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Summary and main results of chapter 3

The question of the origin of cosmic magnetic fields is still an unsolved problem. Various

approaches and mechanisms have been put forward to generate large-scale magnetic fields.

In this chapter we study a mechanism for magnetic field generation within the framework

of the standard cosmological model which will operate in the pre-recombination era. The

main components of the pre-recombination plasma are photons, electrons and protons. The

dominant interactions are Coulomb scattering between electrons and protons and Thomson

scattering between photons and electrons. The photons preferiantially exert pressure on the

electrons thereby causing a difference in the velocity fields of electrons and protons thereby

inducing an electric current. If the induced current has a non-vanishing curl component

then magnetic fields can be generated. To the zeroth order, the plasma is homogenous and

in thermal equilibrium as is evidenced by the near-isotropy of the CMBR and its Planck-

ian spectrum. However, observed anisotropies of the CMBR also suggest that there small

amplitude fluctuations over and above the uniform background. Such a fluctuating multi-

component plasma holds the promise of inducing a current with a non-vanishing vorticity

which thus becomes the source of the magnetic field. We studied this possibility using the

formalism of perturbation theory assuming adiabatic initial conditions.

The main results are summarized below:

• In the linear theory there is no field generation mainly because of the fact that the

fluid velocities have vanishing vorticity.

• In second order, a non-vanishing vorticity can be generated by treating the collision

term for photon-electron interaction to second order.

• The strength of the magnetic field generated in this manner is nearly 10−30G for

scales from ∼ 100 Mpc to a kilo-parsec at the current epoch.
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3.1 Introduction

Magnetic fields are ubiquitous in the universe and presumably play an important role in most

objects in the Universe. Their origin however is an unsolved problem. (see e.g. Parker 1979;

Zeldovich, Ruzmaikin & Sokolov 1983). The present day fields in galaxies have strengths

of the order of a micro-Gauss. These fields could have arisen from dynamo amplification

of seed fields ' 10−20 G (see e.g. Ruzmaikin, Shukurov & Sokoloff 1988; Beck et al 1996;

Shukurov 2004; Brandenburg & Subramanian 2005) or could have originated from primor-

dial magnetic fields of strength ' 10−9 G generated during inflationary epoch in the early

universe (Turner & Widrow 1988; Ratra 1992; Ashoorioon & Mann 2005, see Grasso &

Rubinstein 2001; Giovannini 2004, for reviews).

There are various astrophysical mechanisms for the creation of cosmic magnetic fields.

Broadly these can be divided into pre-recombination and post-recombination mechanisms.

Most of the astrophysical mechanisms proposed after recombination are based on the Bier-

mann battery mechanism (Biermann 1950) which was first investigated to explain stellar

magnetism. Application of this mechanism in the cosmological context lead to seed fields of

the order of 10−20 − 10−17 G on scales of a few hundreds of kilo-parsecs to a few Mpc (see,

e.g. Subramanian, Narasimha & Chitre 1994; Kulsrud et al. 1997; Grasso & Rubenstein

2001; Widrow 2002 for reviews).

Harrison (1970) considered a scenario in which a small seed field ' 10−25 G is gener-

ated in the radiation era owing to the vorticity in the photon-baryon fluid. In particular they

showed that there is a one-one correspondence between the vorticity in the fluid and the

magnetic field. In this analysis however, the source of vorticity is not specified. It can be

shown that in the absence of a continual source, vorticity decays with time and hence will

be insignificant by the epoch of recombination (Hu & White 1997, Rees 1987). This is the

main limitation of this analysis. Hogan (2000) and Berezhiani & Dolgov (2004) also consid-

ered the generation of magnetic fields from photon pressure in the pre-recombination epoch.

Berezhiani & Dolgov considered the generation of fields from a Biermann mechanism which

can operate in the second order of perturbation theory as a result of photon diffusion. More

recently Matarrese et al. (2005) studied magnetic field generation from vector metric pertur-

bations which are naturally generated when second order effects of fluctuations are studied.

In this chapter we study the second order effect of photon-electron scattering and deduce that

vorticity is induced naturally to this order from the above effect.

In the pre-recombination Universe, photons, electrons, and protons can be treated as

tightly coupled fluids. Photons, however, preferentially exert pressure on electrons [the pres-

sure on protons is suppressed by a factor (me/mp)2]. During the evolution of the photon-

baryon plasma a difference in velocity fields of electrons and protons can therefore be gener-
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ated, and this holds the promise of generating magnetic fields from this induced current. In

addition, the approximation that photons and baryons are tightly coupled, and therefore can

be treated as one fluid, breaks down for scales up to several Mpc by the time of recombina-

tion. (During the process of recombination this scale exceeds the horizon scale.) At smaller

scales, the photons free-stream and this in principle can lead to additional contribution to

induced currents that might generate magnetic fields.

