
Chapter 5

Sunyaev-Zeldovich effect due to
�effervescent� heating and thermal
conduction in galaxy clusters and groups

1This chapter is based on the paper: Roychowdhury et al. , 2005, submitted to ApJ
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Summary and the main results of chapter 5

Observations of the thermal Sunyaev-Zeldovich (SZ) effect in clusters and groups of galaxies probe
the gas properties of the intracluster medium (ICM). Here we study the effect of a physically motivated
non-gravitational �effervescent heating� mechanism on the thermal Sunyaev-Zeldovich effect in clus-
ters. Our model of AGN heating also includes thermal comduction as another mechanism which also
regulates the physical states of the intracluster gas. We also estimate the Poisson contribution to the
angular power spectrum of the cosmic microwave background from the SZ effect due to AGN heating.
This chapter discuss the results obtained:

• We show that the central decrement of the CMB temperature is reduced due to the enhanced
entropy of the ICM, and that the decrement predicted from the plausible range of energy
input from the AGN is consistent with available data of SZ decrement.

• In addition, we also show that the �universal temperature� pro�le lowers the SZ decrement
from that derived using the self-similar temperature pro�le.

• We also �nd that the SZ signal is diminished as a result of AGN heating at all times in
comparison to the default SZ signal, in contrast to the �ndings of Lapi et al. (2003).

• We show that AGN heating, combined with the observational constraints on entropy, leads to
suppression of higher multipole moments in the power spectrum and we �nd that this effect
is stronger than previously thought. The supression in the power spectrum in our model is
due to depletion of gas from the central regions that is more efficient in low mass clusters
and groups than in massive clusters.
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5.1 Introduction

The formation of structures in the Universe is believed to be hierarchical, as primordial density �uc-
tuations, ampli�ed by gravity, collapse and merge to form progressively larger systems. This hi-
erarchical development leads to the prediction of self-similar scalings between systems of different
masses and at different epochs (Peebles, 1980). These structures contain two components � the gravi-
tationally dominant dark matter and the baryons contained in these potential wells whose response to
processes other than gravitational interactions bring about deviations from the self-similar scalings.

Clusters and groups of galaxies contain dark matter and hot, diffuse gas called the intracluster
medium. It was believed that this intracluster gas follows a self-similar scaling. However, recent
observations of clusters and groups of galaxies have shown that the scalings are not self-similar. The
observed relations of different physical parameters of the ICM such as density, temperature, X-ray
luminosity and entropy have mostly con�rmed the requirement for non-gravitational processes like
AGN heating and radiative cooling (Lloyd-Davies et al 2000, Ponman et al. 2003, Sanderson et al.
2003, Pratt & Arnaud 2003, Pratt & Arnaud 2005). Simulations and theoretical models of clusters
with gravitational processes alone also point to the fact that the entropy or X-ray luminosity observa-
tions can be matched only with non-gravitational heating (see chapter (2)). Many theoretical models
have been proposed to explain these X-ray observations by heating from supernovae (Valageas & Silk
1999; Wu, Fabian & Nulsen 2000), radiative cooling (Bryan 2000; Voit & Bryan 2001; Muanwong et
al. 2002; Wu & Xue 2002a; Davé, Katz & Weinberg 2002, Tornatore et al. 2003), accretion shocks
(Tozzi & Norman 2001; Babul et al. 2002), quasar out�ows (chapter (3)), and �effervescent heating�
(chapter (4)). More information on various heating models can be found in a review by Gardini &
Ricker (2004).

Until recently it was only X-ray observations that yielded information about the entropy excess.
Due to advances in detectors and new observing strategies (Birkinshaw 1999, Grego et al. 2001;
Grainge et al. 2002; Reese et al. 2002; Zhang & Wu 2000), the thermal Sunyaev-Zeldovich (SZ)
effect (Sunyaev & Zeldovich 1972, 1980) is emerging as an independent test of the density and the
thermal structure of clusters, thus equivalently of the entropy excess.

Many authors have investigated the role of excess entropy in clusters on the SZ effect and tried
to quantify it (White et al. 2002; Springel et al. 2001; da Silva et al. 2001, 2004; Cavaliere &
Menci 2001; Holder & Carlstrom 2001 & McCarthy et al. 2003a, 2003b). Holder & Carlstrom
(2001), Cavaliere & Menci (2001) and McCarthy et al. (2003a) have also examined a few SZ scaling
relations for individual clusters. They have shown that the SZ decrement is reduced in individual
clusters as a result of energy injection and that the SZ scaling relations deviate from the self-similar
predictions. In a more recent effort, Lapi et al. 2003 have estimated the enhancements in the SZ effect
due to transient blastwaves from quasars and the depressions when the hydrostatic equilibrium is
recovered.

