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Summary and the main results of chapter 4

A primordial magnetic field sources all the three types of perturbations in the plasma i.e

scalar corresponding to density perturbations, vector corresponding to vorticity perturba-

tions and tensor corresponding to gravitational waves. Each of these perturbations will

produce its specific signature in the CMBR anisotropies and hence a detailed study of such

effects can be done to either detect or constrain the magnetic field. In this chapter we work

out in a semi-analytic manner the contribution to the temperature as well as the polarization

anisotropies of CMBR in the reionised scenario. In particular we found that the most inter-

esting signal on large scales which reflects in the CMBR at low multipoles comes from tensor

perturbations. We also investigated the possibility that an equal combination of both mag-

netic field sourced tensor mode and primordial scalar modes contributes to the net angular

power spectrum on large scales. In addition to the above, we also evaluate the contributions

of magnetised vector and scalar modes to the CMBR anisotropies

The main results are summarized below:

• The temperature-polarization cross correlation due to magnetised tensor perturba-

tion can explain the observed enhancement in the corresponding signal in the recent

WMAP data for a nearly scale-invariant spectrum of the magnetic field of strength

4.5 nano-gauss.

• In the scenario in which an equal combination of both magnetic field sourced tensor

mode and primordial scalar modes contributes to the net angular power spectrum on

large scales, we find that the current bounds on the optical depth to reionisation of

0.17, which is deduced from the WMAP data assuming contribution from primordial

scalar modes only, can be reduced to about 0.11.

• The magnetised vector mode contribution to CMBR anisotropies produces observ-

able effects at very small scales which will be probed in future experiments like

PLANCK whereas scalar modes in general produce very weak signals.
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4.1 Introduction

In the first chapter we worked out the observable consequences of large-scale magnetic fields

on the clustering properties of matter at the current epoch. In particular, we studied quan-

titatively the manner in which the existence of primordial magnetic fields of nano-Gauss

strength can influence the large scale structure formation in the Universe (Wasserman 1978,

Kim, Olinto & Rosner 1996, Subramanian & Barrow 1998, Sethi 2003, Gopal & Sethi 2003,

Sethi & Subramanian 2005). Another important complementary probe of large-scale fluc-

tuations in the early Universe is the cosmic microwave background radiation (CMBR). The

presence of magnetic fields could leave observable signatures in the CMBR anisotropies by

having a dynamical effect on the ionised plasma. (Barrow et al. 1997, Subramanian & Bar-

row 1998, Subramanian & Barrow 2002, Durrer, Ferreira & Kahniashvili 2000, Seshadri &

Subramanian 2001, Mack et al. 2002, Lewis 2004).

In recent years, the study of CMBR anisotropies has proved to be the best probe of the

theories of structure formation in the universe (see e.g. Hu & Dodelson (2002) for a re-

cent review). The simplest model of scalar, adiabatic perturbations, generated during the

inflationary era, appear to be in good agreement with both the CMBR anisotropy measure-

ments and the distribution of matter at the present epoch (see e.g. Spergel 2003, Tegmark et

al. 2004). In addition to scalar perturbations, there also exists the possibility of the presence

of tensor perturbations to the metric. Tensor perturbations could have been sourced by pri-

mordial gravitational waves during the inflationary epoch. There is no definitive evidence of

the existence of tensor perturbations in the CMBR anisotropy data; the WMAP experiment,

from temperature anisotropy data, obtained upper limits on the amplitude of tensor pertur-

bations (Spergel 2003). Vector perturbations are generally not considered in the standard

analysis as the primordial vector perturbations would have decayed by the epoch of recom-

bination in the absence of a continual source. In such a case, these perturbations may not be

important in contributing to an observable effect on the large-scale matter distribution. An

indisputable signal of vector and tensor modes is that unlike scalar modes these perturbations

generate B-type CMBR polarization anisotropies (see e.g. Hu & White 1997 and references

therein). At present, only upper limits exist on this polarization mode (Kovac et al. 2002).

However, the on-going CMBR probe WMAP and the upcoming experiment PLANCK have

the capability of unravelling the effects of vector and tensor perturbations.

Recent WMAP results suggest that the universe underwent a transition from being mostly

neutral to being predominantly ionised at the epoch of re-ionization at z ' 15; in par-

ticular WMAP analysis concluded that the optical depth to the last reionization surface is

τreion = 0.17 ± 0.04 (Kogut et al. 2003); which means that nearly 20% of CMBR photons

re-scattered during the period of reionization. The secondary anisotropies generated during
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this re-scattering leave interesting signatures especially in CMBR polarization anisotropies

(see e.g. Zaldarriaga 1997), as is evidenced by the recent WMAP results (Kogut et al. 2003).

Primordial magnetic fields source all the three kinds of perturbations viz. scalar corre-

sponding to density perturbations, vector corresponding to vorticity and tensor correspond-

ing to gravitational waves. Each of these perturbations affect the photon-baryon plasma on

different scales and hence produce distinct signals in the CMBR anisotropy spectrum. Dif-

ferent aspects of this problem have been studied earlier by various authors for the scenario of

standard recombination history (Giovannini 2005 and references therein). The presence of a

second scattering surface (i.e the reionisation surface) in addition to the recombination scat-

tering surface however can lead to additional features in the observed net anisotropy. These

features are referred to as secondary CMBR anisotropies.

In this chapter we study the secondary CMBR anisotropies, generated during the epoch

of reionization, from vector, tensor, and scalar modes, in the presence of primordial tangled

magnetic fields. Recently, Lewis (2004) computed fully-numerically CMBR vector and ten-

sor temperature and polarization anisotropies in the presence of magnetic fields including

the effects of reionization. Seshadri & Subramanian (2005) calculated the secondary tem-

perature anisotropies from vector modes owing to reionization. Our approach is to compute

the secondary temperature and polarization anisotropies semi-analytically by identifying the

main sources of anisotropies in each case; we compute the anisotropies by using the formal-

ism of Hu & White (1997). We also compute the tensor primary signal to compare with the

already existing analytical results for tensor anisotropies (Mack et al. 2002) .

In the next section, we set up the preliminaries by discussing the models for primordial

magnetic fields and the process of reionization. In §3, §4, and §5, we consider vector, tensor,

and scalar modes. In §6 the detectability of the signal is discussed. In §7, we present and

summarize our conclusions. While presenting numerical results in this chapter, we use the

currently-favoured FRW model: spatially flat with Ωm = 0.3 and ΩΛ = 0.7 (Spergel 2003,

Perlmutter et al. 1999, Riess et al. 2004) withΩbh2 = 0.024 (Spergel 2003, Tytler et al. 2000)

and h = 0.7 (Freedman et al. 2001).