In this chapter, we study the coupled electron, proton, and photon plasma in first and

second order in perturbation theory to understand the generation of magnetic fields during

the evolution of the plasma. In the next section we describe the relevant equations for our

study. In §3.3, we discuss the evolution of magnetic fields and its sources in the first and

second order in perturbation theory. In §3.4 discuss our results and give concluding remarks.

All the quantitative estimates in this chapter, are given for the spatially flat FRW model with

Ωm = 0.3 and ΩΛ = 0.7 (Spergel et al. . 2003, Reiss et al. 2004, Tonry et al. 2003, Perlmutter

et al. 1999, Riess et al. 1998) with Ωbh2 = 0.02 (Spergel et al. 2003, Tytler et al. 2000) and

h = 0.7 (Freedman et al. 2001).

3.2 Pre-recombination plasma

The primary components of the primordial plasma prior to the recombination epoch are

photons, free electrons and protons. The dominant collisional interactions are Thomson

scattering of photons by electrons and Coulomb scattering between the electrons and protons.

Observations of the Cosmic Microwave Background Radiation (CMBR), which is the

relic of the radiation existing in this era, show that the plasma is almost homogeneous and

in thermal equilibrium at the time of recombination (see e.g. Peebles 1993). However,

anisotropies observed in the CMBR also indicate that there are spatial fluctuations superim-

posed on this uniform background density. In the present analysis, we assume that the fluc-

tuations are adiabatic, which means that the entropy per fluid particle is conserved. Recent

WMAP observations favour this initial condition (Peiris et al. 2003). The electrons interact

with each other and with protons through Coulomb scattering. The mean free paths for e-e,

e-p and p-p collisions are the same in this thermal plasma (see e.g. Shu 1992) and are much

smaller than the astrophysically relevant scales (' 1 Mpc). Hence a continuum description

treating them as fluids can be used. The effect of scattering between different species mani-

fests in the form of a relative drag between the fluids which is taken into account by including

a momentum exchange term in the Euler equation. For photons, however, the dominant in-

teraction is Thomson scattering off free electrons with mean free path (comoving), lγe, at

z ' 1000 for a fully ionized universe being, lγe = 1/(aσTne) ' 3 Mpc. Here, σT is the

Thomson cross section for e-γ scattering, ne is the electron number density and a is the scale
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factor. This is comparable to the length scales in consideration and hence a Boltzmann par-

ticle description is essential. In the next two sections we set up the mathematical equations

describing photons as well as the ionised component consisting of electrons and protons.

3.2.1 Description of photons

The photons are described by the phase space distribution function f (x, η, p, n̂) where p is the

magnitude of photon momentum, n̂ is the propagation direction and η is the conformal time.

Since the distribution is blacbody to zeroth order, it can be expanded as f = f 0+δ f where f 0

is the Planck function and δ f is a small perturbation. A further simplification of analysis can

be made, since we dont consider frequency dependant effects, by describing the evolution of

the perturbed distribution in terms of the brightness ∆(x, η, n̂) which is a frequency averaged

variable defined as:

∆ =

∫

dpp3δ f
∫

dpp3 f 0
(3.1)

The space-time metric is specified using comoving coordinates xi and conformal time

η for the conformal-Newton gauge and is given as (see e.g. Ma & Bertschinger 1995, and

discussion therein):

ds2 = a2(η)[−(1 + 2Ψ)dη2 + (1 − 2Φ)dxidxi] (3.2)

Here, a(η) is the scale factor and Ψ, Φ are the two potentials characterising scalar perturba-

tions in this gauge. The evolution of these potentials is governed by a generalized Poisson

equation (Hu & White 1997, Ma & Bertschinger 1995).

