservoir couplings in electrical and thermal transport

in [31]. It was also shown that ideal Landauer result for a disordered 1D conductor could be

obtained with special choice of reservoir. A nice analogy between NEGF and LEGF has been

drawn in [32]. This approach has been rigorously applied in next three chapters to deal with

various types of open quantum systems. We briefly summarise the basic steps of this formalism

here.

We start with the full Hamiltonian of system, reservoirs and system-reservoir couplings. Usually,

we take the reservoirs to be modeled by non-interacting electron gas for electrical transport study,

and harmonic lattices for thermal transport. Then, we write down equations of motion for the

system and reservoirs degrees of freedom. The reservoir degrees of freedom are eliminated to get

effective Langevin equations for the system alone. The reservoirs are serving as effective sources

of noise and dissipation. Finally, the Langevin equations, which are linear for the case of non-

interacting system are solved by Fourier transformations to obtain the steady state properties

such as current, local chemical potentials or temperatures. The most appealing character of

LEGF is its transparency and direct connections with other popular transport approaches such

as Keldysh NEGF, Caldeira-Leggett, Landauer and scattering theory methods. It is possible to

study interacting systems in LEGF approach using perturbation technique as NEGF, or, applying

self-consistent mean field theory like Hatree-Fock approximation. Still the implementation of

LEGF for interacting systems requires further careful studies.

1.3.2 Invariant embedding technique

The main idea of the invariant embedding approach is to deal directly with the outer emergent

characteristics, like complex reflection amplitude R(L) and transmission amplitude T (L) of a
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Figure 1.3: A schematic diagram of a scatterer of length L having reflection amplitude R(L); an
added length ∆L makes the length of the scatterer L + ∆L. The effective potential of the length ∆L
is given by a delta-function potential of strength v0.

sample of length L. In this approach, one first derives non-linear Langevin equations for R(L)

and T (L), which vary with the length of the sample and then, calculates the electronic transport

phenomena using the Landauer formula. One can study 1D disordered syatems analytically and

non-perturbatively using invariant embedding [34–37]. In Chapter (3), we have applied this

technique to investigate electrical transport in disordered conductors with external probes. Now,

we briefy outline a derivation of the invariant embedding equations for R(L) and T (L), following

Kumar [38].

Consider a disordered 1D conductor with N random scatterers of length L with the reflection

amplitude R(L), and N+1 scatterers of length L+∆L with the reflection amplitude R(L+∆L).

Here, L = N∆L, where ∆L can be thought as lattice spacing. In the continuum limit, we

use ∆L → 0, N → ∞ keeping N∆L = L fixed. We wish to find a relation between R(L)

and R(L + ∆L). Let there be a delta-function potential scatterer of strength v(L) at length

L + ∆L/2, which acts as an effective scatterer due to length ∆L added with L. In the limit

∆L→ 0 (i.e., kF ∆L≪ 1, with kF being the Fermi wave vector), we can treat the extra scatterer

as an effective delta potential v0(L)δ(x − L − ∆L/2) with v0(L) = v(L)∆L. One can easily

evaluate reflection amplitude r and transmission amplitude t for an electron plane wave (with

energy ~
2k2

F/2m) incident on a delta-function scatterer of strength v0(L). We expand r and t

to first order in ∆L for the present problem.

r(L) =
2mv(L)∆L

2i~2kF

, t(L) = 1 +
2mv(L)∆L

2i~2kF

. (1.22)

Now, consider an electron wave of unit amplitude incident at Fermi energy (EF = ~
2k2

F/2m) on

the right side of the sample length L + ∆L as shown in FIG.(1.3). Summing all the process of
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direct and multiple reflections and transmissions on the right side of the sample of length L with

the effective delta potential at L+∆L/2, one finds the geometric series for reflection amplitude.

