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Chapter 2

2.1 Experimental Techniques Used in Dielectric and

Electro Optic Measurements

In this chapter, we describe the experimental setup used in measuring (i) optical phase differ-

ence, (ii) dielectric constants ε⊥ and ε‖, (iii) splay and bend elastic constants as functions of

temperature, using a single sample cell. This is possible if the nematic liquid crystal has positive

dielectric anisotropy, which is the case for all the materials studied in this thesis. In this chapter,

we describe the technique and present results on 4-n-octyloxy 4′-cyanobiphenyl (8OCB) which is

used to test the setup.
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2.2 Construction of Cell

First we describe the construction of the cells used in the optical, electro optical and dielectric

measurements. We have used two types of liquid crystal cells depending upon the sample. The

first one is used for single component samples which are chemically robust. The two sides of

the cell are open, but will not affect the long term stability of samples. The second type of

cell is used for two component (mixture) samples, and is fully enclosed. Both types of cells are

made of two ITO coated glass plates. A circular pattern is etched on both plates to get an

active area with 8mm diameter (see Fig 2.1a, Fig 2.1b). In order to get planar alignment of the

sample, we have used two types of treatments. (i) The two etched plates are coated with a thin

layer of polyimide and cured at 250 ◦C for one and half hours. Then both the plates are rubbed

in a specific direction. (ii) In the other method, SiO is vacuum coated on both the plates at

32 ◦ grazing angle. The molecules sit in the grooves created by the rubbing on the polyimide

surfaces or those formed by the shadowing effect in the SiO coated plates to give a planar or

homogeneous alignment. Cells are made by placing the two plates together, ensuring that the

active areas overlap (Fig 2.1c). The separation is controlled by glass-bead spacers with diameter

of ∼8 µm, which are mixed with an epoxy glue. The cell is cured at 150 ◦C for one and half hours

after the glue is applied at the edges of the plates. The thickness of the empty cell is measured

with ±1% accuracy by an interferometric technique using Ocean Optics Spectrometer.

(a) (b) (c)

(a) (b) (c)

Silver paste

(d)

Figure 2.1: (a), (b) are the top views of the two plates, (c) the two are glued together to form the
liquid crystal cell.

The capacitance of the empty cell is measured before filling the sample. The cell is filled with

the sample by capillary suction in the isotropic phase. As the experimental runs extended for 3-4

weeks, a gradual concentration change is noticed in mixtures used with the cells exposed at two
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sides. To overcome this problem, a 3rd glass plate with a central hole (for reducing unnecessary

reflections) is placed on top of the upper ITO coated plate after filling the liquid crystal sample.

This 3rd plate is larger in size than the top ITO coated plate. Appropriate glass strips are sealed

(using epoxy glue) to completely cover the gaps between the lower ITO plate and the uppermost

plate. The gap between the edges of the hole of the top plate and the upper part of the top

ITO plate is also sealed. In this case, it is necessary to give the electrical connection to the

top ITO plate also through the bottom ITO plate. This is ensured by etching an appropriate

electrode on the bottom plate and making the electrical contact to the upper ITO plate using

silver paste, which is applied outside the sealed LC cell (Figure 2.2). This “pill-box” (Figure 2.2)

ensures that the mixture is not exposed to external atmosphere. The four sides of the external

pill box are sealed by silicone glue (taking care that the glue does not come into contact with the

liquid crystal sample) and maintained at room temperature for 36 hours for hardening. The cell

is placed inside an Instek mk1 heater to control the temperature to 5mK accuracy. The whole

system is placed on the stage of a polarizing microscope (ORTHOLUX, II POL-BK).

(a)

(c)

Glass Strip Silver Paste
(b)

(d)

(e)

Figure 2.2: (a) and (b) are SiO coated top and bottom plates respectively, (c) top plate with a
central hole (d) perspective view of the pill-boxed enclosed LC cell and (e) side view of the LC cell.
←→ indicates the alignment direction of director.
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2.3 Temperature Calibration

A thermistor is used to measure and to control the sample temperature. The temperature T can

be determined by measuring its resistance R (Ω) which follows the following relation, according

to mk1 manual:

T = −273.15 +
104

A0 + A1 ln R + A2 ln3 R
(2.1)

where A0, A1 and A2 are the coefficients of the thermistor, which are different for different

thermistors. To determine these coefficients we need at least three calibration temperatures at

which the corresponding resistances are measured. We have used a few liquid crystalline samples

whose Isotropic-Nematic transition temperatures (TNI) are known (see Table 2.1).

