
Chapter 2

Higher signal harmonics and increased
mass reach of LISA for detection of
super-massive black hole binaries

2.1 Introduction

2.1.1 Harmonic content of gravitational waves and various search tem-
plates

The GW polarisations of ICB are, at any given PN order, a linear combination of a finite
number of harmonics of the orbital frequency. At the Newtonian order, there is a single
harmonic, at twice the orbital frequency. At higher orders, the fundamental as well as higher
harmonics start to appear. Since the amplitudes of the higher harmonics contain higher
powers of the PN expansion parameter, relative to the Newtonian order, they are referred to
as amplitude corrections. The phase of each harmonic, determined by the orbital phase, is
known upto 3.5PN order (for non-spinning systems[32, 71]).

Motivated by the fact that matched filtering is more sensitive to the phase of the signal
than its amplitude [72], search algorithms so far have deployed a waveform model involving
only the dominant harmonic (at twice the orbital frequency), although the phase evolution
itself is included upto the maximum available post-Newtonian (PN) order. Such waveforms,
in which all amplitude corrections are neglected, but the phase is treated to the maximum
available order, are called restricted waveforms (RWF) and these are what are used so far in
the analysis of data from ground-based detectors [73, 74, 75, 76] and also simulated searches
for the planned Laser Interferometer Space Antenna (LISA) [51]. Waveforms obtained by
including all the known amplitude corrections (upto 2.5PN order for non-spinning systems
[77], at the time of writing) are referred to as full wave forms (FWF)1. In this chapter, we will
consider the advantages of the FWF over the RWF in the detection of gravitational waves,
specifically in the context of LISA.

1Subsequent to this work the FWF has been extended to 3PN order. See chapter 4.
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2.2 Full WaveForm as search templates for ground-based
detectors

In this section, we briefly review the enhanced mass reach of amplitude corrected FWFs, in
the context of ground based detectors, specifically Advanced LIGO. Early investigations on
the importance of amplitude-corrections for search templates were carried out by Sintes and
Vecchio [78, 79]. Their study used only the first-order correction at 0.5 PN order. They con-
cluded that the addition of the amplitude terms in the waveform did not improve the accuracy
in the estimation of source’s angular position and the distance, whereas the estimation of the
chirp and reduced masses could be 10 times better when compared to the RWF. The effect of
2PN amplitude corrections on parameter estimation was studied by Hellings and Moore [80],
but specifically in the context of LISA and without discussing the effect of higher harmonics
on detection rates for systems with various masses. Recently, in the context of ground-based
detectors, Van Den Broeck and Sengupta [81, 82, 83] examined the implications of going
beyond the restricted PN approximation and employing instead the full waveform [84, 77].
The two main implications of the comprehensive analysis in Refs. [81, 82] for terrestrial GW
detectors may be summarized as follows:

1. For binary neutron stars and stellar mass black holes, restricted waveforms over-
estimate the SNR as compared the full waveform.

2. The use of the full waveforms significantly increases the mass-reach of second and
third generation detectors, Advanced LIGO being able to observe systems with total
mass ∼ 400M� and EGO, a third generation detector as high as 103M�. Thus, for
advanced ground based detectors, use of the FWF has significant astrophysical impor-
tance in view of the growing evidence of intermediate mass black holes.

We represent the results of [81, 82] in a different way in Fig 2.1. This figure shows how
successive PN corrections, leading to the introduction of higher harmonics in the template
lead to increased mass-reach of the detector.

2.2.1 Supermassive black hole binaries and LISA

There is strong observational evidence for the existence of supermassive black holes
(SMBHs) with masses in the range of 106M�–109M� (see e.g. Ref. [59] and references
therein) in most galactic nuclei [60]. Therefore, mergers of galaxies, as evidenced by high-
redshift surveys, should give rise to binaries containing SMBHs. Late stage evolution of a
SMBH binary is dictated by the emission of gravitational radiation. The resulting loss of or-
bital energy and angular momentum would lead to the coalescence of the two holes. Indeed,
X-ray observations have revealed the existence of at least one such system that would coa-
lesce within the Hubble time [85]. Gravitational waves (GW) emitted in the process could
be detected by the planned Laser Interferometer Space Antenna (LISA) [51].

Observation of SMBH binaries at high redshifts is one of the major science goals of
LISA. These observations will allow us to probe the evolution of SMBHs and structure for-
mation [61] and provide an unique opportunity to test General Relativity (and its alternatives)
in the strong field regime of the theory [62, 63, 64, 65, 66]. Observing SMBH coalescences
with high (100-1000) SNR [64, 65] is crucial for performing all the aforementioned tests.
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Figure 2.1: Plots of SNR as function of total mass for Advanced LIGO. Distance is fixed at
100 Mpc and mass-ratio is 0.1. The red curve, representing the RWF dominates the SNR
at low masses. However, beyond about 220M�, the SNR due to the RWF goes to zero,
while amplitude corrected waveforms are still visible in the detector. Amongst the cases
considered, the 2.5PN FWF has the highest mass reach, as it has the highest harmonic among
the different waveforms considered. The location and orientation of the source are θ = φ =
π/6 , ψ = π/4 , ι = π/3.

2.2.2 Restricted Vs Full Waveforms as Search templates in LISA

We now consider the advantage of using the full wave forms (FWF) in the context of LISA.
LISA is designed to detect gravitational waves in the frequency-band 0.1–100 mHz. This
frequency range determines the range of masses accessible to LISA because the inspiral
regime would approximately end when the system’s orbital frequency reaches the mass-
dependent last stable orbit (LSO). In the test-mass approximation, the angular velocity ωLSO
at LSO is given by ωLSO = 6−3/2M−1, where M is the total mass of the binary. Search
templates that contain only the dominant harmonic cannot extract power in the signal beyond
fLSO = ωLSO/π ' 4.39(M/106M�)−1mHz. This further implies that the frequency range
[0.1, 100] mHz corresponds to the range ∼ 4.39 × [104, 107]M� for the total mass of binary
black holes that would be accessible to LISA2. However, as Table 1 of Ref. [59] would reveal,
there is observational evidence for the existence of many SMBHs whose masses are of the
order of 108–109M�. LISA will be unable to observe binaries containing SMBHs in this
mass range if it used as search templates waveforms containing only the dominant harmonic.