In this chapter, we explore the consequences on SZ temperature decrement as a result of heating
the intracluster medium via the �effervescent heating� mechanism (Begelman 2001, Ruszkowski &
Begelman 2002, chapter (4)) and thermal conduction. We also focus on the SZ decrement result-
ing from the �universal temperature� pro�le� (see chapter (2)) and show that the earlier self-similar
predictions due to pure gravity probably need to be revised. We also calculate the angular power
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spectrum of the CMB due to effervescent heating and thermal conduction.
This chapter is organized as follows. In Section 2 we brie�y describe our model. In Section 3 we

estimate the central SZ decrements. We also simulate the evolution of the central SZ signal due to
AGN heating, cooling and conduction. In Section 4 we estimate the angular power spectrum of the
SZ temperature decrement in our models. We present our results and discussion in Section 5. Finally,
our conclusions are summarized in Section 6.

In this chapter, we assume throughout that ΩΛ = 0.71, Ω0 = 0.29, Ωb = 0.047 and h = 0.71
which are the best �t parameters from WMAP (Spergel et al. 2003).

5.2 Model of the intracluster medium
5.2.1 The default state of the ICM

The details of the initial conditions of our model are similar to those adopted by (chapter (4)). In brief,
we assume that the ICM is characterized by a �universal temperature pro�le� (Loken at al. 2002).

Density pro�les are computed assuming hydrostatic equilibrium of the gas in the background dark
matter potential. The background dark matter density pro�le is given by the self-similar Navarro,
Frenk & White (NFW) pro�le (Komatsu & Seljak 2001) with a softened core (Zakamska & Narayan,
2003)

ρdm =
ρs

(r + rc)(r + rs)2 , (5.1)

where rs is the standard characteristic radius of the NFW pro�le, rc is a core radius inside which the
density pro�le is a constant and ρs is the standard characteristic density of the usual NFW pro�le.
The mass pro�le is given by

Mdm(≤ r) = 4πρsr3
s m(x), (5.2)

where m(x) is a non-dimensional mass pro�le

m(x) =
x2

c
(1 − xc)2 ln(1 + x/xc)

+
(1 − 2xc)
(1 − xc)2 ln(1 + x) − 1

1 − xc

x
1 + x , (5.3)

where x = r/rs and xc = r/rc. If rc = 0, the usual mass distribution is recovered as in Komatsu &
Seljak (2001). We follow Zakamska & Narayan (2003) and assume rc = rs/20. This is a reasonable
choice as cluster lensing studies suggest that the core radius can be ∼ tens of kilo-parsecs (Tyson et
al., 1998; Shapiro & Iliev, 2000). We investigate the effect of the smoothing of the dark matter pro�le
on our results.

5.2.2 Heating, thermal conduction and evolution of the ICM

The effervescent heating mechanism is a gentle heating mechanism in which the cluster gas is heated
by buoyant bubbles of relativistic plasma produced by central AGN (Begelman 2000, Ruszkowski &
Begelman 2002). The details of this model are already discussed in chapter (4).
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The only two free parameters in this mechanism are the time averaged AGN luminosity, 〈L〉 and
the time for which the heating continues, theat or rather a single free parameter, i.e. the total energy,
Eagn = 〈L〉theat.

The �ux due to thermal conduction Fcond is given by

Fcond = − f κ∇T, (5.4)

where κ is the Spitzer conductivity (for details, refer to §§§ (4.2.3.2) in chapter (4)), f is the suppres-
sion factor and T is the gas temperature. In our calculations, we adopt f = 0.1 (refer to §§§ (4.2.3.2)
in chapter (4) for detail discussion).

The intracluster medium is evolved for a Hubble time, tH , with heating, radiative cooling and
conduction through a sequence of quasi-hydrostatic equilibrium solutions (see chapter (4)). The
heating source is kept active for a time, theat � tH. Then the gas is evolved with radiative cooling
and convection alone till tH. The boundary conditions imposed to solve for the physical state of
the gas at each time-step, ∆t, are: (1) the pressure at the boundary of the cluster, rout, is constant
and equal to the initial pressure at r200, i.e., P (rout) = P0(r200), and (2) the gas mass within rout at all
times is the same as the mass contained within r200 for the default pro�le at the initial time, i.e.,
Mg(rout) = Mg0(r200) = 0.13Mdm(r200).

5.3 Thermal Sunyaev-Zeldovich effect

The temperature decrement of CMB due to the SZ effect is directly proportional to the Compton
parameter (y). For a spherically symmetric cluster, the Compton parameter is given by

y = 2 σT

mec2

∫ R

0
pe(r)dl (5.5)

where σT is the Thomson cross-section, and pe(r) = ne(r)kbTe(r) is the electron pressure of the ICM,
where ne(r) = 0.875(ρgas/mp) is the electron number density, kb is the Boltzmann constant, and Te(r)
is the electron temperature. The integral is performed along the line�of �sight (l) through the cluster
and the upper limit of the integral (+R) is the extent of the cluster along any particular line�of�sight.

