
5 Charge transport in the presence of

electron-electron interactions

In this thesis so far we have explored quantum transport of spinless electrons in the absence of

interactions or in the presence of effective interactions modeled phenomenologically via voltage

probes. Now we embark on studying the effect of electron-electron Coulomb interactions on quan-

tum charge transport from first principle. Here we are mostly interested in microscopic description

of transport phenomena in mesoscopic low dimensional systems. We have developed an analytical

approach based on Lippmann-Schwinger scattering theory to deal with non-equilibrium physics

of the locally interacting electrons at zero temperature [173]. An understanding of the behavior

of electrons interacting with each other in a localized region has been a challenging problem in

theoretical physics. Recently, it has attracted much attention in view of the experimental interest

in transport across quantum dots and the Kondo effect in a quantum dot [174–178]. Another

important question is whether electron-electron interaction decoheres the system in the presence

of finite bias even in zero temperature? There are also several other interesting phenomena that

can be studied in the presence of interactions in mesoscopic systems at zero temperature, for

example, interaction induced entanglement and resonances. Entanglement is the manifestation

of quantum correlations between observable physical properties of two or more quantum subsys-

tems even though individual systems may be spatially separated. As a prototypical model, let us

consider two ideal leads (within which all electronic interactions can be neglected) connected to

a region (a quantum dot) where the electrons interact. One is interested in the current through

the dot in response to an applied voltage difference between the leads.

As has been discussed in Chapter (1), there are several different but equivalent theoretical

approaches for solving this problem. In the nonequilibrium Green’s function (NEGF) approach,

the initial density matrix of the two reservoirs (taken as ideal Fermi liquids in equilibrium at

different chemical potentials) and the dot (in an arbitrary initial state), is evolved in time. The

coupling between the reservoirs and the dot is switched on adiabatically and one looks at the

steady state properties of the resulting density matrix. A second approach is to view this as a

time-independent scattering problem and to look for many-particle scattering states which have

the correct asymptotic form in the leads. This second approach is in the spirit of the Landauer

formalism. A third approach is to use the quantum Langevin equations method (LEGF), where
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102 Charge transport in the presence of electron-electron interactions

the reservoirs are treated as sources of noise and dissipation. In the case where there are no

interactions in the dot region, exact results for the current and other steady state properties

can be obtained, and all three approaches give identical answers [32, 179–181]. The interacting

case however is much more difficult to study. For a single dot connected to noninteracting

leads, some results using the NEGF method have been obtained using the so-called non-crossing

approximation [181, 182]. For an integrable model, namely the interacting resonance level model,

Mehta and Andrei were able to solve the problem exactly [29]. Using the Bethe ansatz [183],

they were able to express all N -particle scattering states in terms of the two-particle S-matrix,

which is known exactly. They considered a continuum model with a linear spectrum which makes

it integrable. The N -particle scattering matrix for electrons interacting in a quantum dot has

also been studied in Ref. [184].

In this chapter, we present the results of our study [173] of a lattice version of the model

considered in Ref.[29]. In Sec.(5.1), we show that using the Lippmann-Schwinger method, all

two-particle eigenstates of this model can be found exactly. The form of the S-matrix indicates

that the model is not solvable by the Bethe ansatz. We examine the S-matrix and compare it

with numerical experiments on scattering of a two-particle wave packet in Subsec.(5.1.2). We

also study two-particle as well as many-body transport in this system in Sec.(5.2). We show that

N -particle scattering states can be obtained easily within two particle scattering approximation

for weak interactions. Using these, we obtain an expression for the change in the Landauer

current across a dot arising from interactions. Here, we start with a very simplified model where

we ignore on-site potentials of the dot and the coupling of the dot sites with the leads are also

same as the other inter sites hopping. These assumptions physically mean that in the absence

of interactions there is translational invariance in the model. Later, in Sec.(5.3), we discuss the

more realistic models of transport through quantum dots. We note that the study of two-particle

scattering states is in itself of interest [185, 186], apart from being the starting point for the

study of many-particle states necessary to understand transport. Recently, Goorden and Büttiker

[187, 188] have studied a set-up with two disconnected conducting wires and with electrons in

the two wires interacting weakly in a localized region. Using first order perturbation theory,

the two-particle S-matrix was evaluated and used to extract information on transmission and

correlations in a two-particle scattering experiments. In our single channel case, we will show

that the antisymmetry of the wave functions leads to striking asymmetries in the S-matrix. In

another interesting recent work, the S-matrix in a model of two photons interacting with a

localized atom was studied [189].
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Figure 5.1: Schematic description of a single dot connected with two noninteracting leads

5.1 Model and exact two particle scattering states

We consider a tight-binding one-dimensional lattice with spinless electrons. The model considered

describes an interacting dot on the sites l = 0, 1 (see Fig.(5.1)) which is connected to two

noninteracting one-dimensional leads on either side. The Hamiltonian is given by

H = HL + HD + VC , where (5.1)

HL = −
∞∑

l=−∞

′ (c†l cl+1 + c†l+1cl),

HD = −(c†0c1 + c†1c0) + (ǫ0n0 + ǫ1n1) + Un0n1

and VC = −γ(c†−1c0 + c†0c−1) + γ′(c†1c2 + c†2c1),

where nl = c†l cl is the number operator at site l, and
∑′ implies omission of l = −1, 0, 1 from

the summation. We have set the hopping amplitude in the leads to be 1 and assume that the

interaction is repulsive (U > 0); we also set the lattice spacing and ~ to be 1. First, we consider

the couplings γ = γ′ = 1 and on-site dot energies ǫ0 = ǫ1 = 0 corresponding (for U = 0) to the

case of a perfectly transmitting dot.