Inclusion of higher-order amplitude terms in the waveform introduces the following two
new features: (i) appearance of higher harmonics of the orbital phase and (ii) PN amplitude
corrections to the leading as well as higher harmonics of the orbital frequency. For example,
at 0.5PN order, which is the first-order correction, there are two new harmonics Ψ and 3Ψ,
where Ψ is related to the orbital phase of the binary as in Refs. [84, 77]. More interestingly,
in the expressions for the ‘plus’ and ‘cross’ polarizations, all odd harmonics of the orbital
frequency are proportional to δm

M , where δm is the difference in the masses of the binary com-
ponents (see Eq. (5.7)-(5.10) of Refs. [77]). Another important feature of the full waveform

2Although, binaries lighter than 104M� would, in principle, evolve through the LISA band they would not
be luminous enough to be visible in LISA unless they are close-by.

27



is that the (2n + 2)th harmonic first appears at the nth PN order in amplitude3. For example,
the fourth harmonic first appears at 1PN, and has PN amplitude corrections to its dominant
term at 2PN and 2.5PN (see Refs. [77, 84] for details).

In the present chapter, we study in the context of LISA the implication of using templates
based on the FWF (i.e. including all known harmonics of the orbital phase and all known am-
plitude corrections in the GW polarisations). Coalescences of SMBH binaries with masses
∼ 108−9M� will not be observable by LISA if one uses only templates based on the RWF.
Using templates based on amplitude corrected full waveforms, instead of the usual restricted
waveforms, will enable LISA to observe coalescences of SMBH binaries with total mass
∼ 108M� (109M�) if the lower frequency cut-off LISA can achieve is ∼ 10−4Hz (10−5Hz).

The rest of this chapter is organized as follows: In Section 3.3, we give the FWF in the
frequency domain, by taking into account the orbital motion of LISA around the sun and
its changing orientation. In Section 2.4 we introduce the definition of SNR in the frequency
domain and choice of frequency cut-offs. We also discuss about the ‘observed’ spectrum in
LISA for the RWF and the FWF. Section 2.5 discusses the results of our investigations where
we compare the performances of the amplitude-corrected waveforms at different PN orders
in terms of their mass-reach and distance-reach and correlate it to the ‘observed’ spectrum
in LISA. Section 2.6 concludes with a brief summary of the main results and assumptions
underlying their derivation.

2.3 Template waveforms for LISA

2.3.1 Amplitude corrected waveform

For non-spinning binaries in quasi-circular orbits inspiralling due to radiation-reaction,
waveforms were computed in Refs. [84, 77] up to 2.5PN order in amplitude and 3.5PN
in phase [32, 71]. This waveform h(t) is a linear combination of sine and cosine functions
of multiples of the orbital phase Ψ(t). The expression for the 2.5PN polarization contains
the first seven harmonics of the orbital phase, the dominant harmonic being the one at twice
the orbital phase. The signal depends on the following parameters: DL, the luminosity dis-
tance to the binary, m the total (red-shifted) mass, ν the symmetric mass-ratio (reduced mass
divided by total mass), the spherical polar angles (θ, φ) determining the direction of the “line-
of-sight”, the inclination angle ι of the angular momentum L of the binary with respect to
the direction opposite to the line-of-sight, and the polarization angle ψ which determines the
orientation of the projection of L in the plane normal to the line-of-sight.

We rewrite the waveform in terms of only cosines in a form following [82]:

h(t) = 2Mν

DL

7
∑

k=1

5
∑

n=0
A(k,n/2) cos[kΨ(t) + φ(k,n/2)] x

n
2+1(t), (2.1)

where the coefficients A(k,n/2) and φ(k,n/2) are functions of (ν, θ, φ, ψ, ι), and x(t) =
(2πMF(t))2/3 is the post-Newtonian parameter with F(t) the instantaneous orbital frequency.
Terms 2Mν

DL
xn/2+1(t) A(k,n/2) and φ(k,n/2) are the wave amplitude and polarization phase, respec-

3The 0.5PN term is an exception to this and also introduces a harmonic at the orbital frequency apart from
the one at thrice the orbital frequency.
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tively, corresponding to the kth harmonic and (n/2)th PN order. We call the coefficients A(k,n/2)
the polarization amplitudes. The orbital phase Ψ(t) is a PN series in x, which, in the case of
non-spinning binaries, is known to 3.5PN order [32, 71]. For a non-spinning source and a
detector whose position and orientation are almost constant during the time of observation
of the signal, all the above mentioned angles are constants. For ground-based GW detectors
dealt with in Ref. [81, 82], one is in this situation.

2.3.2 Amplitude corrected waveform including modulations due to
LISA’s orbital motion – Time Domain

LISA will be able to observe many sources from their early stages of inspiral and most
would last for a pretty long time. We shall only consider binary sources that last for a year
or less before merger. Since the LISA plane is tilted by 60◦ with respect to the plane of the
ecliptic, during the course of its heliocentric orbit (see Fig. 1.5 in Chapter 1) its orientation
and position varies periodically, with a period of one year and the signal in Eq. (2.1) will
suffer additional amplitude and phase modulations. Thus in the case of LISA the angles
θ, φ, and ψ (but not ι) appearing in Eq. 2.1 are functions of time. To proceed further, in
the frame of a non-rotating observer fixed to the solar-system barycentre, we denote the
location of the source on the sky by the spherical polar angles θS and φS and the orientation
of the source by the spherical polar angles θL and φL determining the direction of the orbital
angular momentum L of the binary. The transformation between the fixed set of angles4

(θS , φS , θL, φL) and the time-dependent angular coordinates of the source (θ(t), φ(t), ψ(t), ι)
as measured by LISA are given in Ref. [53].