The evolution of photons in such a space-time is then given by the Boltzmann equation

for the brightness:

∆̇ + ni∂i∆ + ni∂iΨ + Φ̇ = C[ f ] (3.3)

Here, over-dots denote derivative with respect to conformal time η. C[ f ] is the collision

term accounting for the scattering of photons with electrons. The linearized collision term

for Thomson scattering (neglecting polarization) is given as (see, e.g. Hu & White 1997):

C[ f ] = neσT

(

∆0 − ∆ + 4ve · n̂ +
3
2

ninjΠij

)

(3.4)

Here, ∆0 ≡
∫

dΩ
4π∆ denotes the isotropic part of ∆ and Πij is the photon anisotropic stress

tensor which takes into account the angular dependence of Thomson scattering . It is given

by: Πij =
∫

dΩ
4π

(

ninj − 1
3δij

)

∆. The collision term also contains a term including the electron

velocity which arises from the transformation of the scattering rate from the electron’s rest

frame to the inertial frame. The electron velocity in the linear theory of scalar perturbations

does not contain any vortical component and hence this term acts like a pure dipole term



Chapter 3. A magnetic field generation mechanism in the pre-recombination plasma53

maintaining azimuthal symmetry about the photon propagation direction. In our analysis

however, we are looking for a possible generation of vorticity and hence this simplification

cannot be made. Hence we resort to a more general multipole moment expansion in terms

of spherical harmonic functions rather than the Legendre polynomial expansion used in the

standard case.

3.2.2 Multipole moment expansion

In this section we discuss the complete spherical harmonic moment expansion of the Boltz-

mann equation without assuming azimuthal symmetry of ∆. The notations used in this sec-

tion are self contained.

The Fourier transformed Boltzmann equation can be written as:

∆̇ + ikµ∆ + ikµΨ + Φ̇ =
1
τγe

(

∆0 − ∆ + 4ve · n̂ +
3
2

ninjΠij

)

(3.5)

In the above µ is the angle between the wave vector k and the direction n̂. The photon

brightness function ∆ can be expanded in terms of the scalar spherical harmonics Y`m as:

∆(n̂) =
∑

√

4π
2` + 1

∆`mY`m(n̂) (3.6)

where, the coefficients ∆`m are given by the inverse relation,

∆`m =

√

2` + 1
4π

∫

dΩY∗`m(n̂)∆(n̂) (3.7)

Both the above relations follow from the properties of completeness and orthogonality of the

spherical harmonic functions. The photon fluid variables like over-density δγ and velocity vγ
are then given by:

δγ ≡
∫

dΩ
4π
∆ = ∆00 (3.8)

k̂ · vγ =
∆10

4
(3.9)

Ωγ = |k̂ × vγ| =
∆11

4
(3.10)

(3.11)

By substituting the expansion for ∆ in Eq. (3.5) and using the familiar properties of spherical

harmonics we arrive at the following hierarchy of equations for the evolution of the moments

∆`m. For details of such an expansion we refer to Hu & White (1997).

∆̇`m + ik
A`,m

(2` − 1)
∆`−1,m + ik

A`+1,m

(2` + 3)
∆`+1,m +

∆`m

τγe

= S `m (3.12)
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Here, A`m =
√
`2 − m2. The source S `m is given as:

S `m =

(

∆`m

τγe

+ 4Φ̇

)

δ`0δm0 +

(

4v`m
τγe

− kΨδm0

)

δ`1 +
1
10
∆`mδ`2 (3.13)

In the above equations, the coefficients v`m are the coefficients in the multipole expansion of

the ve · n̂ term such that ve · n̂ =
∑

v`mY`mδ`1. The vorticity of the photon fluid is tracked by

the evolution of the ` = 1,m = 1 moment ∆11. We notice from Eq (3.13), that the source

S 11 = 4v11/τγe. This is the only source for the evolution of the m = 1 moment. The first

two moment equations in the hierarchy give the familiar continuity and Euler equations for

photons:

δ̇γ +
4i
3

k · vγ − 4Φ̇ = 0 (3.14)

v̇γ + ik
δγ

4
+Π − ikΨ =

ve − vγ

τγe

(3.15)

In the above equation, Πi =
3
4 ikjΠij.

There are some interesting conclusions which can be drawn from the above hierarchy.

We can see that for a given m, each l-moment ∆`m is coupled to an l+ 1 and an l− 1 moment

in the hierarchy. On the other hand, there is no coupling between different m modes. This

implies that if there is no source S `m for a given m and if initial conditions are such that

∆`m = 0 for that m, then, ∆`m = 0 at all times even if other m moments evolve. In the

present analysis, our emphasis will be on studying the effect of scalar perturbations which

correspond to m = 0. For such perturbations Πij can be greatly simplified by using azimuthal

symmetry about the axis of electron velocity (see e.g. Dodelson & Jubas 1995). However,

our aim here is to study the generation of magnetic field from the evolution of the coupled

photon-baryon plasma. Since the generation of this field can explicitly break this symmetry,

one should consider a more general expression for the anisotropic stress tensor.

