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Summary and the main results of chapter 2

In the post-recombination era, the residual ionization of the matter though small is non-

vanishing and hence can support the presence of the magnetic fields. Large-scale magnetic

fields if they exist during this era can influence the dynamics of matter by adding the effect

of Lorentz force. This can in turn produce observable effects on the matter distribution at

the current epoch. We investigated in detail the effects of spatially tangled magnetic fields

on the redshift space distribution of matter. In the standard gravitational clustering sce-

nario, the induced peculiar velocities of matter do not have any rotational component i.e

they are curl-free vector fields. This directional feature manifests observationally as distor-

tions in the redshift space matter distribution. Tangled magnetic fields of sufficient strength

if present will modify the nature of the distortions mainly because they produce curl modes

of the velocity field in addition to the compressional modes. The signature of curl modes will

not be detectable if they were sourced by early universe magnetic fields since these modes in

general decay with time. However for scenarios of low-redshift fields, we find that it might

still be possible to detect this signature. We deduced the exact form of the relation between

the redshift and real space power spectrum. In addition to the above we also investigated

quantitatively the magnetic field induced density power spectrum for two scenarios viz. early

universe magnetic fields and low redshift magnetic fields. Assuming a power law distribution

for the magnetic field power spectrum as an initial condition, we computed the real space

density power spectrum at the current epoch in both the cases and compared it with existing

observations.

The main results obtained from this study are:

• The presence of magnetic fields increases both the quadrupole as well as the hexade-

capole moments of the redshift space power spectrum with the hexadecapole dom-

inating over the quadrupole. This observational feature can be searched for in the

existing and upcoming redshift galaxy surveys like 2dF and SDSS which have the

potential to probe such features.

• For the scenario in which the magnetic field could have originated at low redshifts,

the induced redshift space matter power spectrum has a generic form P(k) ∝ k4 and

hence is incompatible with observations.
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2.1 Introduction

Wasserman (1978) pioneered the quantitative study of the effect of large scale magnetic

fields on the formation of structures in the universe. They assumed that when the primeval

plasma recombines, the Universe is permeated by a stochastic magnetic field that varies

on a comoving scale of a galaxy. After recombination, the radiative forces cease to act

on matter and the Lorentz force drives compressional and rotational perturbations. They

showed that there exists a growing mode in the time evolution of compressional/density

perturbations in the linear regime. They estimated that nano-gauss fields could provide initial

conditions for density and velocity perturbations which could gravitationally collapse to form

galaxies at the present epoch. Wasserman however performed the analysis assuming that the

magnetic fields are tangled only on a single length scale or equivalently, the power spectrum

of magnetic fields has a delta-function distribution.

A more detailed analysis for the case of a power-law distribution of the magnetic field

power spectrum was performed by Kim, Olinto & Rosner (1996). They calculated the density

power spectrum in the presence of magnetic fields. In addition to this, they also studied a

model incorporating the back-reaction of the fluid to the Lorentz force via the induction

equation, which also led them to derive a magnetic Jeans length. Thus according to their

analysis, Wassermann’s approach is valid for length scales much larger than the magnetic

Jeans length and fluid velocities smaller than the Alfven speed.

The statistics of the large-scale distribution of matter is fully characterised by studying

the hierarchy of n-point correlation functions. Two-point functions in real and Fourier space

remain the most important tools to understand the formation of structures in the universe

(see e.g. Peebles 1980). Recently large galaxy surveys like 2dF (Colless et al. 2001) and

SDSS (Tegmark et al. 2004) has computed these functions with unprecedented precision.

In particular one of the most important results from the 2dF survey is the unambiguous

detection of anisotropy in the two-point functions, which is the best statistical evidence of

the large scale velocity field (Peacock et al. 2001, Hawkins et al. 2002). The on-going survey

Sloan digital sky survey (SDSS) is likely to improve upon this result owing to its larger

size (York et al. 2000). The results of 2dF survey show good agreement with the theoretical

predictions of variants of CDM models (see e.g. Lahav et al. 2002), in which initial density

perturbations are produced at the time of inflation in the very early universe. Larger surveys

like the on-going SDSS have the potential to uncover small discrepancy between theory and

observations.

In this chapter we study the possibility that initial density and velocity perturbations

were caused by tangled magnetic fields. More specifically, we evaluate the density power

spectrum in redshift space for two scenarios and compare with present observations. In one
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class of models we assume the magnetic fields to have originated in very early universe; we

also consider simple models in which the magnetic fields could be of more recent origin and

could have originated by astrophysical processes at z <∼ 10. This study could be considered a

continuation of early studies of Olinto et al. (1996) who calculated density power spectrum

in real space and Sethi (2003) who computed the density two-point correlation function in

redshift space.

In the next section we discuss the Magneto-hydrodynamics equations and the evolution

of density and velocity fields in the presence of tangled magnetic fields.

In §2.3 we distinguish between real and redshift space quantities and discuss the proper-

ties of spatial correlation of the density and velocity fields in both these spaces.