Liquid Crystal Compounds TNI(
◦C)

8CB (4′-n-octyl-4-cyanobiphenyl) 40.0

CP6B (p-cyanophenyl p-n-hexylbenzoate) 47.5

CP7B (p-cyanophenyl p-n-heptylbenzoate) 56.5

MPPCC (p-methoxyphenyl trans-4-pentylcyclohexane carboxylate) 71.1

6OCB (4-hexyloxy 4′-cyanobiphenyl) 75

8OCB (4-n-octyloxy 4′ -cyanobiphenyl) 79.8

[7(CN)5] (2-cyano 4-heptylphenyl 4′-pentyl-4-biphenyl carboxylate) 103.2

CE8 (4-(2′-methyl butyl) phenyl 4′-n-octylbiphenyl-4-carboxylate) 140.7

PCPPB (trans-4-propylcyclohexyl-4-(4-propylphenyl) benzoate) 186

Table 2.1: List of liquid crystal compounds and the isotropic-nematic transition temperatures
TNI (in ◦C)

The samples are taken between two glass slides, placed inside the heater and observed under

crossed polarizers. First the samples are heated to the isotropic phase and then slowly cooled

(∼2 ◦C/minute). At TNI the thermistor resistances are measured. The Temperature-Resistance

graph is shown in Figure 2.3.
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Figure 2.3: Temperature Resistance graph

The open circles are measured points and the continuous line is fitted using Equation (2.1).

From fitting we get the values of the three coefficients, A0 = 8.29762, A1 = 2.12088 and A2 =

0.00023.

2.4 Experimental Setup for Optical and Dielectric

Measurements

A He-Ne laser (wavelength λ = 6328 Å.) beam is passed through a linear polarizer. It is then

split into two parallel beams using a beam splitter. The two beams are chopped at two different

frequencies in the ratio 11:18 (with mutually exclusive Fourier components) by a dual frequency

chopper made by Perkin Elmer (model no. 198A). One of the beams (reference) is directly

routed to the photo-diode. The other beam passes through another polarizer, the sample cell

and an analyzer (crossed with respect to polarizer) before entering the same photo-diode. The
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He‐Ne Laser

Beam Splitter

Polarizer

Chopper

SR 830 LIA

Polarizer Analyzer

Cell

Photo Diode

Dual‐Channel LIA

Heater

Cm

Figure 2.4: Schematic diagram of the electro optical setup

photo-diode is connected to a dual-channel lock-in amplifier made by Perkin Elmer (model no.

7265A). This enables us to measure the intensity of both the beams simultaneously. We use the

ratio of the sample beam intensity to the reference beam intensity in further analysis to take care

of any source intensity fluctuations. Another lock-in amplifier (Stanford Research System, model

no. SR830) is connected to the cell in series with a fixed capacitance (Cm = 1µF) to measure

the impedance of the cell (see Fig 2.4 and Figure 2.6)

2.5 Optical Measurements :

The transmitted intensity of light emerging from the homogeneously aligned sample is given by,

ITr = I0
sin2 2ψ

2
(1− cos δΦ) (2.2)

where I0 is the intensity of the incident (linearly polarized) beam, ψ is the angle made by the

optic axis with the polarizer and the phase difference



2.5 Optical Measurements : 31

66 68 70 72 74 76 78 80 82

0.0

0.2

0.4

0.6

0.8

1.0

 

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0
T= 76 

o
C

66 68 70 72 74 76 78 80 82
0

2

4

6

8

10

12

14

16

18
 

 

66 68 70 72 74 76 78 80 82
0.00

0.04

0.08

0.12

0.16

O
pt
ic
al
 In
te
ns
ity

 (N
or
m
al
iz
ed

)

O
pt
ic
al
 In
te
ns
ity

 (A
rb
. u
ni
t)

O
pt
ic
al
 P
ha
se
 D
iff
er
en

ce
 (d
F
)

Bi
re
fr
in
ge
nc
e 
(D
n)

Temperature (OC)

Temperature (OC)Temperature (OC)

Applied Voltage (V)

TNA

TNI

UTh

p

(a) (b)

(c) (d)

Figure 2.5: (a) Normalized transmitted intensity as a function of temperature in 8OCB. (b) Vari-
ation of optical intensity with applied voltage at 76 ◦C. The calculated temperature dependences of (c)
the phase difference (in radians) and (d) the birefringence of 8OCB.