5.1.1 Scattering states

We first show how one can obtain all the two-particle energy eigenstates exactly for this problem.

Consider the noninteracting Hamiltonian H0 = H with U = 0. For this case, the one-particle

eigenstates have the form φk(l) = eikl with energy Ek = −2 cos k, where −π < k ≤ π. Now

consider a two-particle incoming state given by φk(l) = ei(k1l1+k2l2)−ei(k2l1+k1l2), with k = (k1, k2)

and l = (l1, l2). The energy of this state is Ek = Ek1 + Ek2 . A scattering eigenstate |ψ〉 of H

with energy E is related to a state |φ〉 of H0 through the Lippmann-Schwinger equation

|ψ〉 = |φ〉 + G+
0 (E)V |ψ〉, (5.2)

where G+
0 (E) =

1

E −H0 + iǫ
.
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For the two-particle sector, in the position basis |l〉 and with an incident state < l|φ〉 = φk(l),

Eq. (5.2) gives

ψk(l) = φk(l) + UKEk
(l) ψk(0), (5.3)

where KEk
(l) = < l|G+

0 (Ek)|0〉,

and 0 ≡ (1, 0). We can determine ψk(0) using Eq. (5.3),

ψk(0) =
φk(0)

1 − UKEk
(0)

. (5.4)

The two-particle scattering eigenstate is completely given by Eqs. (5.3-5.4). The matrix elements

KEk
(l) are known explicitly and are given by

KEk
(l) = g+

Ek
(l1 − 1, l2) − g+

Ek
(l1, l2 − 1), (5.5)

where g+
Ek

(l) = [1/(2π)2]
∫ π

−π

∫ π

−π
dq1dq2e

iq·l/( Ek−Eq + iǫ) is the usual two-dimensional lattice

Green’s function. It is instructive to look at the asymptotic form of the scattered wave function

[190]; this can be obtained by the saddle point method, the contribution to the integral in Eq.

(5.5) coming from the region near Eq = Ek. Apart from a factor Uψk(0), we find asymptotically

that

Kas
Ek

(l) =
(±1 − i)

4π1/2

ei(l1k′
1+l2k′

2)

(r/r0)1/2
(e−ik′

1 − e−ik′
2),

(5.6)

with
l1

sin(k′1)
=

l2
sin(k′2)

, where li/ sin(k′i) > 0, (5.7)

Ek = − 2 cos(k′1) − 2 cos(k′2), (5.8)

r = (l21 + l22)
1/2, (5.9)

and r0 =
[sin2(k′1) + sin2(k′2)]

1/2

| sin2(k′1) cos(k′2) + sin2(k′2) cos(k′1)|
,

where the ± sign in Eq. (5.6) corresponds to Ek0. The antisymmetry of the wave function is

implicitly hidden in the l-dependence of k′. [The expression in Eq. (5.6) is clearly more com-

plicated than the Bethe ansatz would have given which is a superposition of only four pairs of

momenta, namely, (±k1,±k2).] The physical interpretation of the above solution is as follows.

Two electrons with initial momenta (k1, k2) emerge, after scattering, with momenta (k′1, k
′
2). En-

ergy is conserved as implied by Eq. (5.8), but the presence of interaction breaks the translational

invariance, i.e., the total momentum is not conserved. The velocities of the electrons are given

by v1 = 2 sin(k′1) and v2 = 2 sin(k′2); Eq. (5.7) expresses the fact that the electrons observed

at (l1, l2) must reach there at the same time after collision. Note that we can equivalently think
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of this problem as that of a single electron in a two-dimensional (2D) lattice moving in the

half-space l1 > l2, with a hard wall along the diagonal l1 = l2 and a single impurity at the site 0.

The particle flux ~J ·d~S in a given direction tan(θ) = l2/l1 in the 2D problem corresponds, in the

1D problem, to the rate at which two particles are scattered with velocity ratio v2/v1 = tan(θ).

Instead of the usual scattering cross-section, it is useful here to calculate the scattering rate for

unit two-particle density at the site 0. This is given by

|f(θ)|2 dθ =
~J · d~S

|φk(0)|2 =
1

|1/U −KEk
(0)|2

[1 − cos(k′1 − k′2)] [sin2(k′1) + sin2(k′2)]

2π| sin2(k′1) cos(k′2) + sin2(k′2) cos(k′1)|
dθ, (5.10)

where k′1, k
′
2 are known in terms of θ. Note that the only dependence on the interaction parameter

U is through the factor |1/U − KEk
(0)|2. In an experiment, it may be simpler to find the

number of particles scattering within an energy interval dEk′
2

(energy conservation implies that

dEk′
1
+ dEk′

2
= 0). Defining P (Ek1 , Ek2 → Ek′

1
, Ek′

2
)dEk′

2
= |φk(0)|2|f(θ)|2dθ, we find that

P (Ek1 , Ek2 → Ek′
1
, Ek′

2
) =

1 − cos(k1 − k2)

|1/U −KEk
(0)|2

1 − cos(k′1 − k′2)