In §2.4 we discuss the properties of the real space power spectrum of the density and

velocity fields and compare it with observations.

In §2.5 we summarize our conclusions. For all the calculations described in this chapter,

we use the currently-favoured background cosmological model: spatially flat with Ωm = 0.3

and ΩΛ = 0.7 (Perlmutter et al. 1999, Riess et al. 1998). For numerical work we use Ωbh2 =

0.02 (Tytler et al. 2000) and h = 0.7 (Freedman et al. 2001).

2.2 Magneto-hydrodynamics Equations

In co-moving coordinates, the equations of magneto-hydrodynamics in the linearized New-

tonian theory are (Wasserman 1978):

d(avb)
dt

= −∇φ +
(∇ × B) × B

4πρb

(2.1)

∇.vb = −aδ̇b (2.2)

∇2φ = 4πGa2(ρDMδDM + ρbδb) (2.3)
∂(a2B)
∂t

=
∇ × (vb × a2B)

a
(2.4)

∇.B = 0 (2.5)

In Eq. (2.1) the pressure gradient from matter is neglected as it is important at Jeans’ length

scales (k � 1 Mpc−1 before re-ionization and ' 1 Mpc−1 after re-ionization). Our interest

here is to study scales at which the perturbations are linear at the present epoch, >∼ 10 h−1Mpc

or k <∼ 0.2hMpc−1. Eq. (2.1) and Eq. (2.2) can be combined to give:

∂2δb

∂t2
+ 2

ȧ
a
∂δb

∂t
− 4πG(ρDMδDM + ρbδb) =

∇. [(∇ × B) × B]
4πa2ρb

(2.6)

Here the subscript ’b’ refers to the baryonic component and the subscript ’DM’ refers to the

dark matter component. Fluid equations for the evolution of dark matter perturbations can
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be obtained from the equations above by dropping the magnetic field terms (Peebles 1980).

Wasserman (1978) showed that Eq. (2.6) admits a growing solution, i.e. tangled magnetic

fields can provide initial conditions for the growth of density perturbations. These solutions

are discussed in the next section. In Eq. (2.4) we have assumed the medium to have infinite

conductivity which is valid for the large scales which we consider in the analysis. As a result,

we can make a further simplification by neglecting the back-reaction term on the right hand

side of the equation as it is of higher order in the perturbed variables,

B(x, t)a2 = constant. (2.7)

Thus, the magnetic field evolution occurs in a flux-frozen manner without any distortion in

the spatial spectrum.

We assume the tangled magnetic field to be a statistically homogeneous and isotropic

vector random process. In this case the two-point correlation function of the field in Fourier

space can be expressed as (Landau & Lifshitz 1987):

〈Bi(q)B∗j(k)〉 = δ3
D(q − k)

(

δi j − qiq j/q
2
)

B2(q) (2.8)

In addition we assume the tangled magnetic fields to obey Gaussian statistics. This leads to

the simplification that all higher even order correlations can be written in terms of the power

spectrum.

2.2.1 Time evolution of density and velocity perturbations

The space and time dependence in the solution of Eq. (2.6) can be separated. Eq. (2.6)

contains two source terms: dark matter perturbations and tangled magnetic fields. Similar

equation for the dark matter perturbations contains baryonic perturbations as the source term.

∂2δb

∂t2
= −2

ȧ
a
∂δb

∂t
+ 4πG(ρDMδDM + ρbδb) + S (t, x)

∂2δDM

∂t2
= −2

ȧ
a
∂δDM

∂t
+ 4πG(ρDMδDM + ρbδb) (2.9)

Here S (t, x) is the source term from magnetic fields. The dark matter is not directly affected

by the magnetic fields. To solve these equations, we define δm = (ρDMδDM + ρbδb)/ρm with

ρm = (ρDM + ρb). This leads to:

∂2δb

∂t2
= −2

ȧ
a
∂δb

∂t
+ 4πGρmδm + S (t, x)

∂2δm

∂t2
= −2

ȧ
a
∂δm

∂t
+ 4πGρmδm +

ρb

ρm

S (t, x) (2.10)
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The second of these equations can be solved by usual Green’s function methods. Its solution

is:

δm(x, t) = A(x)D1(t) + B(x)D2(t) − D1(t)
∫ t

ti

dt′
S (t′, x)D2(t′)

W(t′)
+ D2(t)

∫ t

ti

dt′
S (t′, x)D1(t′)

W(t′)
(2.11)

Here W(t) = D1(t)Ḋ2(t) − D2(t)Ḋ1(t) is the Wronskian. D1(t) and D2(t) are the solutions

of the homogeneous part of the δm evolution (Peebles 1980). These terms have the space

dependence corresponding to initial, presumably originated during inflation, perturbations.