The angular temperature pro�le projected on the sky due to SZ effect, ∆T (θ)/TCMB is given in
terms of the Compton parameter in equation (5.5)

∆T (θ)
TCMB

= g(x)y(θ), (5.6)

where g(x) ≡ xcoth(x/2)-4, x ≡ hν/kBTCMB, TCMB = 2.728 (Fixsen et al. 1996). In the Rayleigh-Jeans
approximation, g(x) ≈ −2. We only evaluate �central� SZ decrement from the pressure pro�les of our
models. In this case, the integral in equation (5.5) reduces to

y0 = 2 σT

mec2

∫ R

0
pe(r)dr (5.7)

In the Rayleigh-Jeans part of the CMB spectrum, the deviation from the black-body spectrum results
in a decrement of the CMB temperature,
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∆Tµw0 ≈ −5.5 y K (5.8)

We use the pressure pro�les resulting from our model to calculate the central SZ decrement in the
temperature of the CMB.

5.4 Angular power spectrum

The angular two-point correlation function of the SZ temperature distribution in the sky is conven-
tionally expanded into the Legendre polynomials:

〈 ∆T
TCMB

( �n) ∆T
TCMB

( �n + θ)
〉

=
1

4π
∑

l
(2l + 1)ClPl(cos θ) (5.9)

Since we consider discrete sources, we can write C` = C(P)
`

+ C(C)
`

, where C(P)
`

is the contribution
from the Poisson noise and C(C)

`
is the correlation among clusters (Peebles 1980, § 41). We de�ne the

frequency independent part in the power spectrum as C∗(P)
`
≡ C`/g2(x). The integral expression of

C∗(P)
`

can be derived following Cole & Kaiser (1988) as

C∗(P)
`

=

∫ zdec

0
dzdV

dz

∫ Mmax

Mmin

dM dn(M, z)
dM |y`(M, z)|2, (5.10)

where V(z) is the co-moving volume and y` is the angular Fourier transform of y(θ) given by

y` = 2π
∫

y(θ)J0[(` + 1/2)θ]θdθ, (5.11)

where J0 is the Bessel function of the �rst kind of the integral order 0. In equation (5.10), zdec is the
redshift of photon decoupling and dn/dM is the mass function of clusters which is computed in the
Press-Schechter formalism (Press & Schechter 1974). The mass function has been computed using the
power spectrum for a λ � CDM model with normalization of σ8 = 0.9. We choose Mmin = 5×1013M�
and Mmax = 2 × 1015M� and integrate till redshift of z = 5 instead of zdec. This is done because
the integral in equation (5.10) is found to be insensitive to the upper limit in redshift beyond z = 4,
the reason being that the mass function is exponentially suppressed beyond that redshift in this mass
range.

5.5 Results

In this section, we discuss our results for the central SZ decrement for clusters with masses ranging
from Mcl = 5 ×1013�2×1015M�. We �rst show the effects of the default temperature and density pro-
�les of the ICM on the central SZ effect. Next we show the effects of heating and thermal conduction
on the central SZ decrement.

In Figure (5.1), the central SZ temperature decrement ∆Tµw0 is plotted as a function of the
emission-weighted temperature of the cluster 〈T 〉. The data points are a compilation of data sets
from Zhang & Wu (2000) and McCarthy et al. (2003). The solid line shows the predicted ∆Tµw0 from
the default temperature pro�le and NFW potential. The dot-dashed line shows the predicted ∆Tµw0 for
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Figure 5.1: Observed and predicted ∆Tµw0 �〈T 〉 relation of clusters. The solid line represents the
predicted ∆Tµw0 with �universal� temperature pro�le (Loken et al. 2002), dark matter density pro�le
given by NFW with rc = 0 and the resulting density pro�le (chapter (2)). The dash-dotted line
is the result of the dark matter pro�le given by NFW with rc = rs/20 and the ICM temperature
pro�le as before. The dashed line is the result of self-similar pro�le (Wu & Xue 2002b, discussed in
chapter (2)). The data points are from Zhang & Wu (2000) and McCarthy et al. (2003).
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the same temperature pro�le but for smoothed NFW potential with rc = rs/20. The dashed line shows
the prediction from the self-similar pro�le (Wu & Xue, 2002b (also discussed in chapter (2); Bryan
2000).

It has been shown in chapter (2) that the density pro�le of gas is much �atter in comparison to
the self-similar pro�le when it assumes the �universal temperature pro�le� and the standard NFW
pro�le is assumed. As a result, the predicted central temperature decrement (∆Tµw0) is lower than that
predicted by the self-similar model. The normalization of ∆Tµw0 for a smoothed NFW pro�le with a
core radius rc = rs/20 is even lower. This happens because the introduction of a core radius in the
dark matter pro�le makes the ICM density pro�le shallower in the central regions as compared to the
ICM density with a standard NFW pro�le. These decrements are closer to the data than predicted by
earlier self-similar models for rich clusters.

Next we examine the effects of the �effervescent� heating, radiative cooling and conduction
(model (B) discussed in chapter (4)) on the central SZ decrement. We evaluate ∆Tµw0 for clusters
in our sample after they have been evolved for a Hubble time tH. The heating source was active for
theat � tH. The values of 〈L〉 and theat have been chosen so as to satisfy observational constraints on
ICM entropy after tH at 0.1 r200 and r500 (Ponman et al. 2003; see bottom panel of Figure (4.9) in the
earlier chapter). In other words, there is a range of 〈L〉 that satis�es the entropy observations at a
1-σ uncertainty level that we used in our calculations. We used smoothed NFW pro�le with the core
radius rc = rs/20.