4π| sin(k′1) sin(k′2)|
. (5.11)

Finally, we can write an exact expression for the usual S-matrix,

S(k,k′) = − iπ(eik1 − eik2)(e−ik′
1 − e−ik′

2)

1/U −KEk
(0)

. (5.12)

5.1.2 Time evolution of two-particle wave packets

For the two-particle case it is more useful to study wave packets. We now consider the time

evolution of wave packets and see how well the predictions of the scattering theory hold. The

scattering states given by Eq. (5.3) are the full set of allowed two-particle energy eigenstates

(for U > π one gets an additional bound state). These can be generated by a unitary time

evolution of the unperturbed states which form a complete set. Hence these states also form a

complete set, and any two-particle wave function can be expanded using this basis. Thus the

time evolution of an initial wave packet Ψ(l, t = 0) is given by

Ψ(l, t) =
1

(2π)2

∫ π

−π

dq1

∫ q1

−π

dq2 a(q)ψq(l) e
−iEqt,

where a(q) =
∑

l1>l2

Ψ(l, t = 0) ψ∗
q(l). (5.13)

The time evolution can be studied quite accurately because of our knowledge of the exact basis

states. In evaluating the basis states, for small (l1, l2) ≤ 15, we evaluate the necessary Green’s

functions g+
Ek

(l) exactly using recursion relations relating these to g+
Ek

(0, 0) and g+
Ek

(1, 1). For

larger (l1, l2) we use the asymptotic forms which are quite accurate. We find that in our com-

putations the normalization of the wave function is preserved to within 0.5%. In Fig.(5.2) we
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Figure 5.2: Plot of the evolution of an incident wave packet (a) after passing through the origin
with U = 0 in (b) and U = 2 in (c). Note the strong scattering at an angle θ = −π/4.

show the typical time-evolution of a wave packet with initial position and momentum localized

at l = (−5,−6.8) and q = (2.36, 1.87) respectively and with widths δl ≈ δq ≈ 1 and E ≈ 0.

These initial conditions have been chosen so that the two particles reach the site 0 at roughly

the same time; this maximizes their interaction. The initial wave packet shown in Fig.(5.2(a))

evolves at time t = 20 to (b) for U = 0 and to (c) for U = 2. For the scattered wave function

in Fig.(5.2 (c)) we can count the number of particles scattered into a given direction. This is

plotted in Fig.(5.3) for incident wave packets with different energies. We also compare this with

the scattering theory prediction by plotting |f(θ)|2 multiplied by the time-integrated incident

two-particle density at the origin. The comparison can be seen to be very good.

5.1.3 Bound states:

For |E| > 4, the imaginary part of KE(0) vanishes; hence a localized state at a discrete energy

level Eb can occur under the condition

1 − UKEb
(0) = 0. (5.14)
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Figure 5.3: Plot of the number of particles scattered into a given direction for incident wave packets
with different energies. The bold lines show the results from scattering theory estimated using |f(θ)|2
and the incident particle density at the origin (inset). Inset shows |Ψinc(0, t)|2.

This equation can be solved to give Eb as a function of the interaction strength U . The minimum

energy for a (positive energy) bound state is Eb = 4; Eq. (5.14) then leads to the condition

U > π. It is easy to show that this discrete level is in fact a localized state, i.e., it has a

normalizable wave function which decays exponentially when the coordinate of either particle

goes to ±∞. To prove this we note that for Eb > 4, the two-particle eigenstate obeys the

equation |ψ〉 = [1/(Eb −H0)] V |ψ〉. This enables us to write the wave function at any point

l in terms of its value at 0. Thus ψ(l) = KEb
(l)Uψ(0). Now it is known [190] that for Eb lying

outside the bandwidth of the leads [−2, 2], g+
Eb

(l) and hence KEb
(l) decay exponentially with |l|.

This proves that ψ(l) is a normalizable bound state.

5.2 Transport calculation:

5.2.1 Two-particle sector

We will now turn our attention to quantities of interest in transport calculations. The current

density is given by the expectation value of the operator jl = −i(c†l cl+1 − h.c.) in the scattering
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state |ψk〉 = |φk〉 + |Sk〉. The current in the incident state is given by

〈φk|jl|φk〉 = 2[sin(k1) + sin(k2)]N , (5.15)

where N is a normaliation constant depicting the total number of sites in the entire system. The

change in current due to repulsive interactions has contributions from two parts given by,

δj(k1, k2) = 〈ψk|jl|ψk〉 − 〈φk|jl|φk〉,
= 〈Sk|jl|Sk〉 + 〈Sk|jl|φk〉 + 〈φk|jl|Sk〉 (5.16)

We evaluate them separately in the different sides of the interating region. For the first part (call

auto-correlation) we find for k1, k2 > 0,

jS = 〈Sk|jl|Sk〉 =
1

π

|φk(0)|2
|1/U −KEk

(0)|2
∫ π

cos−1(1−Ek/2)

dp1
1 − cos(p1) cos q

sin q
(5.17)

for l > 1 and with a negative sign for the region l < 0. Here Ek − Ep1 = −2 cos q with q > 0.