There is no reason to expect that there will be any correlation between these perturbations and

the tangled magnetic field-induced perturbations. And therefore in the two-point functions

these two contributions will add in quadrature. We only consider magnetic field-induced

perturbations for our analysis and drop the first two terms from Eq. (2.11). In Eq. (2.11),

ti corresponds to the epoch of recombination as compressional modes cannot grow before

that epoch (see e.g. Subramanian & Barrow 1998). So our initial conditions are: δ(ti) =

δ̇(ti), as is evident from Eq. (2.11). The solution to Eq. (2.11) can be readily calculated

analytically forΩm = 1 universe (Wasserman 1978). For the currently favoured cosmological

model—spatially flat with non-zero cosmological constant—these solutions have to be found

numerically. The evolution of δb can be solved from:

1
a2

∂

∂t

(

a2∂δb

∂t

)

=
3
2

H2δm + S (t, x) (2.12)

Here we have used: H2 = (8πG/3)ρm. At high redshifts, solutions to Eq. (2.12) can be found

analytically and allow us some insight into the numerical solutions. For z � 1 the fastest

growing solution of Eq. (2.12) is ∝ Ωb/Ω
2
mt2/3. It shows that in the presence of the dark

matter, perturbations in baryonic matter are suppressed by a factor Ωb/Ω
2
m.

Tangled magnetic fields give rise to both compressional and curl velocity fields. The

time dependence of these two modes is different. The time dependence of the compressional

velocity mode vd can be found from the continuity equation (Eq. (2.2) and Eq. (2.11). For

Ωm = 1 model, the compressional modes grow as a1/2. In the presence of dark matter, their

growth like the density mode is suppressed by a factor Ωb/Ω
2
m.

The time evolution of the curl part of the velocity can be found by either taking the curl of

Eq. (2.1) or in Fourier space project out the transverse part of the velocity field (see below).

The time dependence of the resulting equation is readily solved:

vc(t) = a(t)−1

∫ t

ti

dt′

a−3(t′)
S(t′, x) (2.13)

vc doesn’t have any growing mode. In the Ωm = 1 model vc ∝ a−1/2. Unlike the density

and compressional velocity modes it doesn’t suffer any suppression in the presence of dark
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Figure 2.1: Evolution of density and velocity fields is shown if the tangled magnetic fields
existed at the last scattering surface.

matter. This is understandable because the only force which couples dark matter and baryons

is the gravitational force which is pure gradient and hence does not affect the vortical/curl

component of the velocity field.

The time evolution of density and velocity fields is shown in Figure 2.1. In case the tan-

gled magnetic fields originated in the very early universe, the effect of the non-compressional

modes generated by the magnetic fields would be negligible on the large scale structure at

the present epoch, as these modes would have decayed by the present. Only if the magnetic

fields are of more recent origin, these modes could have played an important part in the

dynamics of large scale structure.

2.3 Real space and redshift space

The density and velocity fields as described in the previous section are defined as functions of

comoving spatial coordinates. Assuming the origin to lie at the observer, we can conveniently

fix two of these coordinates as the angular coordinates while the third coordinate is then the

radial comoving distance. The angular coordinates of an object can be directly fixed from

the observed location in the sky whereas additional information/assumption is required for
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determining the third dimension viz. the radial distance. This information exists indirectly in

the form of the redshift of the object which is a quantity directly obtained from observations.

We can thus distinguish between two spaces viz the real space defined by the comoving

coordinates and the redshift space in which the third dimension is the redshift of the object.

In a smooth Universe, the real space coordinates and the redshift space coordinates have a

one-one mapping such that the redshift z is related to the radial coordinate r by Hubble’s law:

cz = H0r (2.14)

The above form of the relation holds for distances less than the size of the horizon at the

current epoch. In this case, then, the observed distribution of matter in redshift space directly

reproduces the true real space distribution . However, in the presence of density fluctuations,

the above mapping gets changed. This is because the density fluctuations induce peculiar

velocities, on top of the Hubble flow, resulting in a modified relation:

cz = Hr + v.r̂ (2.15)

The velocity field thus contributes an additional redshift through its line-of sight or radial

component. In such a case, then, the distribution of matter in redshift space will be related

in a non-trivial manner to that in real space. In the next section, we describe the relations

between density fields and velocity fields in real and redshift space.

2.3.1 Density and velocity fields

The density and velocity fields are statistically homogeneous and isotropic random processes

in real space. This allows one to define the power spectrum of the density field, P(k), as (see

e.g. Peebles 1980):

〈δ(k)δ(k′)〉 = (2π)3P(k)δ3
D(k + k′) (2.16)

In redshift space both statistical homogeneity and isotropy of the density field break down

(see e.g. Hamilton 1998) and in general it is difficult to evaluate the correlations. A sim-

plification can however be made if we treat the lines of sight to two different sources on the

sky as parallel which is valid if the sources are far away or the angle between the two lines

of sight θ is such that θ � 1. This is known as the plane-parallel approximation which was

introduced by Kaiser (1987). In the plane parallel approximation , the density field is only

statistically anisotropic. This is generally a good assumption in analysing large scale data