3.2.3 Fluid equations for electrons and protons

As discussed earlier, since the mean free paths of electrons and protons are very small com-

pared to astrophysical scales, we can describe their evolution accurately using continuity and

Euler equations for an ideal fluid. In linear theory, the density field ρe,p(x, η) is expanded as

ρe,p(x, η) = ρ̄e,p(η)[1 + δe,p[x, η)], where ρ̄ is the unperturbed background density and δ is the

fractional perturbation. In what follows quantities denoted by a bar on top are background

unperturbed quantities. The generalised continuity equations for each of the above species

is given as (e.g. Ma & Bertschinger 1995):

δ̇e,p + ∇ · ve,p − 3Φ̇ = 0 (3.16)
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Note that we have used the continuity equations including the effect of the metric perturba-

tion as given in the conformal Newtonian gauge.

The corresponding generalised Euler equations are:

v̇e +
ȧ
a

ve = −
∇Pe

ρe

− ∇Ψ −
aeE
me

−
ae
me

ve × B +
(

vγ − ve

τγe

)

R +
vp − ve

τep

(3.17)

v̇p +
ȧ
a

vp = −
∇Pp

ρp

− ∇Ψ + eE
mp

+
ae
mp

vp × B +
ve − vp

τep

(

me

mp

)

(3.18)

Here, τep is the (co-moving) electron-proton collision time scale; τγe = 1/(neσTa) is the

photon-electron Thompson scattering time scale. In the above equation we have neglected

the photon-proton scattering term since the effect of this term will be suppressed compared to

the electron-photon scattering term and it does not produce any qualitatively new effect. We

have also included the forces due to a possible presence of the electric E and the magnetic

B fields. These are not any given external fields but could be generated in a self-consistent

manner. As we will see later, these fields are identically zero in linear theory whereas they

are generated in the second order . The relative contribution of the photons and the electrons

in the momentum equation is specified by the ratio R ≡ 4ργ/3ρe . Pe,p are the pressures acting

on the charged fluids due to each of their internal scattering i.e e− e and p− p collisions. For

adiabatic fluid we can write P ≡ P(ρ).

Thus the above set of equations give a complete description of the electron and proton

fluids. It is also useful to know the evolution of the vorticity of each of the above fluids

as it is the presence of this component which can be directly related to the magnetic field

evolution. By taking curl of the Euler equations and using Maxwell’s equations, we can get

the evolution equation for the vorticities (Ωe,p ≡ ∇ × ve,p) of the fluids as:

Ω̇e +
ȧ
a
Ωe =

e
mea

d
dη

(a2B) − ae
me

∇ × (ve × B) +

(

Ωγ −Ωe

τγe

)

R − ∇2B
4πneeτep

Ω̇p +
ȧ
a
Ωp = −

e
mpa

d
dη

(a2B) +
ae
mp

∇ × (vp × B) +
∇2B

4πneeτep

(

me

mp

)

(3.19)

3.3 Evolution equation for the magnetic field

To arrive at the equation governing the evolution of magnetic field, we use the Euler equa-

tions for the charged fluids and Maxwell’s equations appropriate to the LFRW background

metric (Appendix B). Subtracting Eq. (3.17) from Eq. (3.18) and using Maxwell’s equations

we first obtain the evolution of the current J :

me

e2

∂

∂η

(

J
ne

)

+
ȧ
a

me

e2ne

J =
1

nee
∇Pe + aE + a(ve × B) −

(

vγ − ve

τγe

)

R
me

e
− meJ

nee2τep

(3.20)

In the above equation we have neglected forces on the proton fluid due to pressure gradient

and electric field since they are smaller than that for the electron fluid by the factor me/mp.
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Taking curl of equation (1.20) and using Maxwell’s equations, we get the equation for the

generation of magnetic fields:

1
a
∂

∂η
(a2B) =

me

e2
∇ × ∂

∂η

(

J
ne

)

+
me

e
∇ ×

(

∇Pe

ρe

)

− ∇ × (ve × B) (3.21)

+
me

e2
∇ ×

(

J
neτep

)

+
me

e
∇ ×

(

R(vγ − ve)

τγe

)

−
ȧ
a

me

e2
∇ ×

(

J
ne

)

Since, we are looking for possible sources of magnetic field beginning from initial no-

magnetic field conditions, we can neglect the third, fourth and sixth terms on the right hand

side of the above equation. Each of these terms may only act to amplify or reduce the field

strength once the field has been generated and we will see later that for the strength of the

generated field, these terms will have a negligible effect anyway. The first term on the right

hand side can be estimated to be negligible for the scales of interest compared to the the term

on the left hand side whatever be the value of the generated field. (see e.g Widrow 2002).