4.2 Primordial magnetic fields, reionization, and CMBR
anisotropies

Assuming that the tangled magnetic fields are generated by some process in the early uni-

verse, e.g. during inflationary epoch, magnetic fields at large scales ( >∼ 0.1 Mpc) are not

affected appreciably by different processes in either the pre-recombination or the post-

recombination universe (Sethi & Subramanian 2005, Jedamzik et al. 1998 , Subramanian

& Barrow 1998). In this regime, the magnetic field decays as 1/a2 from the expansion of
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the universe. This allows us to express: B(x, η) = B̃(x)/a2; here x is the comoving coordi-

nate. We further assume tangled magnetic fields, B̃, present in the early universe, to be an

isotropic, homogeneous, and Gaussian random process. This allows one to write, in Fourier

space (see .e.g. Landau & Lifshitz 1987):

〈B̃i(q)B̃∗j(k)〉 = δ3
D(q − k)

(

δi j − kik j/k
2
)

M(k) (4.1)

Here M(k) is the magnetic field power spectrum and k = |k| is the comoving wavenumber.

We assume a power-law magnetic field power spectrum here: M(k) = Akn. We consider the

range of scales between kmin taken to be zero here and small scale cut-off at k = kmax; kmax is

determined by the effects of damping by radiative viscosity before recombination. Following

Jedamzik et al. (1998), kmax ' 60 Mpc−1(B0/(3 × 10−9 G); B0 is the RMS of magnetic field

fluctuations at the present epoch. A can be calculated by fixing the value of the RMS of the

magnetic field, B0, smoothed at a given scale, kc. Using a sharp k-space filter, we get,

A =
π2(3 + n)

k(3+n)
c

B2
0 (4.2)

We take kc = 1Mpc−1 throughout this chapter. For n ' −3, the spectral indices of interest in

this chapter, the RMS filtered at any scale has weak dependence on the scale of filtering.

Recent WMAP observations showed that the universe might have got ionized at redshifts

z ' 15. However the details of the ionization history of the universe during the reionization

era are still unknown; for instance the universe might have got reionized at z = 15 and

remained fully ionized till the present or the universe might have got partially reionized with

ionized fraction xe
<∼ 0.3 at z ' 30 and became fully ionized for z <∼ 10. Both these ionization

histories are compatible with the WMAP results (Kogut et al. 2003). Given this lack of

knowledge we model the reionization history by assuming the following visibility function,

which gives the normalized probability that the photon last scattered between epoch η and

η + dη, to model the period of reionization:

g(η, η0) ≡ τ̇ exp(−τ) =
(1 − exp(−τreion))
√
π∆ηreion

exp
[

−(η − ηreion)2/∆η2
reion

]

(4.3)

Here τ(η, η0) =
∫ η

η0
neσtdt is the optical depth from Thompson scattering; τreion is the optical

depth to the epoch of reionization; for compatibility with WMAP results, we use τreion = 0.17

throughout. ηreion and ∆ηreion are the epoch of reionization and the width of reionization

phase, respectively; we take ηreion corresponding to zreion = 15 and ∆ηreion = 0.25ηreion. Notice

that the visibility function is normalized to τreion for τreion << 1.

4.3 CMBR anisotropies from vector modes

From a given wave number k of vector perturbations, the contribution to CMBR temperature

and polarization anisotropies to a given angular mode ` can be expressed as (see e.g. Hu &
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White 1997):

Θv
T`(η0, k)

(2` + 1)
=

∫ η0

0
dη exp(−τ)

[

τ̇(vv
b − V) j(11)

`
[k(η0 − η)] + (τ̇Pv(η) +

1
√

3
kV) j(21)

`
[k(ηo − η)]

]

(4.4)

Θv
E`(η0, k)

(2` + 1)
= −

√
6
∫ η0

0
dη exp(−τ)τ̇Pv(η)εv

` [k(η0 − η)] (4.5)

Θv
B`(η0, k)

(2` + 1)
= −

√
6
∫ η0

0
dη exp(−τ)τ̇Pv(η)βv

` [k(η0 − η)] (4.6)

Here vv
b and V are the line-of-sight components of the vortical component of the baryon

velocity and the vector metric perturbation. Pv(η) = 1/10[Θv
T2 −

√
6Θv

E2] and the Bessel

functions, j`, ε` and β` that give radial projection for a given mode are given in Hu & White

(1997). The evolution of vector metric perturbations, Vi(k, η) is determined from Einstein’s

equations (e.g. Hu & White 1997, Mack et al. 2002):

V̇i + 2
ȧ
a

Vi = −
16πGa2S i(k, η)

k
(4.7)

−k2Vi = 16πGa2
∑

j

(ρ j + p j)(v
v
i j − Vi) (4.8)

Here S i, the source of vector perturbations, is determined by primordial tangled magnetic

field in our analysis. The index j corresponds to baryonic, photons and dark matter vortical

component of velocities. For tangled magnetic fields, the vortical velocity component of

the dark matter does not couple to the source of vector perturbations to linear order and

Ωi = vv
i − Vi decays as 1/a for dark matter (see e.g. Mack et al. 2002); and hence the

dark matter contribution can be dropped from the Einstein’s equations. The photons couple

to baryons through Thompson scattering. In the pre-recombination epoch, the photons are

tightly coupled to the baryons as the time scale of Thompson scattering is short as compared

to the expansion rate; besides the photon density is comparable to baryon density at the epoch

of recombination. In the reionized models we consider here, neither the photons are tightly

coupled to baryons nor are they dynamically important. Therefore photon contribution can

also be neglected in Eq. (4.8). Eq. (4.8) then simplifies to:

−k2Vi = 16πGa2ρBΩ
v
B (4.9)

with Ωv
B = (vv

b − Vi). The quantity of interest is the angular power spectrum of the CMBR

anisotropies which is obtained from squaring Eqs. (4.4), (4.5), and (4.6), taking ensemble

average, and integrating over all k:

C`T,E,B =
4
π

∫

dkk2

[

ΘT,E,B`(k, η0)
2` + 1

]2

(4.10)

This expression is valid for both vector and tensor perturbations; for scalar perturbation the

prefactor is 2/π.
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Figure 4.1: The secondary temperature angular power spectrum from vector modes is shown.
The solid and the dashed lines correspond to the contribution from vorticity and the total
signal, respectively (see text for details). The power spectrum is plotted for B0 = 3 × 10−9

and n = −2.9 (Eq. (4.2)).