Similarly we calculate the cross-contribution in the current and this is given by

jC = 〈Sk|jl|φk〉 + 〈φk|jl|Sk〉 =
−2i|φk(0)|2

1/U −KEk
(0)|2 [KEk

(0) −K∗
Ek

(0)]. (5.18)

Both jS and jC is of order 1, i.e., it is a factor of N smaller than the current in the incident state

[186]. After summing up both the contributions in the left and right side of the dot separately,

we determine total change in the current due to scattering which is same in the both sides as

should be for current conservation.

δj(k1, k2) =
2|φk(0)|2Im[KEk

(0)]

|1/U −KEk
(0)|2 [sgn(k1) + sgn(k2)], (5.19)

where sgn(k) ≡ |k|/k. One interesting point to notice here that the first order change in the

current is quadratic in interactions for the dot without on-site energies. Later we will see that in

the case of more generalised dot where on-site energies due to applied gate voltage is included,

the first order change in the current is linear in interactions strength U .

5.2.2 N-particle scattering states and change in the Landauer current

We now consider the problem of calculating the current in a situation where the interacting region

is connected to left and right leads which are at zero temperature and chemical potentials µL and

µR respectively. In that case we need to consider an initial state with NL electrons in positive

momentum states filling 1-particle energy levels up to µL andNR electrons in negative momentum

states filling levels up to µR. Let N = NL+NR and let us denote this N -particle incident wave by

|φ(N)〉 = |k(N)〉, where k(N) = {k1k2...kN}. One then needs to find the corresponding scattering
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state and compute the particle current. While an exact solution for the N -particle scattering

state looks difficult, it is straight-forward to obtain a perturbative solution at first order in U .

The scattered wave is given by |ψkN
〉 = |φkN

〉 + |SkN
〉 with |SkN

〉 = G+
0 V |kN〉. At order U ,

the transition amplitude to a wave vector qN = {q1q2...qN} can be expressed in terms of the

two-particle transitions. Thus

〈qN |SkN
〉 =

∑

q2k2

(−1)P+P ′〈q2|Sk2〉〈q′
N−2|k′

N−2〉,

where 〈q2|Sk2〉 =
Uφ∗

q2
(0)φk2(0)

Ek − Eq + iǫ
(5.20)

is the two-particle transition amplitude at order U , q2 (k2) denotes a pair of momenta chosen from

the set qN (kN), and q′ (k′) denotes the remaining N −2 momenta. P (P ′) are the appropriate

number of permutations. Using Eq. (5.20), we calculate the current expectation value for the

state |ψkN
〉. The current in the incident state |φkN

〉 is given by 〈φ|jl|φ〉 = 2[
∑N

j=1 sin(kj)]NN−1.

The correct normalization is obtained by dividing by a factor NN which then gives in the con-

tinuum limit:

jinc =
1

2π
[

∫ kL

0

dk 2 sin(k) −
∫ kR

0

dk 2 sin(k)]

=
1

2π
(µL − µR), (5.21)

where kL,R = cos−1(−µL,R/2), and we have used dk = dE/|dE/dk| = dE/|2 sin(k)|. Inserting

factors of ~ and e, Eq. (5.21) gives the expected Landauer current I = (e/h)(µL − µR) and

Landauer conductance G = e2/h. The change in the Landauer current due to the scattering

involves a rather long calculation but the final answer is simple. Surprisingly, we find that it

can be expressed as a sum of two-particle currents from all possible momentum pairs: δjN =

(1/2)
∑

r,s δj(kr, ks) NN−2 which, with the same normalization as used earlier, gives

δjN =
1

2(2π)2

∫ ∫

dk1dk2 δj(k1, k2), (5.22)

where the integrations are over the full range of allowed momenta in kN , and δj(k1, k2) is given

by Eq. (5.19) [expanded to order U2]. Using the fact that δj(k1, k2) vanish whenever k1, k2

have opposite signs and converting Eq. (5.22) to energy integrals, we finally get the following

correction to the Landauer current:

δjN = [

∫ µR

−2

dEk1

∫ µL

µR

dEk2 +
1

2

∫ µL

µR

dEk1

∫ µL

µR

dEk2 ]

× ρ(Ek1)ρ(Ek2) U
24|φk1,k2(0)|2 Im[KEk1,k2

(0)], (5.23)

where ρ(E) = 1/(2π
√

4 − E2) is the density of states. The quantity in Eq. (5.23) is negative

because Im[KEk
(0)] < 0 for all values of k. In the zero bias limit µL → µR, the expression in
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(5.23) vanishes as U2(µL − µR) due to the contribution coming from the first set of integrals;

thus the conductance is less than e2/h by a term of order U2.

It may seem surprising that although the two-particle scattering depends on a fine tuning of the

initial conditions so that the particles arrive at the site 0 at the same time, the correction to the

current from the scattering given in Eq. (5.23) requires no such fine tuning. This is because in

the presence of a Fermi sea, the densities at the sites 0 and 1 are non-zero at all times. This can

be seen by using the Hartree-Fock approximation to expand Uc†0c0c
†
1c1 = U [< c†0c0 > c†1c1+ <

c†1c1 > c†0c0− < c†1c0 > c†0c1− < c†0c1 > c†1c0]. If the Fermi sea is one in which all momenta

lying in the range −kF < k < kF are occupied (where 0 < kF < π), we obtain < c†0c0 >=

< c†1c1 >= kF/π, while < c†1c0 >=< c†0c1 >= sin(kF )/π. The problem then reduces to that

of a single particle moving in the presence of a localized inhomogeneity in the on-site potential

and in the hopping [191]; the strength of both of these is proportional to U . We can solve this

one-particle problem to obtain a transmission probability T (E) which is a function of the particle

energy E; to lowest order, T (E) is equal to 1 minus a term of order U2. The Landauer formula

for the current is given by (e/2π)
∫ µL

µR
dET (E); in the zero bias limit, the reduction in the current

is therefore of the order of U2(µL − µR).