Making the above simplifictions we get:

1
a
∂

∂η
(a2B) = S(x, η) (3.22)

with

S(x, η) =
me

e
∇ ×

(

∇Pe

ρe

)

+
me

e
∇ ×

(

R(vγ − ve)

τγe

)

(3.23)

Thus we have identified two possible source terms for the generation of the magnetic

field. The first term is the familiar Biermann battery term which can be rewritten as ∇ρe×∇Pe

ρ2
e

.

This term contributes whenever the gradient of pressure and the gradient of density are not

collinear. The second term represents the vortical component of the drag force on the elec-

trons as a result of its interaction with photons. Each of these terms in principle can lead

to the generation of magnetic field. We now discuss the nature of these source terms of

magnetic field generation in first and second order in perturbation theory.

3.3.1 Evaluation of the source term: Linear theory

The source term for any Fourier mode S(k, η) can be simplified for the linear case. In this

case, R = 4 ρ̄γ/(3 ρ̄e), and τγe = 1/( n̄eσT), are unperturbed quantities and hence don’t carry any

spatial dependence. The first term of the right hand side of Eq. (3.23) identically vanishes in

this case. The source term can then be written as:

S(k, η) =
meR
eτγe

(Ωγ −Ωe) (3.24)

Thus, we see that the source for the magnetic field in the plasma is the differential vorticity

between electrons and photons. The evolution of photon vorticity is tracked by the Boltz-

mann moment equation for l = 1,m = 1 (Eq. (3.12)). We note that the source of photon
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vorticity is 4v`1/τγe ∝ Ωe. This implies that the only source which can excite any l-moment

for m = 1 is the electron fluid vorticity. The evolution equation for the electron fluid vor-

ticity (Eq. (3.19)) shows that the only sources of vorticity are the magnetic field and the

photon vorticity. This means that if the vorticities were zero in the initial condition, as is

the case with initial zero-vorticity conditions we consider here, none of these quantities can

be generated for any scale in the linear regime. In particular we can conclude that no mag-

netic field is generated in linear order for scalar perturbations. It should be noted that using

Eq. (3.12) and Eq. (3.13) allows us to follow modes at which photons are free-streaming at

any given epoch. Therefore the above conclusion holds for all scales larger than the scales at

which electrons and protons can be treated as fluids.

3.3.2 Source term in the second order

In the previous section we argued that to the first order in perturbation theory, no vorticity

and consequently no magnetic field is generated on any scale. Hence we should study the

perturbation to the next order. There are various terms which have to be included in going to

second order in perturbation theory. Second order terms can arise from treating metric pertur-

bations to second order (Martinez-Gonzalez, Sanz & Silk 1992) or by including the second

order terms in the electron-photon scattering (Vishniac 1987, Dodelson & Jubas 1995, Hu,

Scott, & Silk 1994). Vishniac (1987) adopted the simple procedure of including the spatial

dependence of densities to include the second order effects. Detailed analyses (Dodelson &

Jubas 1995, Hu, Scott, & Silk 1994) showed that Vishniac’s procedure gives the most impor-

tant second order effect in the electron-proton scattering for sub-horizon scales. This allows

us to study scales smaller than the horizon at the last scattering surface, H−1 ' 100 Mpc. At

larger scales other second order effects from electron-photon scattering and the second order

metric perturbations might be comparable or dominate.

We adopt Vishiniac’s procedure here and obtain the second order term from treating the

spatial dependence of densities i.e. in R, τγe and ρe in the source term for magnetic field

generation (Eq. (3.23)). To get estimates of the generated magnetic field we solve for

the difference in photon and baryonic bulk velocity in the tight-coupling approximation. We

argue below that the main contribution to the source S (k, η) for any scale comes from epochs

at which the tight-coupling approximation is valid.

The source term is evaluated in the tight-coupling approximation in Appendix A and

given by Eq. (3.29). We argue there that for adiabatic evolution, the only term that can

source the magnetic field generation is given by Eq. (3.30).

This allows us to solve the evolution of the generated magnetic field at any scale:

a2B(k, η) ' R̄ame

3e

∫ η

0
dη′

ȧ
a

∫

d3k′δe(k′), η′)k′ × ve((k − k′), η′) (3.25)
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Note that aR̄ is independent of time. Eq. (3.30) can be solved using linear theory evolution

of density and velocity perturbations for each scale from initial conditions at the time at

which the scale is super-horizon to the epoch of recombination, ηrec (Eq. (3.36)). At the

epoch of recombination the photons decouple from the baryons and therefore the source for

magnetic field generation vanishes. We do not attempt an explicit solution here but seek

an approximate understanding of the generated magnetic field. We first justify our use of

the tight-coupling approximation. As discussed in Appendix A, for each scale the tight-

coupling approximation is valid for epochs before the Silk damping regime (Eq. (3.34)).