δΦ =
2π

λ
∆nL. (2.3)

∆n = (ne − no) where ne and no are the extraordinary and ordinary refractive indices of the

liquid crystal medium respectively. L is the sample thickness. The angle ψ is fixed at 45 ◦ to

get the maximum sensitivity. The optical intensity is an oscillatory function of δΦ (Figure 2.5a).

The absolute phase difference δΦ is found by applying a high electric field to the nematic sample

with positive dielectric anisotropy. At a fixed temperature (in the nematic phase), at high applied

voltages, the phase difference tends to zero (Figure 2.5b). The electric field is then slowly

decreased and the absolute phase difference is calculated by counting the number of maxima and
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1

Rs

Cs

Cm

R1 R2

LIAAmplifier

Figure 2.6: Schematic diagram of the electrical circuit with the RC equivalent of the liquid crystal
cell

minima. The birefringence is obtained from the absolute value of δΦ (Figure 2.5c & d).

2.6 Impedance Analysis of the Sample

The liquid crystal samples are not free of ionic impurities and exhibit finite resistances. The

equivalent electrical circuit of a liquid crystal cell can hence be considered to be a capacitance

(Cs) and resistance (Rs) in parallel (see Figure 2.6). A fixed capacitor, Cm (= 1µF) is connected

in series with the LC cell. Cm is very large compared to the cell capacitance (∼nF). An ac

signal at a frequency ∼5.64 kHz from the lock-in amplifier (Stanford Research System, model

no. SR830) is connected to a voltage amplifier. The output of the amplifier is connected to

one of the two branches, either a potential divider or the LC cell in series with Cm, by a manual

double pole double throw (DPDT) switch. The potential divider is made of two resistors R1 =

1MΩ and R2 = 100Ω connected in series. The potential divider circuit is used to measure the

output phase and amplitude of the amplified voltage. The amplitude and phase of the voltage

developed across Cm are measured by the same lock-in amplifier (LIA). If Cm is large, a large part

of the voltage drops across the cell and only a small voltage is measured by LIA. To protect the

LIA from accidental high currents, for example if the cell gets shorted, two similar zener diodes
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(breakdown voltage ∼2.6 V) with their opposite polarities interconnected as shown in Figure 2.6,

and connected across the input of the LIA. Using impedance analysis, we measure the capacitance

Cs and resistance Rs of the sample.

The impedance of the LC cell is given by,

ZC = Rs
1− j ω CsRs

1 + ω2C2
s R

2
s

(2.4)

where ω = 2πf and f is the frequency of the applied voltage and j =
√−1. The total

impedance of the circuit is given by,

ZT =
ωRsCm − j[1 + ω2R2

s Cs(Cm + Cs)]

ω Cm(1 + ω2C2
s R

2
s)

(2.5)

Let an ac input voltage V = V0 e
j(ωt+φ0) be applied to the circuit, where φ0 is the phase. The

total current IT is given by,

IT =
V0 e

j(ωt+φ0)

ZT
=

V0 e
j(ωt+φ0) ω Cm(1 + ω2C2

s R
2
s)

ωRsCm − j[1 + ω2R2
s Cs(Cm + Cs)]

(2.6)

The voltage drop across Cm which is measured by the lock-in amplifier is given by,

Vm e
j(ωt+φm) = IT Zm = IT

1

j ω Cm
(2.7)

where Vm and φm are the amplitude and phase of the measured voltage. Comparing real and

imaginary parts we get,

Vm cos(ωt+ φm) = V0
[1 + ω2Cs(Cm + Cs)R

2
s] cos(ωt+ φ0) + ω CmRs sin(ωt+ φ0)

1 + ω2 (Cm + Cs)2R2
s

(2.8)

and,

Vm sin(ωt+ φm) = V0
[1 + ω2Cs(Cm + Cs)R

2
s] sin(ωt+ φ0)− ω CmRs cos(ωt+ φ0)