5.3 Generalization to realistic dot Hamiltonians:

In this section, we discuss the more realistic model of quantum dots and how exact two-particle

eigenstates can be found for this case, i.e., arbitrary values of the parameters γ, γ′, ǫ0, ǫ1 in Eq.

(5.1) [192]. Again in this section we confine our discussions to spinless electrons. We begin by

setting the interaction U = 0. The one-particle eigenstates of Eq. (5.1) can be found exactly,

since it has a quadratic form. For a particle coming from the left, the complete wave function is

given by

φk(l) = eikl + rke
−ikl for l ≤ −1,

= (1 + rk)/γ for l = 0, and tke
ik/γ′ for l = 1,

= tke
ikl for l ≥ 2, (5.24)

where 0 < k < π. Similarly, for a particle coming from the right, the wave function is given by

φk(l) = tke
ikl for l ≤ −1,

= tk/γ for l = 0, and (eik + rke
−ik)/γ′ for l = 1,

= eikl + rke
−ikl for l ≥ 2, (5.25)
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where −π < k < 0. The transmission (reflection) amplitudes tk (rk) can be found by solving the

one-particle Schrödinger equation,

tk =
−2iγγ′e−ik sin k

(ǫ1 − ǫk − γ′2eik)(ǫ0 − ǫk − γ2eik) − 1
,

rk =
1 − (ǫ1 − ǫk − γ′2eik)(ǫ0 − ǫk − γ2e−ik)

(ǫ1 − ǫk − γ′2eik)(ǫ0 − ǫk − γ2eik) − 1
. (5.26)

for 0 < k < π, and for −π < k < 0

tk =
2iγγ′eik sin k

(ǫ1 − ǫk − γ′2e−ik)(ǫ0 − ǫk − γ2e−ik) − 1
,

rk =
e2ik[1 − (ǫ1 − ǫk − γ′2eik)(ǫ0 − ǫk − γ2e−ik)]

(ǫ1 − ǫk − γ′2e−ik)(ǫ0 − ǫk − γ2e−ik) − 1
. (5.27)

A two-particle incoming state with momenta (k1, k2) has the wave function φk(l) = φk1(l1)φk2(l2)−
φk1(l2)φk2(l1); the total energy is Ek = −2 cos(k1)− 2 cos(k2) as before. We now find the scat-

tering eigenstate ψk using the same arguments as in Eqs. (5.2-5.4), except that KEk
(l) is now

given by

KEk
(l) =

∫ π

−π

∫ π

−π

dq1dq2
(2π)2

1

Ek − Eq + iǫ
φq1(l1)φq2(l2)[φ

∗
q1

(1)φ∗
q2

(0) − φ∗
q1

(0)φ∗
q2

(1)]. (5.28)

We are assuming that there are no one-particle bound states; otherwise KEk
(l) will receive a

contribution from such states also. We can obtain the scattered wave function by looking at the

asymptotic form of KEk
(l) for large |l|. The contribution to the integral in Eq. (5.28) comes

from the region near Eq = Ek, due to the presence of the reflection amplitude rk, and one will

obtain contributions from four points (±q1,±q2).
The above analysis for a general dot can be used to study some interesting problems. For

instance, one can study resonant transmission of two particles through the dot assisted by the

interactions between them. Suppose that the one-particle Hamiltonian has a form such that there

are two one-particle energies Er1 and Er2 at which a particle can transmit though the dot, but

it cannot transmit if its energy is different from Er1, Er2. Now imagine sending in two particles

whose energies E1, E2 are not at resonance but E1 + E2 = Er1 + Er2. Then the interaction

in the dot allows the two particles to make a transition from E1, E2 to Er1, Er2 and thereby

transmit through the dot. [The situation is somewhat reminiscent of Ref. [189] where it is

shown that two photons can transmit together through a region in which they interact with each

other.] Another application of the general dot analysis would be to consider a case in which the

one-particle Hamiltonian has a bound state, and study how this state evolves as the strength of

the interaction is varied [185].

Transport calculation: Now, we evaluate the two-particle current through a dot with some

on-site energies. Again, we are interested in calculating the expectation value of the current
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operator jl, as defined in sec.(5.2), in the two-particle scattering state |ψk〉 = |φk〉 + |Sk〉. We

assume that both the particles are incoming from left, i.e., k1, k2 > 0. First, we determine the

current in the absence of interactions.

jI = 2 Im[〈φk|c†l cl+1|φk〉]. (5.29)

〈φk|c†l cl+1|φk〉 =
∑

mnm′n′

1

22
〈φk|mn〉〈mn|c†l cl+1|m′n′〉〈m′n′|φk〉

=
∑

mnm′n′

1

22
〈φk|mn〉〈0|cncmc†l cl+1c

†
m′c

†
n′|0〉〈m′n′|φk〉

=
∑

m

1

22

(
〈φk|m, l〉〈m, l + 1|φk〉 + 〈φk|l,m〉〈l + 1,m|φk〉

− 〈φk|m, l〉〈l + 1,m|φk〉 − 〈φk|l,m〉〈m, l + 1|φk〉
)

=
∑

m

〈φk|m, l〉〈m, l + 1|φk〉

= N (φ∗
k2

(l)φk2(l + 1) + φ∗
k1

(l)φk1(l + 1)). (5.30)

So, the current in the noninteracting case is given by

jI = 2N (|tk1|2 sin k1 + |tk2|2 sin k2). (5.31)

Next, we calculate the contribution to 〈j〉 from only the scattered part of the full wave function.