R(L+ ∆L) = r(L)eikF ∆L + eikF ∆L/2t(L)eikF ∆L/2R(L)eikF ∆L/2t(L)eikF ∆L/2 + ... (1.23)

Substituting for the values of r(L) and t(L) from Eq.(1.22) in Eq.(1.23), and taking continuum

limit for kF ∆L≪ 1, one determines the Langevin equation for R(L)

dR(L)

dL
= i

kF

2
ξ(L)(1 +R(L))2 + 2ikFR(L) with ξ(L) = −2mV (L)

~2k2
F

, (1.24)

and the initial condition R(L = 0) = 0. Similarly, one can show, for the transmission amplitude

T (L),

dT (L)

dL
= ikFT (L) + i

kF

2
ξ(L)(1 +R(L))T (L), (1.25)

with the initial condition T (L = 0) = 1. In Chapter (3), we elucidate on how to solve the

non-linear Langevin equations for weakly disordered systems within random phase approximation.

1.3.3 Lippmann-Schwinger scattering theory

The Landauer approach (also known as the Landauer-Büttiker formalism in mesoscopic physics)

relies on determination of transmission coefficient in scattering theory. For disordered systems,

one can use RMT. In the last chapter of this thesis, we have reported our results on transport

through interacting mesoscopic systems, based on the Lippmann-Schwinger scattering theory.

The Lippmann-Schwinger theory [39] is a time-independent formulation of elastic scattering

processes. The simplest model of scattering experiment is given by solving the Schrödinger

equation for a plane wave impinging on a localised potential (or scatterer) V̂ . A potential V̂

might represent what an electron shooted from a metallic lead experiences in a quantum dot or

an alpha particle from a nucleus in high energy experiments. The total Hamiltonian of the open

system (with continuous energy spectra) can be written as

Ĥ = Ĥ0 + V̂ , (1.26)

where Ĥ0 stands for the kinetic energy operator with plane wave energy eigenket |φk〉 satisfying

Ĥ0|φk〉 = Ek|φk〉 . (1.27)

Now we wish to find the eigenket |ψk〉 of Ĥ for the same energy eigenvalue Ek, i.e.,

(Ĥ0 + V̂ )|ψk〉 = Ek|ψk〉 . (1.28)
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Next transforming the differential Eq.(1.28) to an integral equation in the bra-ket language, we

get

|ψk〉 = |φk〉 +
1

Ek − Ĥ0

V̂ |ψk〉 . (1.29)

|ψk〉 correctly gives the undisturbed incoming wave |φk〉 for V̂ = 0. But complication arises from

the singular nature of the operator 1/(Ek− Ĥ0), which we encounter by the transformation from

the differential Eq.(1.28) to the integral Eq.(1.29). To overcome the problem, one can add an

infinitesimal imaginary part to the denominator of the singular operator. One needs to be careful

about the sign of the imaginary part from the physical point of view since the solution (1.29) has

a single incoming plane wave, and outgoing waves in all directions, generated by the interaction

of the incoming wave with the scatterer V̂ . But the Schrödinger equation Eq.(1.28) could equally

describe ingoing waves in other directions. So the physical solution is

|ψk〉 = |φk〉 + Ĝ+
0 V̂ |ψk〉 , with Ĝ+

0 =
1

Ek − Ĥ0 + iǫ
. (1.30)

The last equation Eq.(1.30), is known as the Lippmann-Schwinger equation. We use Eq.(1.30)

to determine exact two particle scattering states for the problem of electron transport through a

one dimensional tight binding chain with e-e interaction in a bond of the chain. As we will see

in Chapter (5), this problem can be mapped to a problem of calculating the eigenstates of an

impurity in two dimensions.

1.4 Problems studied in this thesis

Finally in this section, we introduce the problems studied in the following four chapters. This

thesis mostly comprises of the developement and applications of the recent transport approach

employing Langevin equations and Green’s functions. We have extensively used this method to

investigate both thermal and electrical transport phenomena in non-interacting systems. Later,

in the thesis, we also discuss our studies with the invariant embedding technique for disordered

electronic systems and with the Lippmann-Schwinger equations for one dimensional models with

electron-electron interactions.

In Chapter (2), we elaborate the LEGF transport approach to study heat transport in harmonic

lattices. By solving generalised quantum Langevin equations of motion of harmonic lattices using

Fourier transform method, we derive NEGF-like expressions for the steady state heat current

through finite systems coupled to infinitely extended reservoirs. Our reservoirs are also modeled

by harmonic lattices. Then, we employ this LEGF method to evaluate heat current through

quantum harmonic chain with each site connected to self-consistent reservoirs. For infinite chain

with finite coupling with the interior reservoirs, heat conduction is diffusive, satisfying Fourier’s
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law. We calculate a temperature-dependent thermal conductivity which, for high temperature

classical limit matches with previous result obtained for classical model using different method.