(Hamilton 1998). We make this assumption in our analysis here. In linear theory and in the

plane parallel approximation the observed density field, i.e. the redshift space density field,

δs(r) can be written in terms of the real space density and velocity field as:

δs(r, t) = δ(r, t) − ẑ.∇ẑ.vb(r, t) (2.17)
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Here ẑ is taken to be the common line of sight to all the objects. In Fourier space Eq. (2.17)

can be written as:

δs(k, t) = δ(k, t) + ikzvz(k, t) (2.18)

Here kz = ẑ.k and vz = ẑ.vb. The velocity field in the case of tangled magnetic fields has both

a divergence and a curl component.

vb = vd + vc (2.19)

Here vd and vc are the divergence and curl part of the velocity field. Their time evolution

is already discussed in the last section. We can rewrite these dependances in the following

manner:

δ(r, t) = f (t)∇.[(∇ × B) × B] (2.20)

vd(r, t) = g1(t)∇.[(∇ × B) × B] (2.21)

vc(r, t) = g2(t)∇ × [(∇ × B) × B] (2.22)

In Fourier space the divergence component points in the direction of the k vector, therefore

it is convenient to decompose the velocity field parallel and perpendicular to the k vector,

this gives the velocity field in the Fourier space as:

vd(k) = k̂k̂.v(k) (2.23)

vc(k) = v(k) − k̂k̂.v(k) (2.24)

vd can readily be solved in terms of the density field using the continuity equation (Eq. (2.2):

ẑ.vd(k) ≡ vdz = −
iµ
k
δ(k)g1(t) (2.25)

Here µ = kz/k is the angle between the Fourier mode and the line of sight and g1(t) is the time

dependence of the divergence part of the velocity field; it is shown in Figure 2.1. Note that

we use the same symbols for density and velocity fields in both real and Fourier space. The

curl part of the velocity field in the Fourier space is projected out by multiplying the Euler

equation (Eq. (2.1) by δi j− k̂ik̂ j, δi j being the Kronecker delta function. The time dependence

of the curl mode g2(t) is given in Eq. (2.13) and shown in Figure 2.1.

2.3.2 Redshift space power spectrum

As discussed in the previous section, in redshift space, the density field in general is neither

homogenous nor isotropic. However, in the plane-parallel approximation, the density field

remains statistically homogenous but anisotropic. The power spectrum in redshift space can

then be defined as:

〈δs(k)δs(k′)〉 = (2π)3Ps(k)δ3
D(k + k′) (2.26)



Chapter 2. Real and Redshift space effects of tangled magnetic fields 35

We thus see that the power spectrum is dependant on the full wave vector as opposed to the

dependance only on the magnitude when the condition of isotropy also is satisfied. From

Eq. (2.26) and Eq. (1.18) the redshift space power spectrum can be written as:

(2π)3Ps(k, t)δ3
D(k + k′) = 〈(δ(k, t) + ikzvz(k, t))(δ(k′, t) + ik′zvz(k′, t))〉 (2.27)

This can be expanded as:

Ps(k, t) = P(k) f 2(t) − g1(t)k2
z 〈vdz(k)vdz(−k)〉 + ig1(t) f (t)kz〈δ(k)vdz(−k)〉

+ ig1(t) f (t)kz〈δ(−k)vdz(k)〉 − ig2(t) f (t)kz〈δ(k)vcz(−k)〉

+ ig2(t) f (t)kz〈δ(−k)vcz(k)〉 + g2
2(t)k2

z 〈vcz(k)vcz(−k)〉

+ k2
z g1(t)g2(t)〈vdz(k)vcz(−k)〉 − k2

z g1(t)g2(t)〈vdz(−k)vcz(k)〉 (2.28)

Here P(k) = 〈δ(k)δ(−k)〉 is the real space power spectrum. It is derived in Appendix A. f (t)

gives the evolution of density perturbations (Eq. (2.11) and Figure 2.1). The correlations

involving the divergence part of the velocity fields can be readily written using the continuity

equation (Eq. (2.2):

〈δ(−k)vdz(k)〉 = −i
kz

k2
P(k)

〈vdz(k)vdz(−k)〉 = −
k2

z

k4
P(k) (2.29)

Eq. (2.29) along with the first four terms of Eq. (2.28) give the usual formula of redshift-

distortion first derived by Kaiser (1987): Ps(k) = (1 + µ2β)2P(k), where β = g1(t0)/ f (t0) '
Ω0.6

m (Lahav et al. 1991). Analysis of 2dF data suggests that β ' 0.4 (Peacock et al. 2001).