Generalizing, Ref. [53] from the RWF to the FWF, the signal as seen in LISA is of the
form,

h(t) =
√

3
2

2Mν

DL

7
∑

k=1

5
∑

n=0
A(k,n/2)(t) cos[kΨ(t) + φ(k,n/2)(t) + kφD(t)] x

n
2+1(t) . (2.2)

The PN parameter x(t) appearing in Eq. (2.2) is still equal to (2πMF(t))2/3, where F(t),
however, is the orbital frequency as measured by a non-rotating observer located at the
solar-system barycentre. The term φD(t) is the Doppler phase [53], accounting for the phase
difference of the gravitational wave-front between LISA and the solar-system barycentre.
The time-dependence of φD(t) is due to the orbital motion of LISA about the barycentre. It
is given by

φD(t) = 2 π F(t) R sin θS cos[φ(t) − φS ], (2.3)

where R = 1 AU and φ(t) is the angular position of LISA with respect to the barycentre given
by φ(t) = 2 π t

T , T being equal to one year.
4This is a different notation from [53], where the source angles measured in the fixed barycentre frame are

denoted by (θ̄S, φ̄S, θ̄L, φ̄L)
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2.3.3 Amplitude corrected waveform including modulations due to
LISA’s orbit – Frequency Domain

The above waveform is valid in the adiabatic regime, where the radiation-reaction time-scale
is much larger than the orbital time-scale. We also note that the additional amplitude and
Doppler modulations in the waveform for LISA vary on time-scales of 1 yr (i.e. ∼ 3× 107 s),
while LISA can observe orbital periods at most up to 2 × 105 s, (i.e. gravitational wave
frequencies of order 10−5 Hz.). Consequently, the Doppler modulations change much more
slowly (a hundredth) than the orbital phase. This permits the use of the stationary phase
approximation (SPA) to obtain an analytical form for the Fourier transform (FT) h̃( f ) of the
signal:

h̃( f ) '
√

3
2

2Mν

DL

7
∑

k=1

5
∑

n=0

A(k,n/2)(t( f /k)) x
n
2+1(t( f /k)) e−iφ(k,n/2)(t( f /k))

2
√

kḞ(t( f /k))
exp

[

iψ f (t( f /k))
]

,

(2.4)
where an over dot denotes derivative with respect to time and ψ f (t( f /k)) is given by

ψ f (t( f /k)) = 2π f t( f /k) − kΨ(t( f /k)) − k φD(t( f /k)) − π/4. (2.5)

The expression for ψ f (t( f /k)) for k = 2 is given in Eq. (1.56) of chapter 1. The expression in
Eq. (3.1) within the summation over k represents the FT due to the kth harmonic. It should be
noted that the term Ḟ may be treated in different ways that could lead to numerically different
results. In a numerical treatment, for instance, one could avoid performing a further re-
expansion. Alternatively, one could re-expand the denominator in the amplitude and truncate
the resulting expression at the nth PN order, to obtain the nPN amplitude-corrected waveform.
Ref. [81, 82] choose the latter and we follow them in this work.

Radiation reaction results in an increase in the orbital frequency F(t) which will ulti-
mately drive the system beyond the adiabatic inspiral phase and the inspiral waveform given
above will no longer be valid. In the first approximation this is expected to occur when the
orbital frequency F(t) reaches FLSO – the orbital frequency of the LSO of a Schwarzschild
solution with the same mass as the binary’s total mass M,

FLSO = (2 π 6 3
2 M)−1. (2.6)

Thus, we truncate the signal in the time domain at a time tLSO, given implicitly by F(tLSO) =
FLSO. In the SPA, the main contribution to the FT of the kth harmonic at a given Fourier
frequency f , comes from the neighbourhood of the time when the instantaneous value of the
kth harmonic sweeps past f . Thus the kth harmonic is not expected to contribute significant
power to the FT for frequencies above k FLSO, if the signal is truncated in the time domain
beyond tLSO. This motivates the truncation of the FT due to the kth harmonic at frequencies
above k FLSO by a step function θ(k FLSO − f ) [θ(x) = 1, for x ≥ 0, and 0 for negative x].

2.4 Signal to noise ratios in LISA with higher harmonics

In this Section we investigate the effect of the higher harmonics in LISA observations of
supermassive black hole binaries. The LISA waveform discussed in the previous Section
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will be used for the analysis.
Given a waveform h, the best signal-to-noise ratio (SNR) achieved using an optimal

filter is given by ρ[h] ≡ (h|h)1/2, where ( . | . ) is the usual inner product in terms of the one-
sided noise power spectral density S h( f ) of the detector. With the convention for Fourier
transforms, x̃( f ) =

∫ ∞
−∞ x(t) exp(−2πi f t) dt, the inner product is given by:

(x|y) ≡ 4
∫ fend

fs

Re[x̃∗( f )ỹ( f )]
S h( f ) d f . (2.7)

For an optimal filter, which maximises the overlap of the signal with template, one can write

ρ2 = 4
∫ fend

fs

|h̃( f )|2
S h( f )

d f . (2.8)

We use the non-sky-averaged noise-spectral-density as given below.

S h( f ) = min
{

S NSA
h ( f )/exp

(

−κT−1
missiondN/d f

)

, S NSA
h ( f ) + S gal

h ( f )
}

+ S ex−gal
h ( f ) , (2.9)

where S NSA
h ( f ), the instrumental part of the noise, is given by

S NSA
h ( f ) =













9.18 × 10−52
(

f
1 Hz

)−4

+ 1.59 × 10−41 + 9.18 × 10−38
(

f
1 Hz

)2










Hz−1 , (2.10)

the galactic white-dwarf confusion noise S gal
h ( f ) is approximated as

S gal
h ( f ) = 2.1 × 10−45

(

f
1 Hz

)−7/3

Hz−1 , (2.11)

the contribution from extra-galactic white dwarfs S ex−gal
h ( f ) is approximated as

S ex−gal
h ( f ) = 4.2 × 10−47

(

f
1 Hz

)−7/3

Hz−1 , (2.12)

where dN/d f is the number density of galactic white-dwarf binaries per unit gravitational-
wave frequency, for which we adopt the estimate

dN
d f
= 2 × 10−3 Hz−1

(

1 Hz
f

)11/3

; (2.13)

κ ' 4.5 is the average number of frequency bins that are lost when each galactic binary is
fitted out and Tmission is one year. See Ref [62] for more details.