1 + ω2 (Cm + Cs)2R2
s

(2.9)
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Solving equations (2.8) and (2.9) we get,

Cs =
Cm Vm[V0 cos(φm − φ0)− Vm]

V 2
0 + V 2

m − 2V0 Vm cos(φm − φ0)
(2.10)

and,

Rs =
V 2

0 + V 2
m − 2V0 Vm cos(φm − φ0)

ω V0Cm Vm sin(φm − φ0)
(2.11)

The dielectric constant of the sample is the ratio of the filled (Cs) cell capacitance and empty

(C0) cell capacitance i.e. Cs/C0. The conductivity of the sample, σ = L/(RsA), where A is

the effective area and L is the thickness of the cell. To measure the stray capacitance added

to the circuit by the coaxial cable used to connect the LIA to the cell, we have used a standard

capacitor and resistor connected in parallel in place of LC cell and repeated the above analysis.

The stray capacitance is found to be ∼6 pF. The accuracies of the measured capacitance and

resistance are estimated to be ∼5% and ∼10% respectively.

2.7 Measurements of Both Principal Dielectric Constants

of Nematic Samples

As described above, an ac signal of frequency 5641 Hz from the lock-in amplifier (Stanford

Research System, model no. SR830) is applied to the cell and the amplitude and phase of the

voltage developed across Cm is measured using the same lock-in amplifier. From the impedance

analysis (using equation 2.10 and 2.11), the capacitance and resistance of the cell are measured.

The dielectric constant of the liquid crystal sample is the ratio of the capacitance of filled cell

to that of the empty cell. If a voltage well below the Fréedericksz threshold voltage[1] is applied

to the planar liquid crystal cell, the director remains perpendicular to the electric field. This

measurement gives the perpendicular dielectric constant (ε⊥).

The maximum output of SR830 is 5V. This is not sufficient to get a strong deformation of the
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Figure 2.7: Variation of effective dielectric constant as a function of voltage. Inset: extrapolation
of the linear part of higher voltage data to 1/V = 0 to determine ε‖

director field which enables a measurement of ε‖, the dielectric constant parallel to the director.

An external voltage amplifier with a gain of 6 is used to attain higher voltages. The applied

voltage is varied from 0.2V to 30V and the effective dielectric constant is measured as a function

of the voltage (Figure 2.7). The dielectric constant remains unaltered up to the Fréedericksz

threshold, then increases rapidly and at higher voltages the rate of increase comes down and the

experimental curve tends to saturate. The linear part of dielectric constant at high voltages is

plotted against 1/V and fitted to a straight line. The dielectric constant corresponding to ε‖ is

determined by extrapolating to 1/V = 0.
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2.8 Theoretical Analysis Needed for Measuring K11 and

K33 Using Fréedericksz Transition Technique

The simplest way of measuring the elastic constant is to apply a field which is orthogonal to

the director of a well aligned sample. Above a threshold field the director orientation distorts

and it is called the Fréedericksz transition[20]. There are three possible geometries for measuring

the three elastic constants (see Figure 1.10 of Chapter 1). In this thesis, we will be using only

one geometry. All our materials have positive dielectric anisotropy, and we use homogeneously

aligned samples. The threshold voltage to distort the director field will be a measure of the splay

elastic constant, as we shall describe later. An analysis of the director distortion at higher fields

will be used to determine the ratio of splay to bend elastic constants. Though we will measure

both optical intensity and capacitance as functions of voltage, we will use only optical data to

measure the bend elastic constant, as it is collected over a small area of the sample with better

thickness uniformity compared to the full area of the electrodes.

The liquid crystal is enclosed between two conducting glass plates with a gap L. Let the plates

lie in the x-y plane and the director n be parallel to the x-axis. The dielectric anisotropy of the

liquid crystal is positive. If an electric field E is applied along the z-axis, the dielectric energy is

lowered by a tilting of the director. In the most general case, the director is anchored on both

the surfaces with a pretilt angle φ(0) = φ(L). The tilt angle φ(z) is a function of the coordinate

z and reaches a maximum value φm at z = L/2. The gradient of the tilt angle of the director

increases the elastic energy. There are four possible boundary conditions depending upon the

anchoring energy and the pretilt at the surface of the cell.