Tangled magnetic fields also generate curl modes, which give rise to additional terms in the

power spectrum in redshift space. We show in Appendix A that:

〈δ(−k)vcz(k)〉 = 0

〈vdz(k)vcz(−k)〉 = 0 (2.30)

The non-trivial contribution come from the term: 〈vcz(k)vcz(−k)〉. This can be written as:

〈vcz(k)vcz(−k)〉 = 〈vz(−k)vz(k)〉 −
k2

z

k4
P(k) + i

kz

k2
〈vz(k)δ(−k)〉 − i

kz

k2
〈vz(−k)δ(k)〉 (2.31)

In Appendix A we show that, 〈vz(k)δ(−k)〉 = −ikz/k2P(k). This simplifies the equation to:

〈vcz(k)vcz(−k)〉 = 〈vz(−k)vz(k)〉 + 3
k2

z

k4
P(k) (2.32)

The term 〈vz(−k)vz(k)〉 cannot be written in terms of P(k). As shown in Appendix A, it

contributes two positive terms proportional to µ2 (quadrupole) and µ4 (hexadecapole) with
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magnitude comparable to P(k) (Eq. (2.49). This information along with Eq. (2.32) allows

us to assess the contribution of the curl component of the velocity field to the redshift space

distortion. Its contribution at the present epoch is proportional to g2
2(t0). If the magnetic

fields originated in the very early universe then the contribution of the curl component of the

velocity field is negligible as it doesn’t have any growing mode. From Figure 2.1, we can see

that g2(t0)/g1(t0) � 1. However if the magnetic field have their origin in the recent history

of the universe then it is possible to have g2(t0) ' g1(t0). In this case the curl component

enhances the contribution in both µ2 and µ4 terms. It is interesting to note that unlike the

divergence term in which µ4 term is smaller than the µ2 term by a factor of β/2, the curl

contribution is dominated by the µ4 term. In many models we studied it can be nearly 5

times the µ2 term. The presence of the curl component leads to the intriguing possibility that

the observed redshift space distortion is dominated by the curl mode. In that case it is not

possible to infer the value of β from this observation as is usually done (Peacock et al. 2001,

Hamilton 1998). We illustrate this case in Figure 2.2. More realistically however the effect

of the curl term might be determined from simultaneously determining the contributions

from both the µ2 and µ4 terms. It has not so far been possible from observations which have

determined only the µ2 part (Peacock et al. 2001). On-going survey SDSS galaxy survey has

the potential to test this hypothesis. These redshift space effect are nearly independent of the

power spectrum of the tangled magnetic field. We discuss below whether it is possible to

construct viable models of density power spectrum from tangled magnetic field.

For our calculations we take the magnetic field power spectrum to be power law:

B2(k) = Akn (2.33)

We consider the range of k between kmin, which is taken to be zero unless specified otherwise,

and the approximate scale at which the alfv́en waves damp in the pre-recombination era

(Jedamzik, Katalinic, Olinto 1998, Subramanian & Barrow 1998). Following Jedamzik et al.

(1998), kmax ' 60 Mpc−1(B0/(3 × 10−9 G). B0, the RMS of magnetic field fluctuations at the

present epoch, is defined as:

B2
0 ≡ 〈Bi(x, t0)Bi(x, t0)〉 =

1
π2

∫ kc

0
dkk2B2(k) (2.34)

Here kc = 1 h Mpc−1 (Subramanian & Barrow 2002). This gives:

A =
π2(3 + n)

k(3+n)
c

B2
0 (2.35)

2.4 Power Spectrum in Real Space

In the previous subsection, we discussed the redshift space effects in the observed power

spectrum. Such effects are nearly independent of the power spectrum of the tangled magnetic
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Figure 2.2: Equal redshift space power spectrum contours are shown. The x- and y-axis cor-
respond to the component of k vector parallel and perpendicular to the line of sight. The solid
contours show the contours for β = 0.4, to match with observations (Peacock et al. 2001),
with zero curl contribution. The dashed curves corresponds to β = 0 with curl component
normalized to give the same quadrupole as in the previous case. Note strong distortions
of the curves from the dominant hexadecapole in this case. The contour levels and overall
normalization is arbitrary.
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field. In this section we study the possibility of constructing viable models of density power

spectrum from tangled magnetic fields.

It is conceivable that tangled magnetic fields originated in the very early universe during

inflationary epoch (Turner & Widrow 1988, Ratra 1992). In this case tangled magnetic fields

can have large coherence lengths, or kmin ' 0 in Eq. (2.33). On the other hand magnetic

fields could be of more recent origin (z <∼ 10). However, recent astrophysical processes do

not generate large scale magnetic fields. Quasar outflows (see e.g. Furlanetto & Loeb 2001)

might pollute the the intergalactic medium sufficiently for it to have magnetic fields with

maximum coherence scales ' 2 Mpc with magnitudes ' 10−9 G. In both cases magnetic

fields can have appreciable effect on the large scale structure in the universe at linear scales.

We discuss both these possibilities below.