2.4.1 Choice of frequency cutoffs fend, fs

The upper limit of integration fend is taken to be the minimum of 7 FLSO and 1 Hz, the latter
being a conventional upper cut-off for the LISA noise curve. The lower limit fs is chosen
assuming LISA observes the inspiral for a duration ∆tobs before it reaches the LSO. Using
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Figure 2.2: Analytic approximation to the LISA root noise spectral density curve used in
this paper and in Ref. [62] (dashed line) and the curve produced using the LISA Sensitivity
Curve Generator [86] (solid line). The SCG noise curve does not include the extragalactic
white dwarf confusion noise while the analytical approximation curve does.

the quadrupole formula, we find that the orbital frequency at the epoch tLSO − ∆tobs is given
by

F(tLSO − ∆tobs) =
FLSO

(1 + 256 ν
5 M ∆tobs v

8
LSO) 3

8
, (2.14)

where vLSO is the orbital velocity and tLSO the epoch at which the orbital frequency reaches
the value FLSO. We take vLSO = 1/

√
6, the orbital velocity at the LSO in the case of a test

mass orbiting a Schwarzschild black hole. We designate F(tLSO − ∆tobs) as Fin. Thus the kth

harmonic will have a frequency k Fin, ∆tobs before tLSO. The above formula reduces to the
simpler form in Ref. [62] as vLSO → ∞. For the mass values explored in this work there is
no significant dependence of the results on this choice. In all our calculations we take ∆tobs
to be one year.

The lower cut-off for the kth harmonic should be the maximum of the lower cut-off of
LISA (10−4 Hz) and k Fin and simply implemented by truncating the waveform due to the
kth harmonic by another step-function θ( f − k Fin) and choosing fs to be 10−4Hz. It is worth
noting that the kth harmonic probes a larger interval of the frequency domain i.e. k(FLSO−Fin)
relative to the fundamental harmonic. For brevity, we refer to this as the span of the k th

harmonic.

2.4.2 Observed signal spectrum with LISA

To get some insight into the effect of higher harmonics via amplitude corrections let us
first look at the SNR integrand, i.e., the “noise-weighted signal power” per unit logarithmic
frequency interval [34]. Rewriting the expression for the SNR as

ρ2 = 4
∫ fend

fs

f |h̃( f )|2
S h( f )

d ln( f ), (2.15)
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Figure 2.3: The observed spectrum, P( f ) ≡ d(ρ2)
d(ln f ) =

f |h̃( f )|2
S h( f ) , in LISA using the FWF (solid,

red) and RWF (dashed, blue), for sources, (105, 106)M� (left) and 2 × (106, 107)M� (right).
The sources are assumed to be at 3 Gpc and their angular coordinates w.r.t the solar-system
barycentre is θS = cos−1(−0.6), φS = 1, θL = cos−1(0.2), φL = 3. The spectrum is much more
complicated and highly oscillatory for the FWF than for the RWF, because of interference
between various harmonics. The higher frequency reach of the FWF is due to presence of
higher harmonics as apparent in the figure. The spectrum for the system in the left panel
sharply rises at a frequency ∼ 2 × 10−3Hz. Beyond this the LISA noise decreases sharply
with increasing frequency (fewer galactic binaries per frequency bin) leading to the observed
increase in the spectrum.

the quantity of our interest is

P( f ) ≡ d(ρ2)
d(ln f )

=
f |h̃( f )|2
S h( f )

, (2.16)

which is designated as the “observed spectrum”, following [83]. The observed spectrum
is plotted versus frequency for given masses in Fig. 2.3. As is the case for ground-based
detectors [83], the spectrum due to the FWF has a lot more structure and is highly oscillatory
because of interference between various harmonics. For the (105, 106)M� system, the mass
being low, the second harmonic and hence the RWF extends up to frequencies ∼ 2 × 10−3

Hz, where LISA is most sensitive. This leads to a rapid increase in the observed spectrum in
this frequency region. The spectrum due to the FWF, containing higher harmonics continue
beyond the RWF into the most sensitive part of the LISA band. For the 2(106, 107)M�
system, the frequency span of the second harmonic is small and the sensitive region of the
LISA band lies beyond its maximum reach.

2.5 The effect of higher harmonics

Following the analysis of Ref. [81, 82], we classify the sources into two types: In the first
category are sources for which the dominant (second) harmonic has a large frequency span
in the LISA band. The second category on the other hand comprise sources whose dominant
harmonic fails to enter the LISA bandwidth but the higher harmonics do. Since the upper
cut-off frequency for each harmonic is inversely proportional to the total mass (from the
expression for FLSO), we note that the sources of the first type will have total mass less than
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Table 2.1: SNRs due to successive PN amplitude-corrected waveforms, with phase correc-
tions to 3.5 PN order in all cases. For the (106 − 107)M� binary system, all harmonics enter
the sensitive part of the LISA bandwidth. Apart from an increase at 0.5PN, we see a con-
sistent reduction in the SNR on inclusion of higher PN order amplitude corrections. For the
(5.5 × 106, 5.5 × 107)M� binary system, the second harmonic fails to enter the LISA band-
width, while the third harmonic spans a small insensitive region. Thus the SNR due to the
RWF is zero, while the SNR due to the 0.5PN waveform is smaller than the SNRs due to
higher order PN terms. The location, orientation and distance of both sources are the same
as in Fig. 2.3.