We also show that by tuning the strength of the coupling with self-consistent reservoirs, one can

crossover from ballistic to diffusive thermal transport for finite chain length. We complete this

chapter with another application of LEGF to derive asymptotic expressions for steady state heat

current in ordered harmonic lattices with different boundary conditions implied by on-site pinning

potentials.

Chapter (3), is the longest chapter of this thesis; here we report four different problems on

electrical transport in the presence of external probes. In the first part here, we apply LEGF to in-

vestigate electron transport through one (or quasi one) dimensional systems in the presence of the

dissipative environment (present in the real experimental set-up due to interactions of electrons

with other degrees of freedom), modeled by the self-consistent stochastic reservoirs which act as

a source of inelastic scatterings. As expected, depending on the strength of inelastic scattering,

transport through the one-dimensional wire crosses over from ballistic to Ohmic region above some

critical size of the wire. We show how dissipation from the wire gets equally distributed from end

contacts to bulk of the wire as the transport character shifts from ballistic to Ohmic behaviour.

We also extend the phenomenology for uniform dephasing to mesoscopic metallic rings. The next

part of this chapter deals with the invariant embedding technique. We demonstrate the com-

parison between phase randomisation and decoherence responsible, respectively, for localization

phenomenon and classical nature. For this purpose, we introduce phase disorder in a 1D quantum

resistor through the formal device of ‘fake channels’ distributed uniformly over its length such that

the out-coupled wave amplitude is re-injected back into the system, but with a phase which is

random. The associated scattering problem is treated via invariant embedding in the continuum

limit, and the resulting transport equation is found to correspond exactly to the Lloyd model of

disordered system. It is further argued that our phase-randomizing reservoir, distinct from the

well known phase-breaking reservoirs, induces no decoherence, but essentially destroys all inter-

ference effects other than the coherent back scattering. Using Migdal-Kadanoff scaling theory,

we extend the phenomenology of decoherence via external reservoirs (phase-breaking reservoirs)

to higher dimensional disordered quantum resistance. We find that there is no metal-insulator

Anderson transition on minute introduction of decoherence in three dimensional disordered sys-

tems. We also compute the corrections to the conductance due to the decoherence in two and

three dimensions.

In Chapter (4), we consider the implementation of LEGF method to study heat transport in

disordered harmonic lattices. Some years back, it was shown in an important paper [18] on heat

conduction in the mass-disordered harmonic chain that the thermal conductivity depends not

just on the system itself but also on the spectral properties of the heat baths. Now, we find an

interesting universality in the length dependence of the thermal conductivity of the disordered
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chain coupled to different thermal baths such as Rubin’s model of baths and Langevin white noise

baths. We yield analytical expressions for the disorder-averaged steady state thermal current

through the disordered chain for fixed and free boundary conditions. We also address the effects

of finite number of quadratic pinning potentials in the disordered chain. Finally we discuss these

results in the quantum regime of heat transport.

Next, in Chapter (5), we turn our attention to a model with electron-electron interactions.

Here, we employ the Lippmann-Schwinger scattering theory to address the problem of trans-

mission of electrons between two noninteracting leads through a region where they interact.

We consider a model of spinless electrons hopping on a one-dimensional lattice with electron-

electron interactions on a single bond. We show that all two-particle states in this model can

be found exactly. The scattering states are analysed in details to get exact expressions for the

S-matrix. Comparisons are made with numerical results from time evolution of a two-particle

wave-packet, which reveal several interesting and subtle features. For N particles the scattering

state is obtained within a two-particle scattering approximation. For a dot connected to Fermi

sea at different chemical potentials, we find an expression for the change in the Landauer current

resulting from the interactions on the dot. We also extend our technique to study nonequilibrium

phenomena of more general interacting electronic systems such as parallel and series double dots

or interacting parallel conductors in proximity to one another.
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