This is given by

jS = 2 Im[〈Sk|c†l cl+1|Sk〉]. (5.32)

〈Sk|c†l cl+1|Sk〉 =
∑

m

〈Sk|m, l〉〈m, l + 1|Sk〉

=
|φk(0)|2

|1/U −KEk
(0)|2

∑

m

〈0|G−
0 (Ek)|m, l〉〈m, l + 1|G+

0 (Ek)|0〉

=
|φk(0)|2

|1/U −KEk
(0)|2

∫ π

−π

dq1
2π

I1(q1)I2(q1),

where I1 =

∫ π

−π

dq2
2π

φq1q2(0)

Ek − Eq1q2 − iǫ
φ∗

q2
(l),

I2 =

∫ π

−π

dq4
2π

φ∗
q1q4

(0)

Ek − Eq1q4 + iǫ
φq4(l + 1). (5.33)

Finally, we evaluate the cross contribution to the current from the incident and scattered parts,

given by

jC = 2 Im[〈φk|(c†l cl+1 − c†l+1cl)|Sk〉]. (5.34)
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U

Figure 5.4: Schematic illustration of the coupled parallel double- dots with on-site dot potentials

We calculate the first term of the expression in Eq. (5.34).

〈φk|c†l cl+1|Sk〉 =
∑

m

〈φk|m, l〉〈m, l + 1|Sk〉

=
φk(0)

1/U −KEk
(0)

∑

m

〈φk|m, l〉〈m, l + 1|G+
0 (Ek)|0〉

=
φk(0)

1/U −KEk
(0)

∫ π

−π

dq2
2π

(φ∗
k2

(l)φq2(l + 1)φ∗
k1q2

(0)

Ek2 − Eq2 + iǫ
−
φ∗

k1
(l)φq2(l + 1)φ∗

k2q2
(0)

Ek1 − Eq2 + iǫ

)

.(5.35)

Similarly, one can write the second term. For the simplified model of the dot, it has been possible

to evaluate the above integrals in Eqs. (5.33, 5.35) explicitly and derive a closed form expression.

Here, instead, we need to evaluate the integrals numerically to find the change in current due to

interaction.

It is possible to employ the above method based on Lippmann-Schwinger scattering theory

for several interesting relevant mesoscopic models. In this approach, as we have seen, one

can calculate the two-particle current exactly and the current in the presence of Fermi sea in

leads perturbatively. Transport through electrostatically coupled double-dots is another such

example. Recently, double quantum dots set-up has got a lot of interest theoretically as well as

experimentally in realizing quantum dot based quantum computations.

5.4 Scattering of spin 1/2 electrons due to interactions

Finally, let us briefly discuss the case of spin-1/2 electrons. We consider the Hamiltonian

H = −
∞∑

l=−∞

∑

σ=↑,↓

(c†l,σcl+1,σ + h.c.) + Un0↑n0↓. (5.36)

The interaction at the site 0 can cause scattering between two electrons in the singlet channel

but not in the triplet channel. This causes some sort of filtering for the spin-polarizations and

generates entangled spin singlet in the reflected beams. The scattering of two electrons in
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the singlet channel can be studied exactly using the Lippman-Schwinger formalism, just as in

Eqs. (5.2-5.4), except that the wave function for the state |φk〉 ≡ |k1, ↑; k2, ↓〉 = −|k2, ↓
; k1, ↑〉 is now given by φk(l) = ei(k1l1+k2l2), and the Green’s function is given by KEk

(l) =

[1/(2π)2]
∫ π

−π

∫ π

−π
dq1dq2e

iq·l/( Ek −Eq + iǫ). Finally, we can argue, as in the spinless case, that

in the presence of a Fermi sea, the scattering reduces the Landauer conductance by a term of

order U2; the Hartree-Fock approximation also gives this result in a simple way. We note that

the bound states for the two-particle problem in the spin-1/2 case have been discussed in Refs.

[185, 186].

5.5 Conclusion:

We have shown how the Lippman-Schwinger formalism can be used to obtain exact results for

two particles scattering from an interacting region. This method can also be applied to other

cases, such as the two-wire system studied in Refs. [187, 188] or the case of spin-1/2 electrons as

mentioned above. We have also demonstrated how the results of the scattering theory can be used

to understand numerical results for a two-particle wave packet moving through the interacting

region. Finally, we have considered the problem of many-particle transport across the interacting

region; we find that the zero-temperature Landauer conductance is reduced by a term of order

U2. This calculation is nontrivial since it uses perturbation theory on many-particle scattering

states and so is a fully nonequilibrium treatment. Many of the results presented here on scattering

and bound states can be generalized to the case where the interaction occurs on more than one

bond. Interestingly, in the presence of on-site eneries in the dot sites, first order change in the

current due to interaction is order of U . So it is possible then to increase or decrease the current

by tuning the interaction.