From Eq. (3.25), the magnetic field at a given scale k gets contribution from density and

velocity perturbations at all scales. It should however be noted that if k corresponds to a

scale at which the density and velocity perturbations are in damping regime the source of

magnetic field is also in the damping regime. (More precisely one is interested in the power

spectrum of the magnetic field, which, from Eq. (3.25), is a four-point function containing

density fields. For magnetic field at scale k, the integrand of the source is ∝ P(k′)P(|k − k′|),
here P(k) is the power spectrum of the density field; |k−k′ | ' k if both k and k′ are not in the

damping or free-streaming regime.) This means that most of the contribution to the magnetic

field comes from epochs at which the tight-coupling approximation is valid. More precisely

much of the contribution to magnetic field at a scale k comes from epochs η <∼ ηd ' ω−1
d

(Eq. (3.35)). For scales that are not in the damping regime at ηrec the upper limit of the

integral in Eq. (3.25) is ηrec. For smaller scales, the upper limit is ' ηd. Having identified

some generic features of the magnetic field source terms we can give an order-of-magnitude

estimate of the generated field from Eq. (3.30). For all scales a reasonable upper limit on the

generated magnetic field for the currently-favoured ΛCDM model, at a scale L ' k−1, is:

(a2B)(L, η0) = (a2B)(L, η1) ' 10−30 G

(

δe(η1)
10−3

) (

ve(η1, L)
10 km sec−1

) (

10 Mpc
L

)

(3.26)

Here η1 = ηrec for scales that are not in Silk damping regime at the epoch of last scattering

and η1 ' ηd for smaller scales. In Eq. (3.26) we have used the fact that once the sources of

generating magnetic fields vanish, the magnetic field evolves such that a2B remains constant

( see e.g. Wasserman 1978). In Eq. (3.26), ve(L) ' (kP(k))1/2 (the matter power spectrum

is given e.g. by Bardeen et al. 1986) and δe(η1) is the RMS of the density field. One

can compare the magnetic fields at different scales by evaluating the sources at the epoch

of recombination ηrec. As seen from Eq. (3.36) the density field is either non-evolving or

in the oscillatory phase for much of the period prior to recombination (except for modes

η−1 <∼ k <∼
(

η/
√

3
)−1

in the matter-dominated epoch). The velocity field however grows ∝ η
for super-horizon scales in the radiation dominated era and for k <∼ (η/

√
3)−1 in the matter

dominated era. Therefore if Eq. (3.26) is evaluated at ηrec, the small scale magnetic field is

approximately smaller by a factor (ηent/ηrec); here ηent ' k−1 is the epoch of horizon entry of
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the mode k. Using this to write the sources of the magnetic field at ηrec in Eq. (3.26), it is

seen that, for all scales, B(η0) <∼ 10−30 G.

3.4 Conclusion and discussion

We have studied the possibility of generating magnetic fields during the evolution of the

photon-baryon plasma in the pre-recombination universe. For scalar perturbation in linear

theory magnetic field is not generated at any scale; this includes scales at which the photon-

baryon coupling approximation breaks down. We show that in the second order in perturba-

tion theory a small magnetic field is generated. The strength of the generated magnetic field

is <∼ 10−30 for scales from ' 100 Mpc to sub-kpc at the present epoch.

In Eq. (3.22), we have neglected several terms which could back-react on the generated

magnetic field. It can be readily seen that, for the strength of the generated field, these terms

are always much smaller than the source term of the magnetic field. And therefore we were

justified in neglecting those terms for studying the generation of magnetic field. As discussed

above magnetic fields at small scales are frozen in the plasma from epochs ' ω−1
d . It could be

asked whether the radiative viscosity prior to the recombination can damp these fields. The

maximum length scale damped by pre-recombination radiative viscosity is ∝ B (Jedamzik,

Katalinić, & Olinto 1998, Subramanian & Barrow 1998). For the small magnetic fields we

obtain, the maximum scale of dissipation can be shown to be much smaller than any relevant

length scales.

Appendix A

In this section we discuss the initial conditions and the tight coupling approximation relevant

to the study of photon-electron fluctuations.