PN SNR
order (106 − 107)M� 5.5 × (106 − 107)M�
0 924.48 0
0.5 1025.8 211.98
1 928.48 343.17
1.5 869.78 319.34
2 824.65 266.65
2.5 809.51 277.34

some value which we call the RWF mass-reach, the maximum mass detectable by the RWF,
while the second type will have masses greater than this value. The condition that the upper
cut-off of the dominant harmonic is less than or equal to the lower cut-off of LISA (i.e.,
by the inequality 2 FLSO ≤ fs) determines the RWF mass-reach. The choice of fs for the
LISA mission is still not clear and theoretical implications of this choice are explored in e.g.
Ref. [87]. For fs in the range [10−5 , 10−4] Hz the RWF mass-reach varies over the range
[4.39 , 43.9]×107M�, the lower end of the mass range corresponding to the higher end of the
frequency range.

2.5.1 How higher harmonics affect signal visibility

In Fig. 4.2 we plot the SNRs computed using the restricted (RWF) and full (FWF) waveforms
as a function of the binary’s total mass for two values of the mass ratio5. We first consider
systems whose total mass is less than 4 × 107M�. For these systems, the SNRs computed
using the two different approximations agree with each other to within 10%, with the RWF
over-estimating the SNR, when compared to the FWF, in most of the range. This is explicitly
shown for a (106, 107)M� binary in the first column of Table 2.1. Indeed, but for the slight
increase in SNR as we go from 0PN to 0.5PN, we find a steady decrease as one increases the
PN order of the amplitude correction.

The reduction in SNR at higher PN orders can be understood by studying the structure
of |h̃( f )|2, the numerator in the integrand of the SNR in Eq. (2.8). There are basically three
types of terms:

5Our codes are calibrated by reproducing the results of [81, 82], which considers ground-based detectors,
and also of [88], which computes SNRs in LISA using RWF.
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Figure 2.4: SNR versus total mass for mass ratios of 0.1 and 0.01. The figure shows that apart
from the dips due to white-dwarf confusion noise, for mass values where the RWF enters the
LISA band, the corresponding SNR is consistently more than the SNR produced by the FWF.
However, for mass values where the second harmonic terminates before it reaches the LISA
bandwidth, the FWF enters the LISA band producing significant SNRs. Since a harmonic’s
frequency reach depends only on the total mass, the mass reach is independent of the mass-
ratio. For more asymmetric systems, the SNR is low for all masses both for the RWF and
the FWF. The location, orientation and distance of the sources are the same as in Fig. 2.3.

1. direct terms in which the phases in Eq. (3.1) cancel

A2
(k,n/2)(t( f /k)) f −

7
3 (M f ) 2n

3 ,

2. interference terms between different PN corrections of the same harmonic,

A(k,m/2)(t( f /k)) A(k,n/2)(t( f /k)) f −
7
3 (M f ) m+n

3 cos[φ(k,m/2)(t( f /k)) − φ(k,n/2)(t( f /k))]

3. harmonic mixtures6 which are terms containing the interference between different PN
corrections of different harmonics, e.g. the m/2th PN correction of the kth harmonic
and n/2th PN correction of the lth harmonic.

A(k,m/2)(t( f /k)) A(l,n/2)(t( f /l)) f −
7
3 (M f ) m+n

3 cos[ψ f (t( f /k)) − φ(k,m/2)(t( f /k))−

ψ f (t( f /l)) + φ(l,n/2)(t( f /l))]

where ψ f (t( f /k)) is given by Eq. (3.2),

All these terms are scaled by M5/3, where M = M ν3/5 is the chirp-mass. (Additional
multiplicative factors have been omitted in the above expressions, among which are the step-
functions mentioned earlier and PN expansion coefficients of the denominator of the Fourier
amplitude in Eq. (3.1), the latter being time-independent.)

6We use the term ‘harmonic mixtures’ at the risk of being mistaken to the well-known ‘harmonic mixing’
in music. Our use of the phrase ‘harmonic mixtures’ is simply to convey the physical effect of the interference
between different harmonics
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2.5.2 The effect of higher harmonics in ground-based detectors

Before we explain the SNR trends in the context of LISA, we mention that for ground-based
detectors a similar effect was found in Ref. [82] for a different but corresponding mass region.
The lower cut-off for a typical ground-based detector, say Advanced LIGO is 20Hz, and the
effect of higher harmonics is seen for masses less than ∼ 220M�. In that case, as mentioned
earlier, the polarisation amplitudes and phases are constants. The RWF contains only the
Newtonian term of the second harmonic and thus |h̃( f )|2 consists of a single direct term with
n = 0 and k = 2.

With the inclusion of higher-order amplitude terms in the waveform, PN corrections to
the dominant harmonic and higher harmonics along with their PN corrections, also contribute
to the SNR. In other words, the signal power spectrum |h̃( f )|2 will contain all three types of
terms discussed before. From the form of the direct terms, it is evident that their contribution
to the SNR will be positive definite. We also note that, for ground-based detectors, the
frequency dependence of the direct and interference terms will just be a power law. However,
the sign of the interference terms (and consequently their contribution to the SNR) depends
on the difference between the polarisation phases of different PN corrections for the same
harmonic. Van Den Broeck and Sengupta showed that for a given harmonic, for all allowed
values of the parameters (ν, θ, φ, ψ, ι), each PN correction is almost “out of phase” with both
the PN correction preceding and succeeding it7. The resulting negative terms (representing
destructive interferences) reduce the SNR as one includes higher PN amplitude corrections
in the waveform.

The third type of terms, harmonic mixtures, however, are highly oscillatory functions
of the frequency, as the phase difference ψ f (t( f /k)) − ψ f (t( f /l)) between the kth and the lth

harmonic become even or odd multiples of π. As one integrates over f , these oscillations
tend to cancel out, and thus the contribution to the SNR from these terms are numerically
much smaller relative to the first two types of terms.