(i) Zero pretilt angle and infinite surface anchoring energy : The angle at the surface is

independent of electric field (φ(0) = φ(L) = φ0 = 0).

(ii) Zero pretilt but finite anchoring energy : The angle at the surface is a function of the

electric field, φ0 = φ(U)

(iii) Non-zero pretilt but infinite anchoring energy : The angle at the surface is fixed (φt =

pretilt angle) and independent of electric field.
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Figure 2.8: The distribution of director field under an applied electric field. The glass plates are
shown in 2D while the director profile in the interior of the cell is shown only in one plane.

(iv) Both non-zero pretilt and finite anchoring energy : With an applied electric field the angle

at the surface deviates. This deviation increases with the field.

Only with the first boundary condition, a perfect Fréedericksz threshold voltage can be obtained.

The director and electric field vary with the position z and we write,

n = (cosφ(z), 0, sinφ(z)) (2.12)

E = (0, 0, E(z)) (2.13)

The total free energy per unit area of the cell is given by[21],

G =
1

2

r L

o

{
(K11 cos2 φ+K33 sin2 φ)

(
dφ

dz

)2

− E . D
}
dz + 2fs(φ0) (2.14)

where the two terms of the integrand are due to elastic and dielectric energy densities, the sum

of which is denoted by g later in the analysis. The other term is the Rapini Papoular[19] form of

the surface energy given by,
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fs(φ0) =
1

2
Ws sin2(φ0 − φt) at z = 0, L (2.15)

with φ0 is the actual tilt angle at the surface. We assume that there are no free ions in the liquid

crystal and E satisfies the Maxwell’s equations [21], ∇·D= 0 and ∇×E= 0. This means that,

the z component (Dz) of the displacement vector D is a constant. Dz can be written in terms

of voltage U
(
=
r L
0
E(z)dz

)
,

Dz =
ε0 Ur L

0
(ε‖ sin2 φ+ ε⊥ cos2 φ)−1dz

(2.16)

The dielectric energy per unit area,

− 1

2

r L

0
E . D dz = − 1

2
Dz

r L

0
E(z)dz

= − 1

2

ε0 U
2

r L

0
(ε‖ sin2 φ+ ε⊥ cos2 φ)−1dz

(2.17)

Equation (2.14) can be expressed as,

G =
1

2

r L

0

[(
K11 cos2 φ+K33 sin2 φ

) (
dφ

dz

)2
]
dz

−1

2
ε0 U

2

{r L

0

dz

(ε‖ sin2 φ+ ε⊥ cos2 φ)

}−1

+ 2fs(φ0) (2.18)

The minimization of the bulk free energy leads to the Euler-Lagrange equation[22, 23]

d

dz

(
∂g

∂φ′

)
− ∂g

∂φ
= 0 (2.19)

where, g (integrand part) is the bulk free energy density and φ′ = dφ/dz. The Euler-Lagrange

equation yields the following relation :

d

dz

[
(K11 cos2 φ+K33 sin2 φ)

(
dφ

dz

)2

− D2
z

ε0(ε‖ sin2 φ+ ε⊥ cos2 φ)

]
= 0 (2.20)
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Using the boundary condition, φ(0) = φ(L) = φ0 (assuming pretilt angle) and the maximum

distorted angle of the director field at the center φ(L/2) = φm (see Figure 2.8), where dφ/dz = 0

we get,

dφ

dz
= Dz

√
γ

ε0ε⊥K11

[
sin2 φm − sin2 φ

(1 + γ sin2 φm)(1 + κ sin2 φ)(1 + γ sin2 φ)

] 1
2

(2.21)

where κ = (K33 −K11)/K11 and γ = (ε‖ − ε⊥)/ε⊥

We integrate over half the cell thickness. This is adequate because of symmetry of the distortion.