In Figure 5.2, the shaded region is the expectation for the SZ central decrement when the gas is
heated by the central AGN. The shaded region represents the spread in 〈L〉 which satis�es the entropy
requirements at both radii, 0.1r200 and r500 for 5 × 108 < theat < 5 × 109 years. The solid line shows the
prediction from self-similar pro�le (Wu & Xue, 2002b (discussed in chapter (2)); Bryan 2000).

In Figure 5.3, the evolution of the central SZ decrement ∆Tµw0 is shown as a result of AGN
heating, cooling and conduction (model (B) discussed in chapter (4)) for a cluster of mass Mcl =

6 × 1014M�. The dashed line is the result of heating for theat = 5 × 108 years and the solid line is the
result of heating the ICM for theat = 5 × 109 years. It can be seen that, as long as the heating source is
active, ∆Tµw0 decreases. When the source is switched off, ∆Tµw0 starts to increase as the gas evolves
only due to radiative cooling and conduction. This happens because the density, or equivalently the
electron pressure, decreases when the gas is heated but becomes larger when it is allowed to cool.
In addition, we have also plotted the default ∆Tµw0 for the same cluster with a point denoted with an
open circle. The central SZ decrement corresponding to our heating model is always lower than the
default value.

Finally, we evaluate the Poisson contribution to the angular power spectrum of the SZ and com-
pare our model predictions with earlier ones from self-similar models. In Figure (5.4), the thin solid
line represents the angular power spectrum (Poisson) for the universal temperature pro�le and the
corresponding density pro�le (chapter (3)). The dashed line is for self-similar model (Komatsu &
Kitayama, 1999). The shaded region represents the angular power spectra calculated for the region of
Eagn shown in the bottom panel of Figure (4.9) which satis�es the observed entropy at both radii for
due to heating for 5 × 108 < theat < 5 × 109 years.
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Figure 5.2: Observed and predicted ∆Tµw0�〈T 〉 relation of clusters evolved �effervescent� heating,
thermal conduction and cooling ie. model (B) discussed in chapter (4). The solid line shows ∆Tµw0

for self-similar pro�le (Wu & Xue 2002b, also discussed in chapter (2)). The shaded region represents
the SZ temperature decrement, ∆Tµw0, calculated for the region of Eagn shown in the bottom panel of
Figure (4.9) which satis�es the observed entropy requirements at both radii for 5 × 108 < theat <

5 × 109 years. The data points are from Zhang & Wu, 2000 and McCarthy et al. 2003.

Figure 5.3: The evolution of the central SZ temperature decrement, ∆Tµw0, is shown for two different
Lagn corresponding to the two values of theat for Mcl = 6× 1014M� for model (B) ie. with AGN heating,
conduction and cooling. The point denoted by an open circle is the value of ∆Tµw0 for the default
pro�le with smoothed NFW ie. with a core for the same mass cluster.
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Figure 5.4: The Poisson contribution to the angular power spectrum (C∗̀) of the SZ �uctuations is
plotted here as a function of `. The thick solid line is for the primary temperature anisotropy expected
in the Rayleigh-Jeans band. The thin solid line is for the angular power spectrum (Poisson) due to
the �universal temperature pro�le� of the cluster ICM and the dashed line is the expectation from
a β� pro�le and isothermal temperature pro�le. The shaded region represents the angular power
spectrum, C∗̀, calculated for the region of Eagn shown in the bottom panel of Figure (4.9) which
satis�es the observed entropy requirements at both radii for 5 × 108 < theat < 5 × 109 years for
model (B) discussed in chapter (4) where the cluster is heated by �effervescent� heating mechanism
in the presence of thermal conduction and radiative cooling.
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5.6 Discussion

In this chapter, we have examined the effects of effervescent heating by AGN with thermal conduction
and radiative cooling in clusters (model (B) discussed in detail in chapter (2)) in the context of SZ
temperature decrement.

As seen in Figure (5.1), the central SZ decrement for individual clusters is diminished if the
�universal temperature pro�le� corresponding to the gravitational interactions of the ICM with the
background dark matter is used. This reduces the discrepancy between the predicted central SZ
signal and the observations compared to the predictions based on the standard self-similar pro�les.
The solid line in Figure (5.1) matches the observed points for rich clusters (〈T 〉 ≤ 5 keV) better than
the dashed line, indicating that the requirement of non-gravitational heating for rich clusters is lower
than previously thought. It is important to note here that the introduction of a core radius in the dark
matter pro�le brings the SZ temperature decrements down further to match the observed points. This
happens because the pressure pro�le of the intracluster medium becomes shallower in the central
regions than for the NFW dark matter pro�le without smoothing.