For primordial magnetic field, the sources S i(k, η) of vector perturbation (Eq. (4.7)) is

the vortical component of the Lorentz force:

S i(k, η) =
1

a44π
k̂xF.T.[B̃(x)x(∇xB̃(x))] ≡ S i(k)

1
a4

(4.11)

It can be checked that this Newtonian expression for S i is the same as the more rigorously

defined ΠV
i in Appendix A (Eq. (4.28)).

4.3.1 Temperature anisotropies from vector modes

As seen from Eq. (4.4), there are three sources of temperature anisotropies. The

most important contribution comes from vorticity Ωv
B. For the reionized models, using

Eqs. (4.7) and (4.8), it can be expressed as:

Ωv
B(k, η) =

kS i(k)η
aρb0

(4.12)

Here ρb0 is the baryon density at the present epoch. The other major contribution is from

temperature quadrupole Θv
T2. For reionized models, the quadrupole at the epoch of reion-
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ization is dominated by the free-streaming of the dipole from the last scattering surface (see

discussion below, Eq. (4.15)). This contribution is generally small but in this case can be

comparable to the vorticity effects at small values of `. This is owing to the fact that the

vorticity is decaying and therefore during reionization epoch its contribution is smaller as

compared to the epoch of recombination. The quadrupole term on the other hand gets its

contribution from the vorticity computed at the epoch of recombination (Eq. (4.15)). This,

as we shall discuss below, is not the case for scalar and tensor anisotropies, as the domi-

nant source of anisotropy is either constant (metric perturbations for tensor perturbations) or

is increasing (compressional velocity mode for scalar perturbation) as the universe evolves.

The third source of temperature anisotropies is metric vector perturbation V; this term can

be comparable to the other terms only at super-horizon scales and hence we neglect this term

in our analysis.

In Figure 4.1 we show the secondary temperature anisotropies generated during the epoch

of reionization from vector modes. It is seen that the quadrupole term has significant con-

tribution only for ` <∼ 20. The dominant contribution at larger ` is from the vorticity during

reionization. The vorticity source contribution can be approximated as:

Θv
T`(η0, k)

(2` + 1)
'

S (k)
4πρb0

η2
0

ηreion
j(11)
`

[k(η0 − ηreion)]τreion (4.13)

for ` ≤ 20 and
Θv

T`(η0, k)

(2` + 1)
' S (k)

k
1

8πρb0

η2
0g(η0 − `/k, η0)

ηreion

√

π

`
(4.14)

for ` >∼ 50. The temperature angular power spectrum from vorticity increases roughly as `2.4

for ` >∼ 50, with the signal reaching a value roughly 0.3 µk at ` ' 104. This is in agreement

with the results of Seshadri & Subramanian (2005).

4.3.2 Polarization anisotropies from vector modes

The main source of the polarization anisotropies is the temperature quadrupole Θv
T2. One

contribution to the temperature quadrupole at the epoch of reionization is from the free-

streaming of the dipole from the last scattering surface. The dipole at the last scattering

surface can be obtained from the tight-coupling solutions to the temperature anisotropies

(Mack et al. 2002). The quadrupole from the free-streaming of the dipole at the epoch of

recombination is:

Θv
T2(k, η) = 5Ωv

B(k, ηrec) j(11)
2 (k(η − ηrec)) (4.15)

Here ηrec corresponds to the epoch of recombination. As is the case for scalar perturbation-

induced polarization in the reionized model (e.g. Zaldarriaga 1997) this quadrupole does

not suffer the suppression as the quadrupole prior to the epoch of recombination when the
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photons and baryons are tightly coupled. The structure of anisotropies generated by the

quadrupole is determined by j(11)
2 (kη) around the epoch of reionization. This typically gives a

peak in anisotropies at ` ' 2η0/ηreion. This source dominates the contribution to polarization

anisotropies for ` <∼ 10. Another contribution to the temperature quadrupole at the epoch of

reionization comes from the secondary temperature anisotropies generated at the epoch of

reionization. The approximate value of this quadrupole can be got from retaining the first

term in Eq. (4.4):

Θv
T2(η, k)

(2` + 1)
=

∫ η

0
dη′ g(η, η′)Ωv

B(η′) j(11)
2 [k(η − η′)] (4.16)

This contribution is generically smaller than the first contribution. Firstly, this depends on

the vorticity evaluated close to the epoch of reionization as opposed to the first contribution

which is proportional to the vorticity at the epoch of recombination. As the vorticity decays

as a−1/2 in the matter-dominated era (Eq. (4.12)), the latter contribution is suppressed by

nearly a factor a 100 in the angular power spectrum. Second, as only a small fraction of

photons re-scatter (nearly 20%), this contribution is further suppressed by a factor of τ2
reion.

However, this contribution is not suppressed at small angular scales and, therefore, might

dominate the polarization anisotropies at large values of `. In Figure 4.2, we show the E and

B polarization angular power spectrum from the sources given by Eqs. (4.15) and (4.16). As

discussed above, the secondary polarization anisotropies are dominated by the quadrupole

generated by free-streaming of dipole at the last scattering surface. As expected for vector

modes (Hu & White 1997), the B-mode signal is larger than the E-mode signal; the signal

strength reaches ' 10−3 µk at ` ' 10 in both cases. This dominates the primary signal for

` <∼ 10 as also seen in the numerical results of Lewis (2004). The contribution from the

quadrupole generated at the epoch of reionization is seen to be completely sub-dominant.

4.4 CMBR anisotropies from tensor modes

The energy-momentum tensor for magnetic fields has a non-vanishing traceless, transverse

component which sources the corresponding tensor metric perturbation. This in turn affects

the propagation of radiation from the last scattering surface to the present and hence gets

manifested as additional anisotropies. In this section we calculate the effect of reioniza-

tion on the resultant anisotropies. For the temperature anisotropies, we study this effect,

by calculating the power spectra separately for the standard recombination (no-reionization)

and reionized scenario whereas for the polarization anisotropies we compute the secondary

anisotropies by using the visibility function given by Eq (4.3).
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Figure 4.2: The secondary polarization angular power spectrum from vector modes is shown.
The solid and the dot-dashed lines correspond, respectively, to the B and E mode contribution
from the free-streaming quadrupole (Eq. (4.15)). The dotted and dashed curves B and E
mode signals that arises from the source term given by Eq. (4.16). The power spectra are
plotted for B0 = 3 × 10−9 and n = −2.9 (Eq. (4.2)).
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4.4.1 Tensor temperature anisotropies

The line-of-sight integral solution for temperature anisotropies, for tensor perturbations is

given by (Hu & White 1997):

ΘT
`T (k, η0)

2` + 1
=

∫ η0

0
dηe−τ[τ̇P(T ) − ḣ] j(22)

`
[k(η0 − η)] (4.17)

Here, PT (η) = 1/10[ΘT
T2 −

√
6ΘT

E2] is the tensor polarization source and ḣ is the gravita-

tional wave contribution whose evolution is detailed in Appendix B. The polarization source

is modulated by the visibility function and hence is localized to the last-scattering surface.