Dz =
2

L

√
ε0ε⊥K11

γ

√
1 + γ sin2 φm

r φm

φ0

[
(1 + κ sin2 φ)(1 + γ sin2 φ)

sin2 φm − sin2 φ

] 1
2

dφ (2.22)

Substituting sinφ = sinφm sinψ and using the value of Dz we get the following expression for

the applied voltage :

U

UTh
=

2

π

√
1 + γ sin2 φm

r π
2

Θ

[
(1 + κ sin2 φm sin2 ψ)

(1 + γ sin2 φm sin2 ψ)(1− sin2 φm sin2 ψ)

] 1
2

dψ (2.23)

where, Θ = sin−1
(
sinφ0/ sinφm

)
and

UTh = π

√
K11

ε0ε⊥γ

(2.24)

is the Fréedericksz threshold voltage. If pretilt angle φ0 6= 0, φm = φ0 even when U = 0 and we

do not get any threshold voltage[24, 25] and the tilt angle φ starts to increase from φ0 as the
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field is increased from 0. If φ0 = 0, φm = 0 when U = 0, and there is a Fréedericksz threshold

at U = UTh, if the anchoring energy is strong.

Now the torque balance condition at the surface is given by,

(
∂g

∂φ′

)
z=0,L

=

(
∂fs
∂φ

)
z=0,L

(2.25)

where, g (integrand part) is the bulk free energy density and φ′ = dφ/dz. Simplifying we get,

(K11 cos2 φ0 +K33 sin2 φ0)

(
dφ

dz

)
0

=
1

2
Ws sin 2(φ0 − φt) (2.26)

where at the surface,

(
dφ

dz

)
0

= Dz

√
γ

ε0ε⊥K11

[
sin2 φm − sin2 φ0

(1 + γ sin2 φm)(1 + κ sin2 φ0)(1 + γ sin2 φ0)

] 1
2

(2.27)

Using the value of (dφ/dz)0 at the surface and using the boundary condition φ′ = 0 at z = L/2

we get,

Ws =
4K11 I

L sin 2(φ0 − φt)

[
(1 + κ sin2 φ0)(sin

2 φm − sin2 φ0)

1 + γ sin2 φ0

] 1
2

(2.28)

where,

I =

r π
2

Θ

[
(1 + κ sin2 φm sin2 ψ)(1 + γ sin2 φm sin2 ψ)

(1− sin2 φm sin2 ψ)

] 1
2

dψ (2.29)

For any applied voltage, the optical phase difference is given by,

δΦ =
2π

λ

r L

0
[neff (z)− no]dz (2.30)

where, neff (z) = ne no/
√

(n 2
e sin2 φ+ n 2

o cos2 φ) is the effective extraordinary index at z.

Changing the variable from z to φ and by using Equation (2.21) in Equation (2.30) we get,
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δΦ(U) = 2π
neL

λ


r π

2

Θ

√
(1+γ sin2 φm sin2 ψ)(1+κ sin2 φm sin2 ψ)

(1−sin2 φm sin2 ψ)(1+ν sin2 φm sin2 ψ)
dψ

r π
2

Θ

√
(1+γ sin2 φm sin2 ψ)(1+κ sin2 φm sin2 ψ)

(1−sin2 φm sin2 ψ)
dψ

− no
ne

 (2.31)

where, ν = (n 2
e − n 2

0 )/n 2
0 and δΦ is a function of applied voltage U . In the experiment we

measure the optical phase difference as a function of applied voltage. Equations(2.23 and 2.31)

are the most important equations in our analysis. For a fixed temperature the experimentally

obtained optical phase difference is fitted using Equation (2.23) and (2.31) for different applied

voltages by using Θ, φm and κ as adjustable parameters. The iterative fitting algorithm is written

in Mathematica software. From this fitting we estimate that the accuracy in the values of K33 is

± 5−10%

2.9 Experimental Results and Analysis

To calibrate our setup we used the well known liquid crystal 4-n-octyloxy 4′-cyanobiphenyl

(8OCB). Measurements of various physical properties of this material are available in the litera-

ture. In the first experimental run, an ac electric voltage (well below the Fréedericksz threshold

voltage) is applied to measure εiso in the isotropic phase and ε⊥ in the nematic and smectic

phases. The sample is cooled from the isotropic phase in small steps. The sample is equilibrated

for ∼ 90 seconds at each temperature. Then optical and dielectric data are recorded using a

computer. The data are collected down to room temperature or till the sample crystallization

temperature. From this run, birefringence (∆n) and perpendicular dielectric constant (ε⊥) are

measured.