The electron-proton plasma recombines at a redshift zrec ' 103 (see e.g. Peebles 1993).

At any epoch in the universe before recombination, η <∼ ηrec ' 2H−1
0 (1 + zrec)−1/2/Ω

1/2
m , there

are roughly five physically relevant length scales: (a) Super-horizon scale, k <∼ η−1 (b) scales

that are sub-horizon but larger than the sound Horizon, η/
√

3 >∼ k >∼ η−1. At these scales the

evolution of velocity fields is determined by gravitational potentials. (c) scales smaller than

the sound horizon scale but larger than the Silk damping scale, η/
√

3 <∼ k <∼ ksilk. At these

scales the baryon velocity evolution is determined by both gravitational potentials and the

photon pressure, (d) scales that are in the damping regime but larger than the scales at which

photon free-stream, ksilk
<∼ k <∼ kfs, kfs ' (2 Mpc)−1(103/(1 + z))−2. The densities and veloci-

ties of baryons decay exponentially in this regime (see e.g. Peebles 1980) and (e) k >∼ kfs, at

these scales photons are free-streaming and therefore photons and baryons cannot be treated
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as coupled fluids. During the evolution in the expanding universe before recombination, the

electron velocity and density perturbations at most scales first pass through the Silk damping

regime before reaching this phase. Therefore during this phase δe, ve ' 0. The only exception

to this occurs around the epoch of recombination when the free-streaming length increases

very rapidly. As the sources of magnetic field generation are nearly zero in this regime, the

dynamics of plasma at these scales play an unimportant role for our study. In the evolution

in linear theory all scales undergo either some or all of these phases of evolution.

Initial condition for each mode is set outside the horizon. Up to phase (c) discussed

above, k � kfs. During this phase the photons are tightly coupled to the baryons and this

greatly simplifies the problem (Peebles & Yu 1970, Peebles 1980, Hu & Sugiyama 1995).

In this approximation, to zeroth order in τγe: vγ = ve; and Πi j = 0. Also to this order in τγe:

δe = 3/4δγ; this can be readily obtained by subtracting the electron continuity equation from

the photon continuity equation (Eqs. (3.14) and (3.16)). To solve for the difference between

electron and photon bulk velocity we need to expand to the first order in τγe. To this order,

from Eq. ( 3.15) (Peebles & Yu 1970, Peebles 1980):

vγ − ve = τγe













∂vi
γ

∂η
+

1
4
∇δγ + ∇Π + ∇Ψ













(3.27)

Here the quantities in the bracket on the right hand side are to be evaluated to the zeroth order

in τγe. Eq. (3.27) along with the evolution of electron velocity (Eq. (3.18)) and the difference

of electron and proton velocities (Eq. ( 3.20)) can be used to give the following expression

for the electric field in the tight coupling approximation:

aE(x, t) =
me

e

(

ȧ
a

Rve −
∇pe

ρe
− 1

4
R∇δγ

)

(3.28)

In deriving Eq. (3.28) all terms proportional to the magnetic field were dropped as they

cannot act as sources for generating magnetic field. Taking the curl of this equation and using

Maxwell’s equation ( Eq. (3.39)) one obtains the equation for magnetic field generation:

1
a
∂

∂η
(a2B) =

me

e
∇ ×

(

−
ȧ
a

Rve +
∇pe

ρe
+

1
4

R∇δγ

)

(3.29)

This equation verifies the discussion above that the source of magnetic field generation is

electron vorticity in the linear theory. With non-vortical initial conditions, Eq. (3.29) shows

that all the sources of magnetic field generation are zero in the linear perturbation theory. We

wish to consider the second order effect by considering the spatial dependence of densities.

This gives: R = R̄(δe − δγ) ' −1/3R̄δe in the tight coupling approximation, as δe = 3/4δγ
during adiabatic expansion (see e.g. Peebles 1980). In second order, the second term on the

right hand side is the Biermann battery term. In the adiabatic initial condition we consider

here, p = ργ with γ = 5/3. And the source term ∝ ∇δe × ∇δe = 0 and therefore in this limit
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the Biermann battery term doesn’t contribute. It should be noted that the plasma evolves

adiabatically only for scales that are not affected by Silk damping (see below). However as

the densities and velocities damp in this regime one doesn’t expect much contribution from

these scales. Biermann battery term can also contribute for initial conditions different from

the adiabatic initial conditions. The third term on the right hand side also vanishes even in

the second order in the tightly-coupled regime. Therefore the only source of magnetic field

generation is the first term on the right hand side of Eq. (3.29). Eq. (3.29) can therefore be

simplified to:
1
a
∂

∂η
(a2B) =

R̄me

3e
∇ ×

( ȧ
a
δeve

)

(3.30)

This equation can be used to get an order-of-magnitude estimate of the generated magnetic

field.