2.4.1 Primordial Magnetic Fields

In this section we discuss the behaviour of the induced matter power spectrum for the sce-

nario in which the magnetic fields might have been generated prior to recombination. Kim,

Olinto, and Rosner (1996) calculated the density power spectrum in the presence of tangled

magnetic fields. They concluded that for magnetic field power spectrum index 4 < n < −1,

the density power spectrum scales as k4. We confirm their result but also consider smaller

values of n. The observed power spectrum (Spergel et al. 2003) is consistent with P(k) ∝ k at

large scales (k <∼ 0.002); at smaller scales P(k) turns around and scales as kp with p changing

from 0 to −3 as the scales become smaller (see e.g. Efstathiou 1996, Percival et al. 2001;

Figure 2.3). This clearly means that none of the magnetic field power spectrum index n stud-

ied by Kim et al. (1996) can explain the data, which they also pointed out. To make atleast

the slope of P(k) agree with the large scale structure data, one needs to consider smaller value

of n. For n = −2, P(k) ∝ k3, for n <∼ − 2.5, the power spectrum turns even shallower and

we asymptotically approach a scale-invariant spectrum P(k) ∝ k1, for n ∼ 3. An analytical

understanding of this behaviour is given in Appendix A (Eq. (2.43)). We consider n = −2.9,

also studied by Subramanian & Barrow (2002); for this value P(k) scales approximately as

k. This suggests that the parameter range of interest lies around this value.

As we discussed above, redshift space effects do not change this conclusion. Subra-

manian & Barrow (2002) showed that the nearly scale invariant model can lead to CMBR

anisotropies ' 10 µk for angular scales 1000 < ` < 2000 for B0 = 3 × 10−9 ,G. This is

comparable to the observed anisotropies at these scales (Mason et al. 2002). We check if

this model, with this normalization, can give reasonable effect on the large scale structure at

the present epoch. We plot in Figure 2.3 the density power spectra for several values of n.

The power spectrum for this model is nearly two orders of magnitude below the observed

power spectrum at linear scales. Therefore, even though this model leads to the correct
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Figure 2.3: The density power spectrum from tangled magnetic fields is shown along with
recent observation of the power spectrum from 2dF galaxy survey (Percival et al. 2001) and
a variant of CDM model. For all the curves B0 = 3 × 10−9 G. The curves correspond to
different values of n: n = 0 (Solid line), n = −1 (dashed line), n = −2 (dot-dashed line), and
n = −2.9 (dotted line). The thick solid line corresponds to CDM model for a spatially flat
universe: Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.04.
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shape of power spectrum at large scales, the normalization needed to give the correct CMBR

anisotropy level is too low. This result is nearly independent of the upper cut-off kmax of the

magnetic field power spectrum. Figure 2.3 also shows that spectral indices n >∼ − 1 are ruled

out by the present data for B0 = 3 × 10−9 G. However the results for models with n >∼ − 1.5

are strongly dependent on kmax and therefore less reliable and they are also likely to give

unacceptably large CMBR anisotropies. Therefore we are led to conclude that if tangled

magnetic fields existed at the last scattering surface, they are unlikely to have much impact

on the large scale structure in the universe at present at linear scales. It should however

be noted from Figure 2.3 that magnetic fields can have significant effect on the non-linear

scales; which in particular will lead to early collapse of structures. This may have important

implications for the re-ionization of the universe (Sethi & Subramanian, 2005).

2.4.2 Low Redshift Magnetic Fields

Another possible scenario is that large-scale magnetic fields could have originated through

astrophysical processes at low redhsifts. In this section we evaluate the induced density

power spectrum for such a scenario. We consider a simple model to assess the effect of

such low redshift magnetic fields on the large scale structure. We assume these fields were

created in the post-reionization epoch z <∼ 15 (Spergel et al. 2003) and kmin = 6h Mpc−1 and

kmax = 30h Mpc−1, which corresponds roughly to scales between 1 h−1Mpc and 200 h−1kpc.

The slope of the magnetic field power spectrum and its strength is to be determined by

observations. While our choice of kmin is motivated by the requirement that astrophysical

processes are unlikely to generate larger scale magnetic fields, our choice of kmax is largely

arbitrary. Our interest is in studying the effect of these fields at scales that are linear at

present, i.e. k <∼ 0.2 Mpc. We show in Appendix A (Eq. (2.44) that models in which k �
kmin generically give density power spectrum ∝ k4, irrespective of the slope of the tangled

magnetic field power spectrum n. For n >∼ −1.5, the density power spectrum is dominated by

the upper cut-off kmax; in the other limit kmin determines the amplitude of the power spectrum.

In Figure 2.4, we show the power spectrum for two values of n for B0 = 10−9 G.

For simplicity we take f (t0) = 5. It is seen that if n >∼ 1 the density power spectrum

at linear scales can get appreciable contribution from tangled magnetic fields. However

results for these spectral indices depends strongly on the upper cut-off kmax and therefore are

less reliable. Note that the value of B0 needed to cause sufficient effect on the large scale

structure is quite different from Sethi (2003). This is owing to the fact that kmax was taken to

be 1 hMpc−1 in that work and fields were assumed to be locally generated, i.e. f (t0) = 1.