In the second experimental run, the temperature is again raised above TNI. The sample is cooled

to a fixed temperature in the nematic phase and an ac electric voltage of 5.46 kHz frequency is

applied. The voltage is increased in small steps from a value lower than the Fréedericksz threshold

voltage. At each voltage the sample is allowed to stabilize for ∼ 20 seconds. Then simultaneously

both optical and dielectric data are recorded. Extrapolating the dielectric constant to an applied
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Figure 2.9: The tranmitted optical intensity measured in two types of cells. (a) Polyimide coated
cell does not show a sharp threshold voltage, (b) SiO coated cell exhibits a sharp threshold voltage.

voltage of infinity (ie., 1/V = 0), the parallel dielectric constant (ε‖) is obtained (see Section 2.7).

From the optical data, the Fréedericksz threshold voltage is determined (see Figure 2.5b).

In polyimide coated homogeneous cells we do not get a sharp threshold voltage. The optical

intensity starts varying at very low voltages and changes rapidly around the Fréedericksz voltage

ie., the threshold is rounded off (see Figure 2.9a). But SiO coated cells give rise to a perfect

Fréedericksz threshold voltage. Upto the threshold voltage the optical intensity remains practically

constant and at the threshold the optical intensity suddenly changes (see Figure 2.9b).

It is informative to compare measured phase difference of 8OCB samples in the two different

types of (polyimide and SiO) cells. If φ0 is assumed to be zero, the birefringence data using

polyimide coated cell is about 10% lower compared to the data using SiO coated cell (see

Figure 2.10a). The perpendicular dielectric constant (ε⊥) of 8OCB is also compared with these

two types of coated cells. In this case ε⊥ using polyimide coated cell is larger than that from the

SiO coated cell (see Figure 2.10b). These differences arise because of pretilt angle φ0 (at the

surface). The polyimide coated rubbed cells have pretilt angle[25], while SiO coated cells have

essentially zero pretilt. The pretilt of polyimide coated cell can be calculated using the following

equation,

neff =
ne no√

(n 2
e sin2 φ0 + n 2

o cos2 φ0)
(2.32)
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Figure 2.10: (a) birefringence and (b) ε⊥ measured using cells coated with polyimide and silicon
monoxide (SiO).

where neff is the effective extraordinary refractive index due to pretilt angle φ0 at the surface

which fixes φ = φ0 in the entire cell. On the other hand, no is not affected by the pretilt. From

the two measured data on polyimide and SiO coated cells, the pretilt angle of polyimide cell is

estimated to have a value of ∼ 14 ◦. The large pretilt angle is useful in display devices, but it is

not useful for measuring physical properties. Hereafter wards in all the subsequent measurements,

we present data measured using only SiO coated cells.

We have compared our 8OCB birefringence data using SiO coated cell with those of Lim

et al. [26]. They also used SiO coated cells and our results show a good agreement with their

data (see Figure 2.11). In both cases, the slope of the curve changes close to the nematic-

smectic transition temperature. The dielectric anisotropy of 8OCB is compared with the data of

Bradshaw et al. [27]. Our data are somewhat higher, and the difference increases close to TNI

(Figure 2.12).

Using the SiO coated cell we get a sharp Fréedericksz threshold voltage (Figure 2.9) which

is used to determine the splay elastic constant (see Equation (2.24))[28]. Above the threshold

voltage, the director tilts depending on the field strength, and due to this tilt, the optical phase

difference is decreased. The relation between the transmitted optical intensity ITr and the optical
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phase difference δΦ is given by,

ITr =
I0

2
(1− cos δΦ) (2.33)

where I0 is the intensity of the incident linearly polarized beam. The transmitted optical

intensity ITr is an oscillatory function of the applied voltage. ITr is normalized by using the

maximum and minimum intensities in each branch. At high voltages ITr tends to zero as δΦ

approaches zero. If the voltage is decreased from a high value, at some voltage ITr reaches a

maximum which corresponds to δΦ = π radian. Using Equation (2.33) and ITr, δΦ is calculated

for different voltages. At a fixed temperature the variation of δΦ against voltage is shown in

Figure 2.13. This variation is fitted with the theoretical expressions Equations (2.31) and (2.23).

From the best fit the bend elastic constant K33 is obtained.