We also �nd that the inclusion of effervescent heating, cooling and conduction have a signi�cant
effect on the SZ signal. The gas in the central region is depleted as a result of effervescent heating and
thus we see a diminution in the SZ signal as a result of AGN heating. Similar conclusion was reached
by McCarthy et al (2003a, 2003b) and Cavaliere & Menci (2001). However, in our case, there is a
spread in the SZ signal. The spread re�ects the fact that there is a range of energies required to satisfy
the observed entropy at 0.1r200 and r500 for a particular theat. Shaded region in Figure (5.2) is based on
�ts of the heating model to the observational entropy data and is derived from the spread in Eagn in
the bottom panel of Figure (4.9) in the earlier chapter that satis�es the observed entropy requirements
at both radii for 5 × 108 < theat < 5 × 109 years. As seen in Figure 5.2 the data for SZ are still
not good enough to constrain heating models at present. We hope that future SZ observations of
low temperature clusters will constrain the models better in the regime where discrepancies between
self-similar and heating models are more pronounced.

We have also studied the time evolution of the SZ temperature decrement due to AGN heating,
cooling and convection. It is seen in Figure (5.3) that the SZ signal is diminished as a result of AGN
heating at all times in comparison to the default SZ signal. This is in contrast to the transient phases
with enhancement of SZ signals predicted by Lapi et al. (2003) owing to strong feedback mechanisms
that they assumed. Also, in the case of effervescent heating, the SZ decrement is lower than the default
case even after the gas has evolved for a time tH − theat after the heating has been switched off. We
note here that the values of 〈L〉 and theat have been chosen so as to satisfy the entropy requirements
after evolving for tH . The capabilities of future experiments like SZA are such that a decrement in the
CMB temperature of 10 µK could be detected (S. Majumdar, private communication). This would
mean that the lowest mass systems that SZA could observe would have T∼ 2 keV.

Finally, we also examine the effect of the universal temperature pro�le and AGN heating on the
Poisson part of the angular power spectrum. We note that the peak of the SZ power spectrum is
somewhat sensitive to the amount of heating that is added to the cluster gas. The peak of C` is at a
lower l for a larger theat and at a higher ` for a smaller theat. Also, the effect due to heating is larger
for higher values of `. In our case the suppression takes place because the gas depletion from the
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central regions is more efficient in low mass groups than in rich clusters. Therefore, the SZ signal
is suppressed more efficiently at smaller scales and, thus, larger `. We note that the general trend
for the Poisson contribution to the spectrum to be suppressed at higher ` has been noted by others
(Holder & Carlstrom, 1999; Kitayama & Komatsu 1999; Springel, White & Hernquist, 2001; Holder
& Carlstrom 2001, Zhang & Wu 2003). This effect leads to a mismatch between the observed and
theoretical spectra (Dawson et al. 2001, Mason et al. 2003) when preheating required to account for
the entropy �oor is considered. In our physically motivated effervescent AGN heating model, that �ts
the X-ray observations of entropy of the ICM, the power spectrum at small scales is even lower than
previously thought. This suggests that other sources, such as, e.g., �dead� radio galaxy cocoons at
higher redshifts (Yamada, Sugiyama & Silk 1999), should signi�cantly contribute to anisotropies in
the cosmic microwave background at large `. We emphasize that our model deals only with global,
average effect of heating on clusters and neglects small scale �uctuations in the gas distribution that
are associated with heating.

5.7 Conclusion

The primary aim of this work has been to study the implications of the �effervescent heating� mech-
anism and thermal conduction on the SZ effect in galaxy clusters. We also evaluate the effect of the
�universal� temperature pro�le on the SZ signal in order to re-calibrate the SZ expectations due to
pure gravitational interactions.

The �effervescent heating� mechanism heats the gas in the central regions of clusters and makes
the gas density pro�le shallower. This reduces the electron pressure of the gas and as a result reduces
the SZ temperature decrement. This is in accordance with the �ndings of other authors (Cavaliere
& Menci (2001), McCarthy et al. (2002), Lapi at al. (2003)). Here we have also shown how the
SZ decrement would evolve as heating, cooling and convection regulate the physical state of the
ICM. Our heating model is consistent with the available entropy data at 0.1r200 and r500. We give
speci�c predictions of our model for the SZ decrement for low mass (low temperature) clusters.
Future observations performed with, e.g., Sunyaev-Zeldovich Array (SZA) or Combined Array for
Research in Millimeter-wave Astronomy (CARMA) will be able to test these predictions.

We also point out that the �universal temperature pro�le�, that takes into account pure gravita-
tional interactions, leads to lower SZ decrement than that calculated assuming that the ICM has a
self-similar pro�le and is in better agreement with data for high 〈T 〉 clusters. This implies that the
discrepancy between observations and models without heating is reduced.