Eq. (3.27) can be used to calculate, to the zeroth order, the evolution equation of elec-

tron velocity field (Peebles & Yu 1970). This equation along with the continuity equation

(Eq. (3.16)) and ∇.E = 0, Eq. (3.42), and dropping all terms proportional to B, gives:

δ̈e = −
ȧ
a

δ̇e

(1 + R)
− k2 pe

ρe(1 + R)
− k2Ψ − R

4(1 + R)
k2δγ +

3ȧ
a

Φ̇

(1 + R)
+ 3Φ̈ (3.31)

This equation can be solved along with the evolution equation of δγ by WKB approximation

and these solutions can be matched to large scale solutions (Hu & Sugiyama 1995). We

discuss here approximate solutions at different epochs. First we discuss solutions during

phase (c) of the evolution. We note that all the terms on the right hand side except for the

δγ term are smaller as compared to this term for scales smaller than the sound horizon scale

' 1/
√

3η. The electron pressure is always negligible as compared to the photon pressure in

the pre-recombination universe. With these simplification and bearing in mind that 1/R � 1

during the evolution, Eq. (3.31) is solved to give:

δe(k, η) = A(k) cos

(∫ η

0
ωodη′

)

(3.32)

Here we have only retained the solution compatible with adiabatic initial conditions (see e.g.

Hu & Sugiyama 1995) and

ωo =
k

√
3(1 + 1/R)

(3.33)

In phase (d) of the evolution of the plasma, the tight-coupling approximation breaks down

and the photon-slip which damps perturbations (Silk damping) must be taken into account.

The solution including the Silk damping is (see e.g. Peebles 1980):

δe(k, η) = A(k) cos(ωoη) exp(−ωdη) (3.34)

Here,

ωd '
2k2τγe

15
(3.35)
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The silk damping scale, at any epoch, can be obtained from this expression: ksilk '
(15/(2τγeη))1/2 ' (4 Mpc)−1((1 + z)/103)−5/4 in the matter-dominated era. The velocity field

in the linear evolution remains non-vortical, and hence can be found from the continuity

equation (Eq. (3.16)). It should be noted that solutions for the baryon density and velocity

fields differ from the corresponding quantities for the electrons only by replacing R defined

here as R′ = 4ργ/(3ρb) (see e.g. Hu & Sugiyama 1995). As R′ � 1 for the evolution of

the plasma in the pre-recombination universe, for baryonic densities compatible with pri-

mordial nucleosynthesis, the baryon and electron quantities can be used interchangeably in

evaluating the second order expression above.

The evolution of electron density and velocity in the oscillatory regime and the super-

horizon solutions, prior to the epoch of recombination, can be summarized as (for solutions

at super-horizon scales in this conformal-Newton gauge see e.g. Ma & Bertschinger 1995):

δe ∝ Ψ = constant for k <∼ η−1 (RD and MD)

δe = oscillatory for k >∼
(

η
√

3

)−1

(RD and MD) and for k >∼ η−1 (RD)

δe ∝ η2 for η−1 <∼ k <∼
(

η
√

3

)−1

(MD)

ve ∝ kΨη for k <∼ η−1 (RD and MD) and for

(

η
√

3

)−1
>∼ k >∼ η−1 (MD)

ve = oscillatory for k >∼
(

η
√

3

)−1

(RD and MD) (3.36)

Here RD and MD correspond to radiation and matter dominated epochs, respectively.

Appendix B

The Maxwell’s equations for the LFRW metric in terms of physical fields, E,B, J are as

follows:

∇ × (a2B) = 4πa3J +
∂(a2E)
∂η

(3.37)

∇ · B = 0 (3.38)

∇ × (a2E) = −
∂(a2B)
∂τ

(3.39)

∇ · (a2E) = 4πa3e(np − ne) (3.40)

The current J is written in terms of fluid quantities as:

J = e(npvp − neve) (3.41)
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Here, ne,p are the electronic and protonic number densities which are assumed to be equal

to the lowest order i.e n̄e = n̄p = n. From Eq. (3.37) it follows that ∇.J = 0 if the second

term can be neglected, which is the case here (see e.g. Parker 1979). Eq. (3.16) along with

Eq. (3.41) then shows that:

∇.E = 0 (3.42)

in the linear theory.
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