In the tight coupling limit before recombination, PT ' −ḣ/(3τ̇) (Mack et al. 2002). A more

detailed derivation of PT in the tight-coupling regime is given in Appendix B. In the post-

recombination epoch, PT is determined by the free-streaming of quadrupole generated at

the last scattering surface. However, the visibility function is very small at epochs prior to

reionization. Therefore the main contribution of this term comes only from epochs prior to

recombination. The gravitational wave source on the other hand being modulated by the

cumulative visibility exp(−τ) contributes at all epochs. As a result, the PT contributes neg-

ligibly to temperature anisotropies at all multipoles for the case of standard recombination.

In the reionized model, this term gets additional contribution from epochs close to reion-

ization redshift but continues to be sub-dominant to the other term. We have also checked

this numerically. Hence we can neglect the first term in the above solution and using the

matter-dominated solution for ḣ (Appendix B), we arrive at the following expression for the

angular power spectrum:

CT
`T =

4
π

(

9Rγ

ργ

)2 (

8(l + 2)!
3(l − 2)!

) ∫

dkk2Π2
T (k)

(∫ x0

xd

dx exp(−τ)
j2(x)

x
jl(x0 − x)
(x0 − x)2

)2

(4.18)

Here, x ≡ kη, x0 ≡ kη0 and xd ≡ kηrec. The above expression is evaluated numerically for

the two different ionization histories: standard recombination with and without reionization

which are essentially characterized by the different behaviour of the cumulative visibility

exp(−τ). The temperature power spectra are shown in Figure 4.3. As seen in the figure,

the temperature power spectrum in both cases shows similar behaviour. The power is nearly

flat upto ` ' 100 after which the amplitude falls rapidly. This behaviour is identical to

that obtained for primordial gravitational waves. This is expected because, the tensor met-

ric perturbation is sourced by the magnetic field only upto the neutrino-decoupling epoch

thereby imprinting an initial nearly scale-invariant spectrum after which the evolution is

source-free. The effect of reionization is to reduce the cumulative visibility between recom-

bination (z ' 1100) and reionization (z ' 15) epochs. Consequently, the signal is suppressed

for the reionized model.
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Approximate analytic expressions to primary CT
`T were derived in (Mack et al. 2002).

However these give the correct qualitative behaviour CT
`T ∝ `0.2 only for ` <∼ 100. This is

because in their analytic results, the lower limit for the time-integral is taken to be zero in

Eq. (4.18) whereas the correct lower limit is ηrec since the cumulative visibility is zero for

η <∼ ηrec. We have not neglected this lower limit in our numerical calculation and hence we

obtain the damping behaviour for ` >∼ 100 as also observed in the numerical results of Lewis

(2004). Our results are in reasonable agreement with the results of Lewis (2004) in the entire

range of `; these results also agree to within factors with the results of Mack et al. (2002) for

` <∼ 75 when the different convention we use for defining B0 is taken into account. Our results

are quantitatively accurate to better than 10% for the lower multipoles ` <∼ 75 but begin to

differ appreciably from the results of numerical studies for larger ` or in the damping regime

(Ng & Speliotopolous 1995). This is because we have not treated the transition regime from

radiation-dominated to matter-dominated for the gravitational wave evolution accurately. As

described in Appendix B, we have assumed instantaneous transition. This however does not

affect the qualitative description of modes whose wavelength is greater than the transition-

width k <∼ η−1
eq which in turn corresponds to multipoles ` <∼ 300.

4.4.2 Polarization anisotropies from tensor modes

The line-of-sight solution for the E and B-mode polarization is given as:

ΘT
`B(k, η0)

2l + 1
= −
√

6
∫ η0

0
dητ̇ exp(−τ)PTβT

l [k(η0 − η)] (4.19)

ΘT
`E(k, η0)

2l + 1
= −
√

6
∫ η0

0
dητ̇ exp(−τ)PT εT

l [k(η0 − η)] (4.20)

Here, βT
l and εT

l are the tensor polarization radial functions as given in Hu & White (1997).

The tensor polarization source PT (η) in this case will contribute significantly to the above

integral only close to the reionization epoch. There are two contributions to the polarization

at ηreion: one due to the quadrupole generated at the reionization surface and the other due to

the free-streaming primary quadrupole. However, as in the case of vector perturbations, the

free-streaming primary quadrupole will give the dominant contribution. We thus have,

PT (k, η) =
1

10
ΘT

T2(k, η) = −1
2

∫ η

ηrec

dηḣ j(22)
2 [k(η0 − η)] exp(−τ) (4.21)

To simplify the calculations we make the following approximation. Since the visibility func-

tion is strongly peaked at ηreion, we take PT outside the integral by evaluating it at the vis-

ibility peak ηreion. We have verified that this approximation works extremely well for the

lower multipoles where the power is significant. We thus get the following expressions for
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Figure 4.3: The contribution of tensor modes to the temperature power spectrum is shown.
The solid and dashed lines give, respectively, the power spectra without and with reion-
ization. The thick solid line, shown here for comparison, correspond to the temperature
power spectrum from scalar modes, for the best-fit parameters from WMAP (Spergel 2003).
The power spectra are plotted for B0 = 3 × 10−9, n = −2.9 (Eq.(4.2)), and η?/ηin = 1018

(Eq. (4.43)).
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the polarization angular power spectra:

CT
`B =

6
π

∫

dkk2Π2
T (k)

[

PT (ηreion)
]2

(∫ η0

ηrec

dητ̇e−τβT
l [k(η0 − η)]

)2

(4.22)

CT
`E =

6
π

∫

dkk2Π2
T (k)

[

PT (ηreion)
]2

(∫ η0

ηrec

dητ̇e−τεT
l [k(η0 − η)]

)2

(4.23)

As seen in the above expressions, the polarization power spectrum is modulated by the vis-

ibility function itself instead of the cumulative visibility in the case of temperature power

spectrum. As a result, both E as well as B mode anisotropies peak close to the multipole

corresponding to the horizon scale at reionization. Physically this can be understood as fol-

lows: the modes which are super-horizon at reionization experience negligible integrated

Sachs-Wolfe effect before ηreion and hence very small polarization is generated for such

modes. Maximum polarization is generated for modes that just enter the horizon at ηreion.