Finally, we also estimate the angular power spectrum of the CMB due to the SZ effect from
Poisson distributed clusters. We show that the average effect of heating is to reduce the SZ signal
and thus the angular power spectrum. The �nding that the power spectrum at large ` is suppressed
is consistent with previous results (e.g., Komatsu & Kitayama 1999, Holder & Carlstrom 2001).
However, our results indicate that the contribution to the power spectrum that results from AGN
heating, that is consistent with entropy measurements, is lower than previously thought. This suggests
that other sources, such as, e.g., dead radio galaxy cocoons at higher redshifts (Yamada, Sugiyama
& Silk 1999), should signi�cantly contribute to small scale anisotropies of the cosmic microwave
background.
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A summary of the thesis

In this thesis, we have worked out the consequences of different models of active galaxy heating
in clusters. The motivation for this work comes from the fact that X-ray observations show that the
intracluster medium is heated by non-gravitational processes. Active galaxies are known to be one of
the most energetic sources and are found inside clusters. Here, we have quanti�ed the excess energy
which AGNs can deposit into the ICM through jets, over-pressured cocoons and buoyant bubbles.

Chapter (2) aims at quantifying the gravitational expectations of entropy in the intracluster
medium using the �universal temperature pro�le�. This helps us assess the excess entropy require-
ment in clusters by comparing this with recent X-ray observations. We use this as a benchmark in
the later chapters when we evaluate the energetics of AGNs and their contribution to the intracluster
medium.

In chapter (3), we model jets and over-pressured cocoons in quasars and estimate the energy a
single quasar can contribute to the surrounding medium. In addition, we also estimate the statistics
of quasars or AGNs inside a cluster of some mass ie. we derive the mass function of quasars inside
clusters. Using these facts, we �nally estimate the total excess energy which can be contributed by a
population of quasars inside a cluster as a function of the cluster mass or temperature.

In chapter (4), we model the heating due to buoyant bubbles from an active galactic nuclei of the
ICM. We consider two models of AGN heating here: one where �effervescent heating� is combined
with convection and radiative cooling and the other where �effervescent heating� is combined with
thermal conduction and cooling. We show that AGNs in this phase, which provides only gentle and
have hardly any strong out�ows, can also provide mechanical energy into the surrounding medium.
We show that this energy is enough to heat the medium and raise its entropy so much so that it can
satisfy the observed entropy values.

In chapter (5), we explore the rami�cations of such heating via �effervescent mechanism� and
thermal conduction of the intracluster gas on another observable property of the ICM, the thermal
Sunyaev-Zel'dovich effect. We �nd that our heating models have some predictions which can be
veri�ed with new upcoming telescopes which are going to look at SZ effect from clusters. Infact, we
�nd that non-gravitational heating in clusters would have considerable effects on the SZ temperature
decrements and thus this can serve as another important constraint on such heating models of clusters.
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In the section on self-similar hierarchical collapse of structures § (1.2), we have mentioned the
spherical collapse model for the growth of non-linear structures and also used its results. The present
appendix is devoted to a description of this model and its results.

A.1 Description of the model

In this model, the time evolution of an over-dense region which is spherically symmetric is studied.
Let us suppose that the over-dense region we are interested in has an initial density distribution

ρ(r, ti) = ρb(ti) + δρ(r, ti) = ρb(ti)[1 + δi(r)] (A.1)

where δi(r) = δ(r, ti) is the initial density contrast which is some speci�ed, non-increasing function
of r. Since we are now interested in perturbations with λ � dH (the horizon distance), the size R
of the over-dense region (which is the scale over which δi is signi�cant) can be taken to be much
smaller than the Hubble radius. In such a case, it is possible to study the dynamics of this region
using Newtonian approximation. In this limit, the proper radial coordinate r = a(t)|x| where x is the
co-moving Friedmann co-ordinate is used. The dynamics of this over-dense region is determined by
the gravitational potential

φtotal(r, t) = φb(r, t) + δφ(r, t) = −1
2

( ä
a

)
r2 + δφ(r, t)

=
2π
3 Gρbr2 + δφ(r, t) (A.2)

where φb is the equivalent Newtonian potential of the Friedmann metric and δφ is the potential gener-
ated due to the excess density δρ(r, t). The motion of a thin shell of particles located at a distance r is
governed by the equation

d2r
dt2 = −∇φtotal = −4πGρb(t)

3 r − ∇(δφ) = −GMb

r3 r − GδM(r, t)
r3 r (A.3)

In writing the second term, we have used the fact that, for a spherically symmetric density distribution,
the gravitational force only depends on the mass δM contained inside the shell. Here Mb and δM(r, t)
stand for

Mb =
4π
3 ρb(t)r3 =

4π
3 ρb(t)a3(t)x3 = constant ; (A.4)

and
δM(r, t) = 4π

∫ r

0
δρ(r′, t)r′2dr′ = 4πρb(t)

∫ r

0
r′2δ(r′, t)dr′ (A.5)

To simplify the analysis of the problem, we also assume that the spherical shell do not cross each
other during the evolution. In such a case, the mass contained within a shell of radius r does not
change with time: δM(r, t) = δM(r, ti) = constant. Thus we can write

d2r
dt2 = −GM

r2 , (A.6)

where

M = ρb

(
4π
3 r3

i

)
(1 + δi) , δi =

(
3

4πr3
i

) ∫ ri

0
δi(r)4πr2dr (A.7)
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Here ri is the initial radius of the shell with mass M and δi is the average value of δ within ri at time
ti. The �rst integral of Equation (A.6) is

1
2

(
dr
dt

)2
− GM

r = E (A.8)

where E is a constant of integration. The sign of E determines whether a given mass shell will ex-
pand forever or eventually decouple from the expansion and collapse. If E > 0, it follows from
Equation (A.8) that �r2 will never become zero; the shell will expand for ever along with the back-
ground space-time. On the other hand, if E < 0, then as r increases, �r will eventually become zero
and later negative, implying a contraction and collapse.