2.5.3 Effect of higher harmonics for binaries with M < 4 × 107M�

In the case of LISA, because of the polarisation factors, the amplitudes of none of the three
types of terms is a simple power-law in f . The periodic variation of, for example, A(2,0)
(period being one year) appears as an amplitude modulation A(2,0)(t( f /2)) in the Fourier
transform, where the argument t( f /2) of A2,0 is given by

t( f /2) = − 5
256π8/3M5/3

1
f 8/3 + PN corrections. (2.17)

Hence, in the frequency domain A(2,0) will undergo one complete oscillation as f varies from
2Fin (see Eq. (2.14)) to 2FLSO. However, because of the inverse power-law dependence on f ,
the oscillation of A(2,0) is confined to a small frequency interval above Fin and remains fairly
constant over a major portion of the frequency span 2(FLSO − Fin) (see Fig. 2.5). For masses
higher than the one shown in Fig. 2.5, this region of significant variation moves to the left of
the figure. On including in our analysis the effect of detector sensitivity (weighting down by
S h( f )) this variation of A(2,0) gets damped out when one evaluates the integral in Eq. (2.8).

7Note, however, that Ref. [82], argues this in a somewhat different form.
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Figure 2.5: Variation of polarisation amplitude of the RWF with frequency and time (inset).
The inset, plotted over a duration of two years clearly shows periodicity due to LISA’s orbital
motion around the Sun. The binary mass, (106 − 104)M�, has been chosen such that it can,
in principle, be observed for two years. The plot in the frequency domain shows that the
variation of the polarisation amplitude is confined to a very small part of the frequency span
of the dominant harmonic, and essentially behaves as a constant in the frequency domain.

For masses satisfying 2Fin � 10−4 Hz, the lower cut-off for LISA, this region of variation
will fall below the LISA band.

The polarisation phases determining the sign of the interference terms between the same
harmonics also vary with f . However, as mentioned earlier, the phase relationships of the
polarisation phases are independent of the parameter values. Thus the modulations which
change the values of (θ, φ, ψ, ι) do not affect the trend of reduction of SNR with amplitude
corrections. The Doppler modulations, which appear in only harmonic mixtures, are also not
important as far as SNR is concerned.

Finally, we would like to note an important point not explicitly mentioned in Ref. [82].
As the difference between the polarisation phases of successive PN corrections of the same
harmonic tend to be nearly π, alternate PN corrections necessarily interfere constructively.
Hence there are positive contributions also from the interference terms. Now, the numeri-
cal value of the contribution to SNR from each of these terms depends on the magnitude of
the polarisation amplitude and the power of (M f ). It can be checked that for all allowed
values of (ν, θ, φ, ψ, ι) , the polarisation amplitudes are roughly of the same order in magni-
tude. Consider the Newtonian term of the dominant harmonic and its interference with the
first two corrections at 1PN and 1.5PN. The Newtonian term will be out of phase with the
1PN term, but in phase with the 1.5PN one. The two corresponding interference terms will
contain powers of (M f )2/3 and (M f ), respectively, and since they have the same frequency
span, the absolute numerical value of the contribution to SNR from the former will be more
since (2πM f )1/3 will always be less than 1/

√
6. Numerical values of contributions from

interference between higher PN corrections of the second harmonic successively decrease.
The same argument applies for all the other harmonics, and thus, inclusion of amplitude
corrections will lead to an overall reduction in SNR.

The first column of Table 2.1 clearly demonstrates the effect of higher harmonics on
SNRs. The increase in SNR for the 0.5PN waveform (with respect the RWF SNR) is also
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easily explained by noting that the 0.5PN correction only adds (apart from harmonic mix-
tures) two direct terms to |h̃( f )|2, corresponding to the first and third harmonics (n = 1,
n = 3). Clearly, from the discussion in the previous subsection, the 0.5PN waveform will
have a higher SNR than the RWF, independent of the binary parameters.

For 103 <∼ M <∼ 105M�, the difference between the RWF and the FWF is not visible on
the scale of Fig. 4.2 because for this mass range all the direct and interference terms corre-
sponding to harmonics higher than the dominant ones, which are scaled by higher powers of
(M f ), are negligible.

2.5.4 Visibility of systems with M > 4 × 107M�

In their analysis of the implications of the FWF for ground-based detectors Van Den Broeck
and Sengupta [81, 82] pointed out an interesting effect due to higher harmonics. An anal-
ogous effect is found in the case of LISA in spite of the additional amplitude and Doppler
modulations that exist in this case.

Normally, the harmonic at twice the orbital frequency dominates the SNR. However,
when the dominant harmonic fails to reach the LISA band the higher harmonics become
important, which transpires for masses greater than 4 × 107M�. Even though the second
harmonic falls below the lower cut-off fs of the LISA bandwidth, the kth harmonic, k > 2,
that has power up to a frequency k FLSO, might cross fs and produce a significant SNR.
Of course, the kth harmonic would fall below the LISA sensitivity band for masses which
satisfy the equality fs = k FLSO. Thus, higher PN order waveforms, which bring in higher
harmonics, are capable of producing a significant SNR, even when the RWF fails to produce
any.

Let us examine this in a little more detail starting from the values of mass where the sec-
ond harmonic dominates and the RWF is adequate. Eventually, for larger values of the total
mass, the inequality fs ≥ 3FLSO becomes true. Then the 0.5PN waveform, which contains
the first and the third harmonic, terminates before reaching fs and consequently the SNR due
to the 0.5PN waveform goes to zero. SNRs for different PN waveforms for a binary whose
dominant harmonic falls below fs and the third harmonic has a small span in the LISA band-
width is given in the second column of Table 2.1. Note that for the 5.5(106− 107)M� system,
the 1PN waveform has a higher SNR than the 0.5PN one. This is due to the absence of the
first harmonic and the small span of the third harmonic in the LISA bandwidth. Further,
the 2.5PN waveform has a slightly larger SNR compared to 2PN. This is due to the absence
of the first and second harmonic and the small contribution from the third harmonic, all of
which contribute interference terms due to their 2.5PN corrections. However, this increase
is marginal, and is not generic. We have explicitly checked by choosing different angles that
there can be a small decrease also. The detailed results for LISA are summarised in Fig 2.6.
We see that for masses for which the 1PN waveform fails to reach the LISA bandwidth, the
higher PN order amplitudes are capable of producing SNRs as high as 100! Thus, the use of
the FWF will enable LISA to make observations of SMBHs in the astrophysically interesting
mass-regime, which would not be possible had one used only the standard RWF.