For sub-horizon modes, the amplitude of the gravitational wave falls and then sets itself into

oscillations which is reflected as a drop in power for higher multipoles.

The polarization power spectra are shown in Figure 4.4. As seen in the figure, the E-

mode power peaks at ` ∼ 8 whereas the B-mode power peaks at ` ∼ 7. The corresponding

signal strengths at the peaks are ∼ 0.2µK in both cases. As expected, the E-mode power

is marginally greater than the B-mode power mainly because of the slightly different be-

haviour of the radial projection factors (Hu & White 1997). The primary anisotropies for

both the polarization modes is sub-dominant on these scales. This enhancement in the net

(primary+secondary) signal was also seen in the numerical calculations of Lewis (2004).

We also show the primary CMBR polarization anisotropies from tensor modes in Fig-

ure 4.4. For computing these anisotropies we use the tight-coupling quadrupole, PT (η) as

derived in Appendix B (Eq. (4.45)). The primary power spectra are also computed from

Eqs. (4.22) and (4.23) with lower limit of the time integral replaced by zero. Our results are

in agreement with the numerical results of Lewis (2004) when we take into account the fact

that we use different value of η?/ηin (Eq. (4.43)): we use η?/ηin = 1018, which gives the

epoch of generation of the tangled magnetic field close to inflationary epoch. While present-

ing numerical results, Lewis (2004) use η?/ηin = 106, which puts the epoch of generation of

magnetic field close to the epoch of electro-weak phase transition. Therefore our signal is

roughly an order of magnitude larger than the results of Lewis (2004).

In Figure 4.5 we show the expected TE cross-correlation from tensor modes, computed

using Eqs. (4.17), (4.20), and (4.21), including the effect of reionization. The effect of reion-

ization is seen as the peak in the TE cross-correlation for ` <∼ 10. The signal is dominated

by the primary signal for large multipoles. Note that the TE cross-correlation is positive in

the entire range ` <∼ 150 as was also pointed out by Mack et al. (2002) for the primary tensor
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TE cross-correlation (for details of sign of TE cross-correlation for various modes see (Hu

& White 1997)). In the next section we compare this signal with the WMAP observation of

TE cross-correlation.

4.5 Secondary CMBR anisotropies from scalar modes

In addition to the vortical component of the velocity field, the tangled magnetic fields also

generate compressional velocity fields which seed density perturbations. These density

perturbations have interesting consequences for the formation of structures in the universe

(Wasserman 1978, Kim, Olinto & Rosner 1996, Subramanian & Barrow 1998, Sethi 2003,

Gopal & Sethi 2003, Sethi & Subramanian 2005). The compressional velocity field also give

rise to secondary anisotropies during the epoch of reionization. We compute this anisotropy

here. The line-of-sight solution to the temperature anisotropies from these velocity perturba-

tions is:
ΘS
`
(k, η0)

2` + 1
=

∫ η0

0
dηe−ττ̇vs

b(k, η) j(10)
`

[k(η0 − η)] (4.24)

Here vs
b is the line-of-sight component of the compressional velocity field. j(10) is defined

in Hu & White (1997). The growing mode of compressional velocity can be expressed as

(Wasserman 1978, Gopal & Sethi 2003):

vs
b(k, η) =

η

4πρm0
k̂.

(

F.T.[B̃(x)x(∇xB̃(x))]
)

≡ v0
b(k)η (4.25)

Here ρm0 is the matter density (baryons and the cold dark matter) at the present epoch. The

compressional velocity field, unlike the vortical mode, has a growing mode. Also unlike the

vortical mode (Eq. (4.12)), the compressional mode of baryonic velocity couples to the dark

matter (Gopal & Sethi 2003, Sethi & Subramanian 2005). In Figure 4.6 we show the angular

power spectrum of the secondary temperature anisotropies generated by the compressional

velocity mode. The signal has a peak at roughly the angular scale that corresponds to the

width of the visibility function during reionization (for detailed discussion see e.g. Dodelson

& Jubas 1994). The amplitude of this secondary anisotropy is several orders of magnitude

smaller than the observed temperature anisotropies and it is unlikely that this signal could be

detected.

4.6 Detectability

It follows from Figure 4.1 to 4.5, that the most important signal at small multipoles arises

from tensor polarization anisotropies. In particular, the yet-undetected B-mode signal holds

the promise of unravelling the presence of primordial magnetic fields, as also noted by other
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Figure 4.4: The tensor secondary and primary polarization power spectra are shown along
with the expected signals from primordial scalar and tensor modes. The dot-dot-dot dashed
and thin dotted lines correspond to the secondary E and B mode power spectra, respectively.
The dot-dashed and dashed lines give the primary E and B mode power spectra. The two
top solid lines, shown here for comparison, correspond to the E and B mode power spectra
from primordial scalar modes, for the best-fit parameters from WMAP (Spergel 2003). For
B mode signal we assume the ratio of tensor to scalar quadrupole T/S = 0.7 and the tensor
spectral index nt = 0. The bottom solid lines shows the B-mode signal expected from gravi-
tational lensing. The thick dashed line shows the 1-σ errors expected from the future CMBR
experiment Planck surveyor for one year of integration (Eq. (4.26)). The power spectra are
plotted for B0 = 3 × 10−9, n = −2.9 (Eq.(4.2)), and η?/ηin = 1018 ( Eq. (4.43)).
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Figure 4.5: The tensor TE cross-correlation power spectra are shown along with the ex-
pected signal from primordial scalar modes. The dot-dashed shows the TE cross-correlation
(secondary plus primary) from tangled magnetic fields. The thick solid line, shown here for
comparison, correspond to the (absolute value of) TE cross-correlation power spectrum from
primordial scalar modes, for the best-fit parameters from WMAP (Spergel 2003). The power
spectrum is plotted for B0 = 3 × 10−9, n = −2.9 (Eq.(4.2)), and η?/ηin = 1018 (Eq. (4.43)).
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Figure 4.6: The secondary temperature power spectrum from scalar mode perturbations,
seeded by tangled magnetic fields, is shown. The power spectrum is plotted for B0 = 3×10−9

and n = −2.9 (Eq.(4.2)).
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authors (e.g. (Lewis 2004)) In Figure 4.4, we show the expected errors on the detection of

polarization signal from the future CMBR mission, Planck surveyor. The expected 1σ error,

valid for ` <∼ 100, is (e.g. Zaldarriaga et al. (1997), Prunet, Sethi & Bouchet (2000)):

∆C` =

(

2
(2` + 1) fsky

)

(

C` + w−1
)

(4.26)

For Planck surveyor, fsky ' 1 and w ' 1.7 × 1016 for one-year integration. In Figure 4.4,

we use the primordial tensor B-mode signal for calculating the expected 1σ error from

Eq. (4.26). Figure 4.4 shows that the signal from magnetic fields with strength >∼ 3× 10−9 G

is detectable by this future mission. However, it is likely that, except for the B mode signal,

the magnetic field signal will be buried in a larger signal. However, owing to the non-

Gaussianity of the magnetic field signal it might still be possible to extract this component

of the signal (e.g. (Lewis 2004)).