We would like to remark here that in a system in which the interacting region is much longer

than k−1
F and is connected adiabatically to leads where there are no interactions, it is known that

the conductance remains equal to e2/h; this is because momentum is conserved in such a system

[193–197]. In our model, the interaction occurs only on one bond; thus the interaction changes

rather abruptly in space. Hence momentum is not conserved (this is clear from the expression for

the scattered state given in Eq. (5.6)), and the conductance is reduced from e2/h.



A Heat transport in harmonic lattices

A.1 Green’s function properties

We will consider some properties of the Phonon Green’s functions. We denote by G+(t) the full

Green’s function of the coupled system of wire and reservoirs. Let U and Ω2 respectively denote

the normal mode eigenvector and eigenvalue matrices satisfying the equations:

UT ΦU = Ω2, UTMU = Î . (A.1)

We define the Green’s function G+(t) as

G+(t) = U
sin (Ωt)

Ω
UT θ(t) . (A.2)

It satisfies the equation

M G̈+(t) + Φ G+(t) = δ(t) Î . (A.3)

The Fourier transform G+(ω) =
∫∞

−∞
dt G+(t)eiωt is thus given by

G+(ω) =
1

−(ω + iǫ)2M + Φ
. (A.4)

The isolated reservoir Green’s functions are given by:

g+
L (ω) =

1

−(ω + iǫ)2ML + ΦL

g+
R(ω) =

1

−(ω + iǫ)2MR + ΦR

.

We can also represent G+(ω) as follows:

G+
rs(ω) = −

∑

Q

UrQUsQ

(ω + ωQ + iǫ)(ω − ωQ + iǫ)

= −
∑

Q

UrQUsQ

ω2 − ω2
Q

+
iπ

2ω

∑

Q

UrQUsQ[δ(ω − ωQ) + δ(ω + ωQ)] . (A.5)
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We will now express the wire-part of the full Green’s function in terms of the uncoupled reservoir

Green’s functions. We write the equation for G+(ω) in the following form:






−MW (ω + iǫ)2Î + ΦW VL VR

V T
L −ML (ω + iǫ)2Î + ΦL 0

V T
R 0 −MR (ω + iǫ)2Î + ΦR






×






G+
W G+

WL G+
WR

G+
LW G+

L G+
LR

G+
RW G+

RL G+
R




 =






Î 0 0

0 Î 0

0 0 Î




 . (A.6)

From these equations we obtain the following expression for G+
W (ω):

G+
W (ω) =

1

−(ω + iǫ)2 MW + ΦW − Σ+
L − Σ+

R

, (A.7)

where Σ+
L(ω) = VL g+

L (ω) V T
L ,

Σ+
R(ω) = VR g+

R(ω) V T
R .

A.2 Equilibrium properties

In this section we will calculate the canonical ensemble expectation value of K = 〈 ẊW Ẋ
T
W 〉

where the average is taken over the equilibrium density matrix of the entire coupled system of

wire and reservoirs. Denoting by ZQ the normal mode coordinates of the entire system we get,

for points i, j on the wire:

Keq
ij = 〈ẊiẊj〉eq

=
∑

Q

UiQUjQ〈Ż2
Q〉eq

=
∑

Q

UiQUjQ[
~ωQ

2
+ ~ωQf(ωQ, T )]

=

∫ ∞

−∞

dω
ω

π

∑

Q

UiQUjQ
π

2ω
[δ(ω − ωQ) + δ(ω + ωQ)]

~ω

2
coth(

~ω

2kBT
)

=

∫ ∞

−∞

dω
ω

2πi
[(G+

W −G−
W )]ij

~ω

2
coth(

~ω

2kBT
) . (A.8)

Now from Eq. (A.7) we have:

(G−
W )−1 − (G+

W )−1 = (Σ+
L − Σ−

L) + (Σ+
R − Σ−

R) + 4iǫωMW

= 2 i (ΓL + ΓR) + 4iǫωMW

⇒ G+
W −G−

W = 2 i G+
W (ΓL + ΓR) G−

W + 4iǫω G+
WMWG

−
W . (A.9)



A.2 Equilibrium properties 117

Hence we finally get:

Keq
ij =

∫ ∞

−∞

dω
ω

π
[ G+

W (ΓL + ΓR) G−
W ]ij

~ω

2
coth(

~ω

2kBT
)

+

∫ ∞

−∞

dω
2ǫω

π
[ G+

W MW G−
W ]ij

~ω

2
coth(

~ω

2kBT
) . (A.10)

Since we eventually take the limit ǫ→ 0, the second term is non-vanishing only when the equation

Det[−ω2MW + ΦW − Σ+
L(ω) − Σ+

R(ω)] = 0 (A.11)

has solutions for real ω. These solutions correspond to the bound states[2] of the coupled system

of wire and reservoirs [32].
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B Phenomenological decoherence and

dissipation

B.1 Evaluation of Green’s function for ordered chain

To find the Green’s function we use the relation G+
lm = (~/γ)Z−1

lm where Z is a tridiagonal matrix

with off-diagonal terms all equal to one. The diagonal terms are given by:

Z11 = Z+
NN = A(ω) =

~

γ
[ω − γ2

~2
g+(ω)]

Zll = B(ω) =
~

γ
[ω − γ′2

~2
g+(ω)] for l = 2, 3...N − 1 . (B.1)

The function g+(ω) can be obtained from the green function of an isolated semi-infinite one-

dimensional chain and, in the region of interest here (|~ω| < 2γ) is given by

g+(ω) =
~

γ

[

~ω

2γ
− i

(

1 − ~
2ω2

4γ2

)1/2
]

. (B.2)

Using standard matrix manipulations we can evaluate the inverse of Z and find

Z−1
lm = (−1)l+mDl−1DN−m

∆N

for m > l

= (−1)l+mDm−1DN−l

∆N

for m ≤ l (B.3)

where Dl = AYl−1 − Yl−2

∆N = Det[Z] = A2YN−2 − 2AYN−3 + YN−4

Yl =
sinh[(l + 1)α]

sinh(α)

with e±α =
B

2
± (

B2

4
− 1)1/2 .

We will assume that the root α has been chosen such that αR = Re[α] > 0. Using the above

results for the inverse of the matrix Z we find that for large N the Green’s function in the wire

is given by:

G+
lm =

(−1)l+m
~

2γ sinhα

[

e−|l−m|α − (A− eα)

(A− e−α)

(
e−(l+m−2)α + e−(2N−l−m)α

)
]

(B.4)
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B.2 Green’s functions for the open ring

The full Green’s function is given as G+
lm = (~/γ)Z−1

lm where Z is a near circulant matrix with off-

diagonal terms ZN1 = Zl l+1 = e−iθ for l = 1, 2...N−1 and Z1N = Zl−1 l = eiθ for l = 2, 3...N .

The diagonal terms are given by:

Z11 = Z+
MM = A(ω) =

~

γ
[ω − γ′′2

~2
g+(ω)] with γ′1 = γ′M = γ′′ ,

Zll = B(ω) =
~

γ
[ω − γ′2

~2
g+(ω)] for l = 2, 3...M − 1,M + 1...N . (B.5)

Now using the method of Ref. [65] to determine inverse and determinant of the tri-diagonal

matrix, we can find required inverse and determinant of the near circulant matrix Z through

simple but tedious algebra.

∆N =
(
(A− 2 coshα)2(cosh[Nα] − cosh[pα]) − 4sinh2α((−1)N cos[Nθ] − cosh[Nα])

+ 4 sinhα sinh[Nα](A− 2 coshα)) /(2sinh2α) with e±α =
B

2
± (

B2

4
− 1)1/2.(B.6)

with p = N2 − N1. Similarly, the co-factor can be evaluated following the above trick. Here

we find first C1M and calculate |C1M |2 which is relevant to determine conductance G(φ) of the

asymmetric ring between the drain and source contacts.

|C1M |2 = 2
[
coshNαR cosh pαR − cosNαI cos pαI + (−1)N{cosNθ (cos pαI coshNαR − cosNαI

cosh pαR) + sinNθ (sin pαI sinhNαR − sinNαI sinh pαR)}] /(cosh 2αR − cos 2αI).(B.7)

where αR and αI are respectively real and imaginary part of α. For γ′ = 0, the real part of

α vanishes and the coefficient of sinNθ in |C1M |2 also disappears. We denote, |C1M |2γ′=0 by

|C0
1M |2 and |∆N |γ′=0 by |∆0

N |.
Finally we evaluate the Green’s function of Eq. (3.41), where a single Büttiker probe is coupled

to a middle site (l) of the open ring. Here again Z11 = Z+
MM = A(ω), but all other diagonal

terms are ~ω/γ except Zll = B(ω). The off-diagonal terms remain the same as before. Following

the above method we calculate the Green’s function (l < M)

G+
l1 =

(−1)l+1
~

2γ∆′
N sinh2 α′

[
ei(l−1)θ{B(cosh[(N − l + 1)α′] − cosh[(r + 1)α′]) − 2 cosh[(N − l)α′]

+ cosh[rα′] + cosh[(r + 2)α′]} + (−1)Nei(l−N−1)θ(cosh[lα′] − cosh[(l − 2)α′])
]

(B.8)

with e±α′

=
~ω

2γ
± (

~
2ω2

16γ2
− 1)1/2 ,

where r = N − 2M + l. In this case, we do not require to determine ∆′
N , the determinant of Z,

as it gets cancelled in Eq. (3.41). Similarly G+
lM can be evaluated.
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[116] L. P. Lévy, G. Dolan, J. Dunsmuir and H. Bouchiat, Phys. Rev. Lett.64, 2074 (1990).

[117] V. Chandrasekhar, R. A. Webb, M. J. Brady, M. B. Ketchen, W. J. Gallagher and A.

Kleinsasser, Phys. Rev. Lett. 67, 3578 (1991).

[118] R. A. Webb, S. Washburn, C. P. Umbach and R. B. Laibowitz, Phys. Rev. Lett. 54, 2696

(1985).

[119] A. Stern, Y. Aharonov and Y. Imry, Phys. Rev. A 41, 3436 (1990).

[120] D. Loss and K. Mullen, Phys. Rev. B 43, 13252 (1991).

[121] P. Cedraschi, V. V. Ponomarenko and M. Büttiker, Phys. Rev. Lett. 84, 346 (2000).
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