2.10 Measurements Above UTh : Fitting Procedure

To calculate the bend elastic constant we have made a non linear least square fitting of the
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experimental data to the theoretical relations. The fitting algorithm is written in Mathematica

software considered as a platform. Here we have not used any standard set of fitting method

like that of Levenberg-Marquardt[29, 30]. To fit the experimental data above the Fréedericksz

threshold, we need a few material parameters. These are : birefringence (∆n), ordinary refractive

index (no) parallel (ε‖) and perpendicular (ε⊥) dielectric constants and splay elastic constant

(K11). First we choose reasonable values of κ and anchoring energy (Ws ∼ 150× 10−6 N/m).

For this value of Ws, using Equation (2.28) we generate a set of values of tilt angle of director at

the surface (φ0) and maximum angle of director at the center of the cell (φm). To generate the

theoretical results we need to integrate an elliptic integral. This and other elliptical integrations

are evaluated numerically by the inbuilt package of Mathematica software. Using this set of φ0

and φm, the voltage U (using Equation 2.23) and optical phase difference δΦ (using Equation

2.31) are calculated. We have calculated for voltages upto 2.5 times of UTh. Experimentally we

have measured the change of optical phase difference with applied voltage (see Figure 2.13). The

experimental values of applied voltages generally do not coincide with the theoretically calculated

values. The experimental data is interpolated to match the theoretical values. The experimental

optical phase difference is also obtained by interpolating to the new voltage values. For these

voltages, we take the difference between theoretically calculated and experimentally obtained

optical phase differences and calculate the mean square deviation (χ2). Now φ0, κ and Ws are

varied as fit parameters to lower the value of χ2. By finding the minimum value of χ2, the best fit

parameters φ0, κ and Ws are evaluated. From κ and K11 we calculate the bend elastic constant

K33. For the SiO coated cell we get, Ws ∼ 200×10−6 N/m which implies a strong anchoring

and the maximum pretilt angle φ0 ∼ 2 ◦.

In the numerical fitting, two optical parameters are required, viz. the ordinary index no and

the birefringence ∆n. As we have described earlier, we have measured ∆n, but not no. Karat

has measured both ordinary (no) and extra-ordinary (ne) refractive indices of 8OCB sample at

λ = 632.8 nm as functions temperature[31]. Figure 2.14 shows that no does not depend very

much on temperature and has a value close to 1.5 except near TNI. This is indeed the case in

most nematic liquid crystals. The variation of ∆n is mainly due to that of ne. In 8OCB within

14◦C temperature the variation of no is ≈ 1%. The value of K33 changes only by 1.5% if this

variation is separately taken into account. The optical phase difference (Equation (2.31)) is far
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Figure 2.14: Ordinary and extra-ordinary refractive indices (λ =632.8nm) of 8OCB sample, mea-
sured by Karat[31]. (ne − no) of Karat’s data is compared with our data. Both match well.

more sensitive to the accuracy of ∆n than that of no. We have measured ∆n very accurately (see

Figure 2.11) and we assume that no has a fixed value of 1.5 at all temperatures. This assumption

is used in all further calculations of K33.

Figure 2.15 shows the splay elastic constants (K11) at different temperatures. K11 increases

monotonically with decrease in temperature. The data are compared with the earlier measure-

ments from our laboratory by Karat et al. [31] which were later reanalyzed by Madhusudana

et al. [32]. Our values are higher by ∼15%. This difference arises because in Karat’s measure-

ments using magnetic fields, the anisotropy of diamagnetic susceptibility (∆χ) was calculated

using an indirect method. The present result shows a smoother variation of K11 with temperature

compared to the earlier data as the temperature stability is higher. The bend elastic constant

(K33) (see Figure 2.16) also shows a large pre-transitional divergence close to N-SmA transition

point, as expected[1].

2.11 Conclusions

Thus the experimental setup that we have described in this chapter allows us to measure the

birefringence ∆n, the dielectric constants ε⊥, ε‖, the curvature elastic constants K11 and K33

using a single sample cell which has a planar orientation of the nematic director in materials with

positive dielectric anisotropy ∆ε. Our data on 8OCB compare very well with earlier measurements,
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as far as ∆n is concerned. We believe that our measurements of ε⊥, ε‖, K11 and K33 are more

accurate than the earlier measurements.
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