This condition for the collapse of an over-dense region can also be expressed in a better way. Let
us consider terms in the Equation (A.8) at the initial instant t = ti, time at which δ is quite small and
the over-dense region was expanding with the background. This means that the peculiar velocities Vi

are negligible at t = ti. Then, �ri = (�a/a)ri = H(ti)ri ≡ Hiri at time ti, and the initial kinetic energy
is

Ki ≡
(

�r2

2

)

t=ti
=

H2
i t2

i

2 (A.9)

The potential energy at t = ti is U = −|U | where

|U | =

(GM
r

)
t=ti

= G 4π
3 ρb(ti)r2

i (1 + δi) =
1
2 H2

i r2
i Ωi(1 + δi)

= KiΩi(1 + δi) (A.10)

with Ωi = (ρb(ti)/ρc(ti)) denoting the initial value of the density parameter Ω of the smooth back-
ground universe. The total energy of the shell is, therefore,

E = Ki − KiΩi(1 + δi) = KiΩi[Ω−1
i − (1 + δi)] (A.11)

The condition E < 0 for the shell to collapse (eventually), becomes (1 + δi) > Ωi, or

δi > [Ω−1
i − 1]. (A.12)

In a closed or �at universe (with Ω−1
i ≤ )1, this condition is satis�ed by any over-dense region (δ >

0). Thus over-dense regions will always collapse although smaller over-densities will take longer
times to turn-around and collapse. Thus for a shell with E < 0, the maximum radius rm which it
attains is given by

rm

ri
=

(1 + δi)
δi − (Ω−1

i − 1)
(A.13)

since �r = 0 at the instant of maximum expansion (using Equation (A.10) and Equation (A.11)). The
time evolution of the shell can be found by integrating the equations of motion (Equation (A.8)).

A.2 Predictions for Einstein-de Sitter universe

For an Einstein-de Sitter universe, Equation (A.8) can be solved analytically (using parametric so-
lutions) to get the time evolution of the mean density contrast of each shell, the maximum radius at
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turn-around, rm, the turn-around time, tm or equivalently, turn-around redshift, zm, and the average
density contrast at turn-around, δm. They are as follows:

rm =
3x
5δ0

, (1 + zm) =
δ0

1.062 ,(
ρ

ρb

)

m

= 1 + δm =
9π2

16 ≈ 5.6 , (A.14)

where, x = ri[a(t)/a(ti] and δ0 = ( a(t)/a(ti)) (3δi/5) = (3/5) δi (1 + zi). This is the present value of
the density contrast, as predicted by the linear theory, if the density contrast was δi at the redshift zi.

In absence of shell-crossing, gravity would make the shell collapse back in a time-symmetric
motion, so that the shell will reach the orgin at t = 2tm. Since shells are assumed to be composed
of collisionless cold dark matter particles, they will simply pass through the centre, describing an
oscillatory motion with amplitude rm and period 2tm.

However, long before this happens, the approximation that matter is distributed in spherical shells
and that random velocities of the particles are small, will break down. The collisionles dark matter
will reach virial equilibrium by a process known as `violent relaxation' (Lynden-Bell 1967). This will
relax the dark matter component to a con�guration with radius, rvir, velocity dispersion υ and density
ρcoll. After virialization of the collapsed shell, the potential energy U and the kinetic energy will be
related by |U | = 2K so that the total energy ε = U + K = −K. At t = tm all the energy was in the
form of potential energy. For a spherically symmetric system with a constant density, the total energy
ε ≈ −3GM2/5rm. The `virial velocity' υ and the `virial radius' rvir for the collapsing mass can be
estimated by the equations:

K ≡ Mυ2

2 = −ε = 3GM2

5rm
; |U | =

3GM2

5rvir
= 2K = Mυ2. (A.15)

The results are:

v =

(
6GM
5rm

)1/2
; rvir =

rm

2 (A.16)

The time taken for the �uctuation to reach virial equilibrium, tcoll, is essentially the time corresponding
to t = 2tm. Thus we can �nd the collapse redshift, zcoll,

(1 + zcoll) =
δ0

1.686 . (A.17)

Next, since rvir ≈ rm/2, the mean density of the collapsed object is ρcoll ≈ 8ρm where ρm is the density
of the object at turn-around. Furhter, ρm ≈ 5.6ρb(tm) and ρb(tm) = (1 + zm)3 (1 + zcoll)−3 ρb(tcoll).
Using these relations, we get