Using the expression for FLSO, it is simple to argue that the mass reach for the 2.5PN
FWF, which has the seventh harmonic of the orbital frequency, is 7/2 times the RWF (around
1.5× 108M�). The above ratio, of course, depends on the assumption that the Schwarzschild
(test particle case) LSO frequency will not be very different from the LSO frequency in the

38



10
7

10
8

Total Mass (in Msun)

10
1

10
2

10
3

S
N

R

Newtonian
0.5PN
1PN
1.5PN
2PN
2.5PN

10
7

10
8

Total Mass (in Msun)

10
1

10
2

10
3

S
N

R

Newtonian
0.5PN
1PN
1.5PN
2PN
2.5PN

Figure 2.6: SNR versus total mass for successive PN amplitude-corrected waveforms and
3.5PN phasing. The left panel corresponds to a mass-ratio of 0.1 while the right panel plots
the same quantities for mass-ratio of 1 (equal mass systems). For a binary of given total
mass, the upper cut-off of the kth-harmonic of the orbital frequency in the frequency domain
is proportional to k and inversely proportional to the total mass. As the mass increases
the upper cut-off for the 2nd harmonic falls below the lower cut-off of the LISA detector,
leading to a zero value of SNR due to the RWF. The higher harmonics still enter the sensitive
bandwidth of LISA and higher PN order waveforms produce significant SNR. The 2.5PN
waveform has the highest mass-reach, being 3.5 times the mass-reach of the RWF. In the
equal mass case displayed in the right panel, the differences in harmonic content of different
PN order waveforms are more pronounced, as odd harmonics are absent. The location,
orientation and distance of both sources are the same as in Fig. 2.3.

comparable mass case.
We conclude with a discussion of a minor, but clear, feature seen in Fig. 4.2 for LISA,

but not present for the ground-based detectors, concerning the relative values of the SNR
obtained using the RWF and the FWF. For most of the mass range probed the RWF over-
estimates the SNR relative to the FWF; however, the figure clearly shows an anomaly for
masses around ∼ 2 × 106M�. To understand this, we first note that the dips in the two curves
in Fig 4.2, are due to the bump in the LISA noise-curve [62] just above 10−3 Hz. This bump
is due to the domination of white-dwarf confusion noise over instrumental noise and lies
just below the most sensitive frequency region (∼ 3 × 10−3Hz - 2 × 10−2 Hz) of the LISA
band. Below 3× 10−3 Hz, the noise increases sharply till one reaches the bump. For binaries
of mass greater than 1.5 × 106M�, the frequency span of the dominant harmonic ends just
around the bump and the sensitive region of the LISA band is beyond the span of this har-
monic. However, higher harmonics incorporated in the FWF are able to reach the sensitive
part of the noise curve. This leads to higher SNR for the FWF relative to the RWF. This
reversal of trend continues up to masses 4 × 104M�. Above this mass, the frequency span
of the seventh harmonic ends before the sensitive region of the LISA band and the general
trend is restored.

For still higher mass values, the SNRs due to the RWF and the FWF both increase until
the second harmonic fails to reach the LISA band. This is due to the overall scaling of the
waveform with the total mass. At such high values, it is able to compensate both for the
decreasing frequency span and the higher noise of the detector in this frequency range.
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Figure 2.7: Luminosity Distance (in Mpc) versus total mass for a fixed SNR of 10. The
systems have mass-ratio of 0.1. The distance reach can be as large as 500 Gpc for systems
where the second harmonic enters the LISA bandwidth. Systems undetectable by the RWF
(of mass around 108M�) can be detected by the FWF at distances up to 10 Gpc. The location
and orientation of the sources are the same as in the earlier figures.

2.5.5 Effect of higher harmonics in the equal mass case

In contrast to asymmetric systems discussed so far, for systems of equal mass all odd har-
monics are absent. Consequently, for symmetric systems the mass-reach of the 2.5PN FWF
will be only 3 times the mass-reach of the RWF. Further, from the right panel of Fig. 2.6, it
is clear that the 0.5PN and the 0PN, or RWF, are identical, as are the 1PN and 1.5PN wave-
forms. Thus the decrease in SNR for the higher PN order waveforms with increasing total
mass is more pronounced than in the unequal-mass case. We also note that for masses for
which the second harmonic fails to reach the detector bandwidth, the 2PN waveform has a
lower SNR than the 2.5PN waveform. This can be explained by noting that for these masses
only the fourth and sixth harmonics enter the LISA bandwidth. The 2PN waveform con-
tains the leading term of the fourth harmonic at 1PN and its 2PN correction, which interfere
destructively. However, inclusion of the 2.5PN amplitude correction leads to a constructive
interference term between the 2.5PN correction and the 1PN term which is responsible for
increasing the SNR for the 2.5PN waveform.

It is interesting to note that the computation of the 3PN GW polarization which will
introduce an harmonic at 8Ψ will be quantitatively more significant for the equal mass case
as the mass reach will be better by 33% relative to the 2.5PN FWF as opposed to the unequal
mass case where it is only 14%! This provides one motivation for work reported in chapter 4
on the computation of the 3PN accurate GW polarizations.