In Figure 4.5 we show the TE cross-correlation signal from tensor modes along with the

expected signal from primordial scalar modes with τreion = 0.17, which is in good agreement

with the WMAP data of TE cross-correlation (Kogut et al. 2003). It could be asked if the TE

cross-correlation observed by WMAP for ` <∼ 100 could be explained as the tensor signal.

From Figure 4.5 it is seen that the tensor signal at small multipoles is roughly a factor of 5

smaller than the scalar signal. And, therefore, as the power spectrum from tangled magnetic

fields ∝ B4
0, much of the enhancement observed in the TE cross-correlation for ` <∼ 10 could

be explainable in terms of the tensor signal from primordial magnetic field for B0 ' 4.5 ×
10−9 G. We quantify this notion by computing the χ2 for ` ≤ 15 for both the best fit model

from WMAP and the tensor model with B0 ' 4.5 × 10−9 G against the detected WMAP

signal 1 (Kogut et al. 2003); the χ2 per degree of freedom in the two cases is ' 1.7 and ' 1.8,

respectively. Therefore the enhancement can entirely be interpreted in terms of the secondary

signal from primordial magnetic fields.

A more realistic possibility is that both primordial scalar and tensor modes gave compa-

rable contribution to the observed signal. As the strength of both these signals for ` <∼ 15 is

roughly ∝ τ2
reion (for details of secondary scalar signal see e.g. Zaldarriaga 1997), and assum-

ing that there is roughly equal contribution from both, the inferred value of τreion from the

analysis of the signal could be smaller by a factor of
√

2. To quantify this statement, we did

a χ2 test to estimate τreion by adding the tensor signal with B0 ' 4.5× 10−9 G and the primor-

dial scalar signal with the best-fit cosmological parameters from WMAP. From this analysis

we obtain τreion ' 0.11 ± 0.02 (1σ) with σ determined by δχ2 = 1. A possible test of this

hypothesis is non-gaussianity of the signal at small multipoles, as the magnetic-field-sourced

tensor signal is not Gaussian.

1for details of WMAP data products http://map.gsfc.nasa.gov
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The tensor signal (primary plus secondary) could be appreciable for ` <∼ 100. In the range

15 <∼ ` <∼ 100, the tensor and primordial scalar signals are nearly independent of the value of

τreion. While the primordial scalar TE signal anti-correlates for ` >∼ 40, the tensor signal

shows positive cross-correlation in the range ` <∼ 100, as seen in Figure 4.5. The present

WMAP data shows tentative detection of TE anti-correlation for ` <∼ 100 (Peiris et al. 2003).

From χ2 analysis in the range 15 <∼ ` <∼ 100, we notice that the tensor signal alone is a poor fit

to the data (χ2 per degree of freedom of ' 2.1 as opposed to a value of 1.6 for the primordial

scalar model). However a sum of these two signals with B0 ' 4.5 × 10−9 G is a reasonable

fit, as it is dominated by the primordial scalar signal.

It should be noted that for B0 ' 4.5×10−9 G, the tensor temperature signal is comparable

to the primordial scalar signal (Figure 4.3). WMAP analysis obtained an upper limit of

' 0.7 on the ratio of tensor to scalar signal (Spergel 2003). While this limit is rather weak,

a more detailed analysis of the temperature signal including the effect of tensor mode signal

sourced by primordial magnetic fields might give independent constraints on the strength of

primordial magnetic fields.

In our χ2 analysis we use only the diagonal components of the Fisher matrix. However,

owing to incomplete sky, the signal is correlated, especially for small multipoles, across

neighboring multipoles. However, a more comprehensive analysis taking into this correlation

is likely to yield similar conclusions for the reasons stated above.

Our conclusions are not too sensitive to the value of small scale cut-off kmax or the scale

of the filter kc used to define the normalization (Eq. (4.2)) for magnetic field power spectrum

index n = −2.9 we use throughout the chapter. For kmax = kc = 0.05 Mpc−1, the foregoing

discussion related to tensor mode anisotropies would be valid for B0 ' 5×10−9 G. Therefore,

the results for TE cross-correlation from tensor perturbations can be interpreted to put bounds

on magnetic fields for only large scales k <∼ 0.05 Mpc−1.

The strongest bound on primordial magnetic fields arises from tensor perturbations in the

pre-recombination era (Caprini & Durrer 2001). These bounds are weakest for nearly scale

invariant (n ' −3) magnetic fields power spectrum (Eq. (33) of Caprini & Durrer 2001) and

largely motivated the choice of the power spectral index we consider here. For n = −2.9, the

bound obtained by Caprini & Durrer (2001) is considerably weaker than B0 ' 4.5 × 10−9 G,

the values of interest to us in this chapter. Vector modes might leave observable signature

in the temperature and polarization signal for ` >∼ 2000; the current observations give weak

bound of B0
<∼ 8 × 10−9 G (Lewis 2004). Tangled magnetic-field-sourced primary scalar

temperature signal gives even weaker bounds Koh & Lee (2000). More recently, (Chen

et al. 2004) obtained, from WMAP data analysis, a limit of <∼ 10−8 G on the primordial

magnetic field strength for nearly scale invariant spectra we consider here; (Chen et al. 2004)

consider vector mode temperature signal in their analysis and study possible non-Gaussianity
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in the WMAP data. Another strong constraint on large scale tangled magnetic fields comes

from Faraday rotation of high redshift radio sources (see e.g Widrow 2002); this constraint is

also weaker than the value of magnetic field required to explain the enhancement of the TE

cross-correlation signal as seen by WMAP (Sethi 2003). Therefore, the value of B0 required

to give appreciable contribution to the TE signal is well within the upper limits on B0 from

other considerations.