ρcoll ' 170ρb(tcoll) ' 170ρb(1 + zcoll)3 (A.18)

where ρ0 is the present cosmological density. Thus we have �nally derived the average density con-
trast of a bound object in terms of the collapse redshift. The linearly extrapolated density contrast,
δL at which an object collapses is δL = 1.686. From the above result, we can see that the den-
sity contrast, for all collapsed objects, is the same at any particular collapse redshift (result used in
§ (1.2.1)).
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In the hierarchical picture of the formation of clusters, there are baryons which fall into the dark
matter potential of clusters and get virialized to form the intracluster medium. This scenario leads
us to belive that this baryonic gas which is trapped and virialized with the background dark matter
would behave like it which would lead to it following the same scaling relations as that followed
by the collisionless dark matter. However different observations have shown us that this is an over
simpli�cation and it is really not the case. This observed fact has led several authors to suggest
that there is some agency which is heating this baryonic gas before it fell into the cluster potential.
Thus after getting trapped in the cluster potential, it still retains that extra energy which was given
to it before it got trapped into the cluster which leads it to have different scaling relations than the
background dark matter clump.

In this appendix, we describe the pre-heating model proposed by Kaiser (1991) to break the self-
similar scalings in clusters. He had proposed it to reconcile with the strong negative evolution in the
X-ray luminosity of clusters.

B.1 The model

Kaiser (1991) assumed that at some early epoch, some astrophysical source (e.g. supernova explo-
sions during the epoch of galaxy formation) injected sufficient energy into the gas to expel it from
any then-existing dark matter potential well. This happened when the scale of non-linear clumps was
much smaller than present-day rich clusters. Next, it was assumed (for simplicity) that this gas was
raised to a uniform temperature, Ti and it had a density ρi = (8π/3)ΩgasH2

i ; or that conditions are at
least close to uniform when averaged over the mass scale of a present-day rich cluster (a co-moving
radius ' 10 h−1 Mpc). After the heat input, the gas would essentially be unperturbed by the dark mat-
ter clustering (since, Ti exceeds the virial temperature of the dark clumps then existing). However,
as time goes by, the gas temperature will cool adiabatically with T ∝ a−2 (a is the scale factor of
the universe), the potential wells will deepen and the gas will become more inhomogegeouns. As the
potential wells evolve, the gas will settle into them adiabatically, and shock (if any) would be weak.
Actually, this assumption of Kaiser (1991) of the gas being isentropic through this process of merg-
ing and falling into the dark clumps and virializing was seconded by numerical simulations (Evrard
1990a, 1990b). During this process, the gas will contract until the gas temperature is roughly equal
to the virial temperature of the con�ning dark clump. Using this fact and the assumtion of adiabatic
infall, the �nal gas density (ρ f ) can be derived. The assumtion of adiabaticity gives

S f (the �nal entropy) = S i (the initial entropy of the gas)

⇒ ρ f ' ρi

(
Φ

Ti

)3/2
, (B.1)

where �nal temperature of the gas, T f ∝ Φ, the gravitational potential of the dark matter clump and
as, gas entropy, S gas ∝ Tgas/ρ

2/3
gas .

Next we need to �nd the �nd the �nal radius of this gas cloud. For estimating this, we need to
know the mass of gas which has fallen in. The gas mass which has fallen in is estimated as follows:
at large radii, the gas will be in free fall with a velocity, vinfall ∼ H−1

c ∇Φ ∼ H−1
c Φ/r, where the

subscript `c' denotes the epoch at which we observe the cluster. Now, the maximum radius of the
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region from which material can fall into the cluster potential within a Hubble time, tH ' 1/Hc,
would be �xed by the fact that it has to be a region within which the infall velocity, vinfall, would be
enough to transport the material to the centre of the cluster within a Hubble time, tH ' 1/Hc. Thus,

r0 ' vinfall × tH ' H−1
c

Φ

r0
× 1

Hc

' Φ1/2

Hc
(B.2)

Thus all the material which is interior to this radius, r0, would fall together and virialize to form the
intracluster medium. Assuming this, the �nal gas radius r f can be estimated by mass conservation i.e.
equating ρ f r3

f and ρi r3
0 and using Equation (B.1) and Equation (B.2),

r3
f ' ρi r3

0

ρ f

⇒ r f ' T 3/2
i

ρi

Ωgas
Hc

(B.3)

Using the above result (B.3), we estimate the X-ray luminosity

LX ∼ ρ2
f r3

f T 1/2
f

∼ ρi

T 3/2
i

Φ7/2ΩgasH−1
c (B.4)

So, Equation (B.4) shows the scaling of LX with gas temperature, T f . As we see from Equation (B.4),
LX ∝ T f and not ∝ T 2

f .
So, in this model of Kaiser (1991), where the gas is pre-heated before it falls into the cluster, he

showed that pre-heated gas have scaling relations which are different from self-similar scalings and
that this scenario can explain the X-ray observations of intracluster medium.