2.5.6 Variation with mass ratio

Since the mass reach depends only on the total mass, the trends remain the same for different
values of mass ratios. Fig. 4.2 compares the variation of SNRs with mass for mass ratios
of 0.1 and 0.01. If the SNR is dominated by the second harmonic, the SNR is smaller for
more asymmetric systems by an overall factor of ν, where ν = m1 m2/m2. However, once
the second harmonic fails to reach the sensitive bandwidth of LISA, the more asymmetric
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Figure 2.8: Distribution of SNR with sources randomly located and oriented in the sky. The
left figure plots SNRs due to both RWF and FWF for a binary of mass (105 − 106)M�. For
this mass, the most probable SNR for the FWF is lower than the most probable SNR for the
RWF, like the trend shown in Table 2.1. The right figure compares the SNRs due to the FWF
for binaries of mass (105 − 106)M� and 5.5(106 − 107)M�

systems have a dominant contribution from the odd harmonics which scale by a further factor
of
√

1 − 4ν, which is larger for more asymmetric systems. Thus the decrease in SNR for the
FWF with an increase in the total mass is less steep for more asymmetric systems.

2.5.7 Distance reach with the 2.5PN FWF

Next, we compare the distance-reach of the RWF and the 2.5PN FWF. The results are shown
graphically in Fig. 2.7 and are similar in appearance to the mass-reach plot. The mass-reach
of the RWF is ' 4× 107M�. For a system of total mass 5× 107M�, the plot shows that LISA
can detect such binaries with an SNR of 10 at a luminosity distance of 100 Gpc (z ' 15).
SMBHs of total mass ∼ 108M�, not even observable using RWF templates, have a distance-
reach as high as 10 Gpc (z ' 1.5) with an SNR of 10.

Proposals to extend the frequency band-width of LISA up to 10−5 Hz have been dis-
cussed. In that case, the FWF can increase the mass-reach of LISA to even around 109M�.
More specifically, LISA can then observe a 109M� system with an SNR of about 30 at 3 Gpc,
if it uses templates based on the 2.5PN FWF for data-analysis.

2.5.8 Sensitivity of SNR to source location and orientation

All the results for SNR using the amplitude-corrected waveforms quoted earlier have been for
a fixed choice of location and orientation of the source [defined by the angles(θS , φS , θL, φL)]
with respect to the barycentre coordinate system. To conclude our present analysis, in this
section we look into the variation in the value of SNR for sources at various locations in
the sky and various orientations. To this end, we consider a collection of sources randomly
oriented in the sky and study the probability distribution of their SNRs. The results of our
simulations (consisting of 8000 random realisations of the angles involved) are shown in
Fig. 2.8. From the left panel of Fig. 2.8 we see that the most probable SNR due to the FWF
for a (105, 106)M� binary is less than the most probable SNR due to the RWF, indicating that
this trend is independent of the source location and orientation. In the right panel we see that
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Figure 2.9: Sky map of for LISA observations of the final year of inspirals using 2PN wave-
form. The sources are equal mass binaries each of mass 107M�, at z = 1, with fixed orienta-
tion angles at µL = 0.2, φL = 3. (Figure reproduced from Ref. [89].)

a binary of mass 2 × (106, 107)M�, which is undetectable by the RWF, can be observed by
the FWF with a most-probable SNR of around 220.

Recently, Trias and Sintes [89] have performed all sky simulations of parameter estima-
tion using the 2PN waveform. Even though they have not used the same truncation procedure
as us for the Ḟ term in Eq 3.1, the results qualitatively do remain the same. Here we repro-
duce from their paper an all-sky map of SNR for an equal mass SMBH binary (Fig(3.1)for a
fixed source orientation.

2.6 Summary

The implications of amplitude corrected 2.5PN full waveforms (FWF) for the construction
of detection templates for LISA are investigated in detail. With the FWF, LISA can observe
sources which are favoured by astronomical observations, but not observable with restricted
waveforms (RWF). This includes binaries in the mass range 108 − 109M�, depending on
whether the lower cut-off for LISA is chosen to be at 10−4 Hz or 10−5 Hz. With an SNR
of 10, these systems can be observed up to a redshift of about 1.5. The computation of the
3PN polarization, which will introduce an harmonic at 8Ψ (i.e. four times the dominant
harmonic), in addition to the existing harmonics, could enhance the mass reach for equal
mass binaries by 33% and unequal mass binaries by 14.3%.

The implication of the FWF for parameter estimation will be far more important than
the extension of LISA’s mass-reach reported here. From the work of Van Den Broeck and
Sengupta in the context of ground-based detectors [83] it is already clear that most parame-
ters will be estimated with errors ∼ ten times smaller as compared to RWF. This raises the
interesting possibility that binary SMBH coalescences might be located on the sky with ac-
curacies good enough for optical observations to identify the galaxy cluster and measure its
red-shift. Needless to say that this improved estimation of source properties will have im-
portant consequences in shedding light on the dark energy, better understanding of SMBH
formation and evolution, structure formation, etc., and is currently under investigation.

In this work we have confined ourselves to only non-spinning black-holes ignoring the
effect of spin-orbit coupling at 1.5PN [90] and 2.5PN [91] and spin-spin effect at 2PN or-
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der [92]. The effect of spin is expected to be astrophysically significant and it is important
to revisit the present analysis including spin in the future. Though partial results for GW
polarisations including spin do exist, a more exhaustive exercise would be necessary before
the FWF required for this work is available. The problem will also be more complicated
due to modulations arising from spin-orbit and spin-spin couplings which would need to be
addressed.

In this work we also restricted to the inspiral phase and used a physical picture of the
LSO that is based on the test-particle limit. For comparable masses, the notion of LSO is not
as sharp, or unique, and hence our results are probably idealized limits of the real situation.
Numerical relativity [93, 37, 45] is maturing over the past couple of years and could soon
provide waveforms for late inspiral and merger. It should then be possible to compare the
results of such numerical templates with those studied in this chapter to provide a better
understanding of how higher harmonics facilitate the mass reach of our detectors.
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