It should be noted that the entire foregoing discussion on the tangled-magnetic-field ten-

sor signal can be mapped to primordial tensor modes. The reason for this assertion is that

magnetic fields source tensor modes only prior to the epoch of neutrino decoupling, and the

subsequent evolution is source free, which is similar to the primordial tensor modes which

are generated only during the inflationary epoch and evolve without sources at subsequent

times. Therefore, an analysis similar to ours could be used to put constraints on the relative

strength of the tensor to scalar mode contribution (for a fixed scale) and the tensor spectral

index of the primordial modes. The main observational difference between such an interpre-

tation and the one give here is that tensor signal sourced by magnetic fields will not obey

Gaussian statistics as opposed to the primordial tensor modes.

4.7 Summary and conclusions

We have computed the secondary anisotropies from the reionization of the universe in the

presence of tangled primordial magnetic fields. Throughout our analysis we use the nearly

scale invariant magnetic field power spectrum with n = −2.9. For vector modes, we com-

pute the secondary temperature and E and B mode polarization auto-correlation signal. For

scalar modes, the results for secondary temperature angular power spectrum from compres-

sional velocity modes are presented. For tensor modes, in addition to the secondary tem-

perature and polarization angular power spectra, we compute the TE cross-correlation signal

and compare it with the existing WMAP data; we also recompute the primary signal for

tensor modes. Whenever possible we compare our results with the results existing in the

literature. In particular, (Lewis 2004) recently computed fully-numerically the vector and

tensor primary and secondary temperature and polarization power spectra. We compare our

semi-analytic results with this analysis and find good agreement. Seshadri & Subramanian

(2005) computed the secondary temperature anisotropies from vector modes. Our results are

in good agreement with their conclusion. Mack et al. (2002) computed primary signal from

vector and tensor modes using the formalism we adopt in this chapter. Our results are in

disagreement with their results for ` >∼ 75, and we have given reasons for our disagreement

in the discussion above. In addition to comparison with existing literature, we also give new

results for secondary TE cross-correlation from tensor modes and secondary temperature
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angular power spectrum from scalar modes.

We discuss below the details of expected signal from each of the perturbation mode:

Vector modes: The secondary temperature and polarization signals from the vector modes is

shown are Figure 4.1 and 4.2. The secondary temperature signal increases ∝ `2.4 for ` >∼ 50

and reaches a value ' 0.1 (µk)2 for ` ' 104, in agreement with the analysis of Seshadri &

Subramanian (2005). For small ` the signal is very small ( <∼ 10−4 (µk)2) and for large ` the

secondary signal is smaller than the primary signal (e.g. (Lewis 2004)) and therefore it is

unlikely that the signature of reionization could be detected in the vector-mode temperature

anisotropies. The polarization signal, shown in Figure 4.2, is sourced by the free-streaming

of dipole at the epoch of recombination. This signal dominates the primary signal for ` <∼ 10,

but is several orders of magnitude smaller than the expected signal from tensor modes.

Scalar modes: We only compute the secondary temperature anisotropies from compres-

sional velocity modes in this case. As seen in Figure 4.6, this contribution is several orders

of magnitude smaller than the already-detected primary signal and therefore its effects are

unlikely to be detectable.

Tensor modes: As seen from Figures 4.4 and 4.5, the most interesting CMBR anisotropy

signal for ` <∼ 100 is from these modes. The secondary B-mode signal from tensor modes

is detectable by future CMBR mission Planck surveyor for B0 ' 3 × 10−9 G . The tensor

TE cross correlation from primordial magnetic fields can explain the observed enhancement

of the observed signal for ` <∼ 10 by WMAP for B0 ' 4.5 × 10−9 G if the primordial mag-

netic fields are generated during the epoch of inflation. Assuming that tensor modes make a

significant contribution to the observed enhancement, the bounds on the optical depth to the

surface of reionization, τreion are weaker by roughly a factor of
√

2. This hypothesis can be

borne/ruled out by testing the Gaussianity of the signal for ` <∼ 10

Appendix A

In this section, we briefly discuss the terminology and present the complete expressions

for the vector and tensor power spectra ΠV(k) and ΠT (k) (Mack et al. 2002). The energy

momentum tensor for magnetic fields for a single Fourier mode is a convolution of different

Fourier modes and is given by:

Ti j(k) =
∫

d3q

[

B̃i(q)B̃ j(k − q) − 1
2
δi jB̃m(q)B̃m(k − q)

]

(4.27)

The energy-momentum tensor has non-vanishing scalar, vector, and tensor components. The

vector and tensor components, in Fourier space, are defined as:

ΠV
i = Pipk̂qTpq (4.28)



Chapter 4. Magnetised CMBR anistropies in a reionised scenario 88

ΠT
i j =

(

PipP jq −
1
2

Pi jPpq

)

Tpq (4.29)

Here Pi j = δi j−k̂ik̂ j. The vector and tensor anisotropic stress are then defined as the two-point

correlations of the above components as:

〈ΠV
i (k)ΠV

i (k
′
)〉 ≡ 2|Π(V)(k)|2δ(k + k

′
) (4.30)

〈ΠT
i j(k)ΠT

i j(k
′
)〉 ≡ 4|Π(T )(k)|2δ(k + k

′
) (4.31)

By evaluating the above correlations as also given in Mack et al. (2002), we can arrive at the

following approximate expression for the power spectra for n < −3/2.

|ΠV(k)|2 =
A2

64π4(n + 3)
k2n+3 (4.32)

|ΠT (k)|2 =
2A2

64π4(n + 3)
k2n+3 (4.33)

Here, A is the normalization of the magnetic power spectrum given in Eq. (4.2)

Appendix B

Gravitational waves correspond to transverse,traceless perturbations to the metric: δgi j =

2a2(η)hi j with hii = k̂ihi j = 0. Since hi j is a stochastic variable we can define its power

spectrum as:

〈hi j(k, η)hi j(k
′
, η)〉 = 4|h(k, η)|2δ(k + k

′
) (4.34)

The evolution of hi j then follows from the tensor Einstein equation (see e.g. Hu & White

1997) ,

ḧ + 2
ȧ
a

ḣ + k2h = 8πGS (k, η) (4.35)

The source on the RHS is the tensor anisotropic stress of the plasma which is defined as:

S (k, η) = ΠT (k)/a2 (Eq. (4.31)). We assume that the primordial magnetic fields are generated

by some mechanism at a very early epoch ηin. It was recently shown by Lewis (2004) that

after the neutrino decoupling epoch η? the neutrino start free-streaming and develop signifi-

cant anisotropic stress which cancel the anisotropic stress of the primordial magnetic fields to

the leading order for super-horizon modes, resulting in negligible net anisotropic stress in the

plasma. We can thus assume that for η � η?, S (k, η) = 0 and for η � η?, S (k, η) = ΠT (k)/a2

where ΠT (k) is the magnetic tensor anisotropic stress as defined in Eq. (4.31). We now derive

the solutions to Eq. (4.35) in various regimes. The evolution of the scale factor a(η) is given

by the Friedmann equation:

ȧ2 = H2
0 (Ωma + Ωγ + Ων + ΩΛa4) (4.36)
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Here,Ωm,γ,ν,Λ are the fractional densities in matter, radiation,neutrinos and cosmological con-

stant respectively. Approximate solutions in the radiation-dominated and matter-dominated

epoch are a(η) = 2
√

Ωγ+Ων

Ωm

η

η0
and a(η) =

(

η

η0

)2
respectively. Using the above form for the

scale-factor we can rewrite Eq. (4.35) for ηin < η < η? as:

ḧ +
2
η

ḣ + k2h =
3RγΠ

T (k)

ργ

1
η2

(4.37)

Here, Rγ = Ωγ/(Ωγ + Ων) ' 0.6. ργ is the CMBR energy density. Eq. (4.37) can be solved

exactly using the Green’s function technique to give (Mack et al. 2002):

h(k, η) =
3RγΠ

T (k)

ργ

∫ η

ηin

dη
′ sin[k(η − η′)]

η
′ (4.38)

For super-horizon modes kη � 1, the above form can be simplified to give:

h(k, η) ≈
3RγΠ

T (k)

ργ

∫ η

ηin

dη
′ k(η − η′)

kηη′
=

3RγΠ
T (k)

ργ
ln

(

η

ηin

)

(4.39)

For η � η?, the evolution of h is given by the homogeneous solutions in the radiation and

matter-dominated regimes:

hrad(k, η) = A1 j0(kη) (4.40)

hmat(k, η) = A2
j1(kη)

kη
(4.41)

The coefficients A1 and A2 are determined by matching the super-horizon solutions at the

two transitions η? and ηeq. We thus get

A2 = 3A1 =
9RγΠ

T (k)

ργ
ln

(

η?

ηin

)

(4.42)

Thus, the full expression for the matter-dominated solution can be written as:

ḣmat(η, k) =
9RγΠ

T (k)

ργ
ln

(

η?

ηin

)

j2(kη)
η

(4.43)

This solution is used for solving tensor temperature and polarization primary and secondary

anisotropies. Few assumptions have been made in deriving the above expression. Firstly, the

transition between radiation dominated to matter-dominated region has been assumed to be

instantaneous. This however does not affect the evolution of modes with wave-length greater

than the width of transition kηeq
<∼ 1. Moreover, only super-horizon solutions have been used

to match the solutions for h at different transitions. These simplifications however do not

affect the results quotes for small multipoles as discussed in the main section.
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Tight-coupling tensor quadrupole

In the tight-coupling regime, z >∼ 1100, to lowest order in mean-free path, we have PT =

−ḣ/(3τ̇) (Mack et al. 2002). We however use the expression accurate to the second order

in mean-free path as is done for the scalar modes in Zaldarriaga & Hariri (1995). Using

the Boltzmann equation for the evolution of tensor modes we get the following equation for

PT (k, η) in the tight-coupling limit:

Ṗ +
3
10
τ̇P = −

ḣ
10

(4.44)

The lowest order solution to this equation is obtained by neglecting the Ṗ in the equation,

which gives, P = −ḣ/(3τ̇). The above equation however can be solved exactly to give:

P(η) =
∫ η

0
dη′ḣe−

3
10 [τ(η

′
)−τ(η)] (4.45)

We use the standard recombination history for computing τ.
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Jedamzik K., Katalinić V. & Olinto A.V., Phys. Rev. D., 1998, 57, 3264

Kim, E.-J., Olinto A.V., Rosner R., 1996, ApJ 468, 28

Kogut A. et al. , ApJS, 2003, 148, 161

Koh S. & Lee C.H., Phys. Rev. D., 2000, 62, 083509

Kovac J.M., Leitch E.M., Pryke C., Carlstrom J.E., Halverson N.W. & Holzapfel W.L., Na-

ture, 2002, 420, 772

Landau L.D. & Lifshitz E.M., Fluid Mechanics, 1987, Pergamon Press

Lewis A., Phys. Rev. D., 2004, 70, 43011

Mack A., Kahniashvili T. & Kosowsky A., 2002, Phys. Rev. D., 65, 123004

Ng K.W. & Speliotopolous A.D., Phys. Rev. D., 1995, 52, 2112

91



Peiris H.V. et al. , ApJS, 2003, 148, 213 (2003)

Perlmutter S. et al. , ApJ, 1999, 517, 565

Prunet S., Sethi S.K. & Bouchet F., MNRAS, 2000, 314, 348

Ratra B., 1992, ApJ Lett., 391, L1

Riess A.G. et al. , ApJ, 2004, 607, 665

Ruzmaikin A.A., Shukurov A.M., SokoloffD.D., Magnetic Fields of Galaxies, Kluwer, Dor-

drecht (1988) Kluwer Acad. Publ., Dordrecht. (2004)

Seshadri T.R. & Subramanian K., Phys. Rev. D., 2005, 72, 023004

Seshadri T.R. & Subramanian K., 2001, Phys. Rev. Lett., 87, 101301

Sethi S.K. & Subramanian K., MNRAS, 2005, 356, 778

Sethi S.K., 2003, MNRAS, 342, 962

Shukurov A., 2004, Introduction to galactic dynamos, In Mathematical aspects of natural

dynamos, Ed. E. Dormy, Kluwer Acad. Publ., Dordrecht.

Spergel D.N., ApJS, 2003, 148, 175

Subramanian K. & Barrow J.D., 2002, MNRAS, 335, L57

Subramanian K. & Barrow J.D., 1998, Phys. Rev. D., 58, 83502

Subramanian K. & Barrow J. D., 1998, Phys. Rev. Lett., 81, 3575

Tegmark M. et al. , Phys. Rev. D., 2004, 69, 103501

Tytler D., O’Meara J.M., Suzuki N. & Lubin D., Physics Reports, 2000, 333, 409

Wasserman I., 1978, ApJ, 224, 337

Widrow L.M., Rev. Mod. Phys., 74, 775

Zaldarriaga M., Phys. Rev. D., 1997, 55, 1822

Zaldarriaga M., Spergel D.N. & Seljak U., ApJ, 1997, 488, 1

Zaldarriaga M. & Hariri D.D., Phys. Rev. D., 1995, 52, 3276