A possible criticism of our analysis is the use of linear theory and neglect of the RHS of

Eq. (2.4). Even though we are interested in density perturbations at linear scales at present,

presence of the RHS of Eq. (2.4) mixes all modes of tangled magnetic fields and the ve-
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Figure 2.4: Same as Figure 2.3 for the model in which the tangled magnetic fields originate
at z <∼ 10 (see text for detail). B0 = 10−9 G and the curves correspond to different spectral
index values: n = 2 (Solid line), n = 1 (dashed line).
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locity perturbations and in general cannot be neglected. Our preliminary calculations show

that these terms are of order k times the velocity and magnetic field, which means that back

reaction of velocity perturbations on the magnetic fields is of higher order than the den-

sity power spectrum and could be dropped for studying linear scales. In particular these

terms can be neglected if the density perturbation δ(k) is negligible for all scales in ques-

tion. The smallest scale at which perturbations can collapse is the magnetic Jeans length

' 100 kpc(B0/(10−9 G)) (Subramanian & Barrow 1998). In practice it is however seen that

neglect of non-linear terms to study perturbations at linear scales holds for a wide range of

linear scales. For example the use of linear theory in the usual CDM model give reasonable

results for studying perturbationsfor k <∼ 0.2 h−1Mpc which are quasi-linear at present, even

though smaller structures could have collapsed at much higher redshifts. One case in which

we are justified in neglecting the non-linear terms is when the final result can be shown to

be nearly independent of the contribution of large k modes of the magnetic field. This as

we discussed above is valid for n <∼ − 1.5 if the magnetic fields are generated in the early

universe. In other cases neglect of this term should depend of both B0 and n.

2.5 Conclusions

In this chapter we studied the effect of tangled magnetic fields on the large scale structure in

the universe. We calculated the power spectrum of the tangled magnetic fields and compared

it with the observations at the present epoch. Our results can be summarized as:

1. If the magnetic field originated in the very early universe. It is possible to construct

models in which the shape of density power spectrum ∝ k, i.e. it agrees with the

observed power spectrum shape for k <∼ 0.02 h−1 Mpc−1. However compatibility with

observed CMBR anisotropies suggests that the density power spectrum from tangled

magnetic field is smaller than the observed power spectrum by atleast two orders of

magnitudes at linear scales (k <∼ 0.2 h−1 Mpc−1) at present. Therefore very early uni-

verse tangled magnetic fields are unlikely to have important impact on the structures

in the present universe.

2. We consider a simple model in which the magnetic field were generated with coher-

ence scales k >∼ 2 h−1 Mpc−1 in the post-reionization epoch z <∼ 10. In all such models

the density power spectrum ∝ k4, i.e. the shape of the power spectrum is incom-

patible with the shape of the observed shape. It is possible to construct models in

which magnetic field can have important contribution to the density power spectrum

for B0 ' 10−9 G. (It should be noted that the density power spectrum from initial con-

ditions which could have originated during inflation adds to the magnetic field-induced
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density power spectrum as the density fields generated by these two processes are un-

correlated; see Eq. (2.11) and the discussion following it.) However these results are

quite sensitive to the shape and the upper k cut-off of the tangled magnetic fields power

spectrum, which are difficult to fix from either observations or theory.

3. The redshift space effects from tangled magnetic fields have additional features ow-

ing to curl component of velocities generated by these fields. The curl component

increases both the quadrupole (µ2 term), hexadecapole (µ4 term) of the redshift space

power spectrum. For very early universe magnetic fields the curl component decays

so it cannot have important contribution to the redshift space effects. For magnetic

fields generated in the more recent epoch, the curl component of the velocity field can

be comparable to the divergence component. In this case both quadrupole and hex-

adecapole can be dominated by the curl component as opposed to the usual case of

divergence collapse. This leads to the interesting possibility that most of the redshift

space effects come from the curl component, and the usual way of determining Ωm

from the redshift space distortion is not entirely valid (Peacock et al. 2001). As noted

above the density power spectrum from tangled magnetic field can dominate the ob-

served power spectrum for B0 ' 10−9 G, and hence can be used to probe tangled fields

which are too small to be detected by other methods (see e.g. Sethi 2003)

Tangled magnetic fields are unlikely to have provided the initial conditions for the for-

mation of presently-observed structure in the universe. In this chapter we showed that this

conclusion seems inevitable for magnetic fields generated in the very early universe.

Appendix A

In this Appendix, we derive expressions for P(k), 〈δ(k)vz(k)〉, 〈(vz(k))2〉 and also make an

approximate analytical estimate of the small k-dependance of P(k). The real space spatial

density contrast and peculiar velocity component along the line of sight are given as:

δ(x) = ∇ · [B × (∇ × B)]

v(x) · ẑ = [B × (∇ × B)] · ẑ (2.36)

Here B ≡ B(x, t0), i.e. the value of magnetic field at the present epoch. The Fourier space

expressions for the above fields are:

δ(k) =
∫

d3k1[(k1 · B(k − k1)) (k · B(k1)) − (k1 · k) (B(k1) · B(k − k1))] (2.37)

v(k) = −i
∫

d3k1[(B(k1) · B(k − k1))k1 − (k1 · B(k − k1))B(k1)] (2.38)
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The volume element in the integrals can be simplified by choosing k to lie along the z-axis

and n̂ to lie in the x-z plane. We thus have,
∫

d3k1 =

∫

dk1k2
1

∫

dµ
∫

dφ (2.39)

Here, µ ≡ cos θ (θ is the angle between k1 and the z-axis) while φ is the azimuthal angle. In

the integral, k1 ranges from kmin to kmax, µ from -1 to +1 and φ from 0 to 2π. Care has to be

taken while evaluating multiple integrals formed from above (for e.g. 〈δ2〉) since the pres-

ence of terms like δ(k2 + k − k1) after integrating over k2 puts a constraint on the integration

range of θ as well. Taking all this into account we can split the integration ranges for the

cases of interest in our analysis as follows:

For kmin = 0 and 0 < k1 < kmax,
∫

d3k1 =

∫ k

0
dk1

∫ +1

−1
dµ +

∫ kmax−k

k
dk1

∫ +1

−1
dµ +

∫ kmax

kmax−k
dk1

∫ 1

µmax

dµ (2.40)

For kmin , 0 and 0 < k1 < kmin,
∫

d3k1 =

∫ k+kmin

kmin

dk1

∫ µmin

−1
dµ +

∫ kmax−k

k+kmin

dk1

∫ +1

−1
dµ +

∫ kmax

kmax−k
dk1

∫ 1

µmax

dµ (2.41)

where µmax = (k2 + k2
1 − k2

max)/(2kk1) and µmin = (k2 + k2
1 − k2

min)/(2kk1)

To calculate P(k) we take the ensemble average of [δ(k)]2. This product contains terms

involving four point functions of B. By assuming that B is Gaussian distributed in the en-

sembles such terms can be written as sums of products of two-point functions of B. Finally

using Eq. (2.8) and simplifying, we arrive at the following expression for P(k):

P(k) =
∫ kmax

kmin

dk1

∫ +1

−1
dµ

B2(k1)B2(|k − k1|)
|k − k1|2

[2k5k3
1µ + k4k4

1(1 − 5µ2) + 2k3k5
1µ

3] (2.42)

We evaluate this double integral numerically. However we can analytically see the form for

P(k) when k � kmax both for kmin = 0 as well as kmin , 0 as follows:

For kmin = 0 and k � kmax, the relevant case when the magnetic fields originate in the

early universe, the only major contribution to the P(k) comes from the second integral in

Eq. (2.40). We thus have to lowest order in k/kmax,

P(k) ∼ Ak2n+7 + Bk2n+3
max k4 + Ck2n+1

max k6 + ...(higher powers of k) (2.43)

where, A,B and C are coefficients depending only on n. We thus see that for n > −1.5 the

leading order term is proportional to k4 whereas for n < −1.5 it is proportional to k2n+7. In

particular for n = −2, the dependance goes as k3. Also, P(k)→ k1 as n→ −3.
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For kmin , 0 and k � kmin, the case if the magnetic fields are of more recent origin, the

leading contribution to P(k) comes from the third integral in Eq. (2.41). Thus, to lowest order

in k we get,

P(k) ∼ Ak4(k2n+3
max − k2n+3

min ) + ...(higher powers of k) (2.44)

Thus, we see that with an infrared cutoff which is much larger than the wavenumber of

interest, the dependance of P(k) is generically k4. The dependance on kmax and kmin is such

that for n > −1.5, the value of P(k) is determined by and increases with kmax. In the otherlimit

P(k) is determined by kmin. We now evaluate the correlation 〈δ(k) v · ẑ〉We can show that it

is simply proportional to P(k) in the following way: From the assumptions of homogeneity

and isotropy, we can write

〈vi(k)v j(q)〉 =
(

A(k2) δi j + B(k2) kik j

)

δ3(q − k) (2.45)

where A(k2) and B(k2) are some as yet undetermined coefficients. Thus, using the continuity

equation, Eq. (2.2):

〈δ(k) v(k) · n̂〉 = −i〈kiviv jn j〉 = −ik · n̂[A(k2) + k2B(k2)] (2.46)

Similarly we get,

P(k) ≡ −〈kivik jv j〉 = −k2[A(k2) + k2B(k2)] (2.47)

Thus from these equations we get the following relation:

〈δ(k) v(k) · n̂〉 = i
k · n̂
k2

P(k) (2.48)

From this derivation Eq. (2.30) follows. Finally, this allows us to write 〈(v(k) · n̂)2〉 correla-

tion:

〈(v(k) · n̂)2〉 =
∫ kmax

kmin

dq
∫ +1

−1
dµ

B2(q)B2(|k − q|)
|k − q|2

[

cos2α
(

2k3q3µ − 5k2q4µ2

+ k2q4 − q5k(µ − 3µ3)
)

+ q5k(µ − µ3)
]

(2.49)

Here, α is the angle between k and n̂.
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