
Chapter 2

REVIEW OF RICCI FLOW

2.1 THE RICCI FLOW

One of the fundamental problems in differential geometry is to find metrics of constant cur-

vature on Riemannian manifolds. The existence of such a metric is important to topologists

due to Thurston’s programme of geometrizing 3-manifolds. In 1982 Richard Hamilton intro-

duced the Ricci flow (RF) for producing metrics of constant sectional curvature. Intuitively,

the idea is to set up a partial differential equation that evolves a metric according to its Ricci

curvature tensor.

The Ricci flow has much in common with the heat equation. Indeed in a suitable co-

ordinate system (Riemann normal co-ordinates) the Ricci flow becomes the heat equation

for the metric functions hi j. The heat equation tends to uniformize a given temperature

distribution. Analogously the Ricci flow evolves an initial metric into a homogeneous one.

The mathematical motivation for studying Ricci flows is that it leads to homogeneous metrics

on manifolds.

Consider a compact 3-manifold Σ and a smooth 1-parameter family of Riemannian met-

rics hi j(τ), τ ∈ [0, Γ), Γ ≤ ∞ on Σ. We use the variable τ to describe the family to emphasize

that τ is not the physical time variable t. The family hi j(τ) is said to be a Ricci flow if it

satisfies the equation:
∂hi j

∂τ
= −2Ri j +Lξhi j + λhi j. (2.1)

The first term is the Ricci tensor of hi j, the second term is a diffeomorphism by the vector
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field ξ on Σ and the last term is an overall scaling of the metric. A few special cases are

described below.

• The unnormalized Ricci flow: This was first introduced by Hamilton in 1982 where

only the first term in the RHS of the equation (2.1) is present, i.e.,

∂hi j

∂τ
= −2Ri j. (2.2)

Since this version of Ricci flow does not preserve the volume in general it is called the

unnormalized Ricci flow.

• The normalized Ricci flow: This flow is defined as

∂hi j

∂τ
= −2Ri j +

2
n

rhi j (2.3)

where r =
∫

RdV/
∫

dV is the average scalar curvature and n is the dimension of

the Riemannian manifold. Under this flow the volume is preserved and this flow is

obtained from (2.1) by keeping only the first and the last term in the RHS and choosing

λ so as to preserve volume. In our work, we do not add a term like the last one,

responsible for an overall scaling of the metric. We are interested in asymptotically flat

3-manifolds (not compact ones) and such a term will violate our asymptotic conditions.

• Perelman’s Ricci flow: Perelman wrote the Ricci flow in a new way by supposing

that the diffeomorphism generator ξi is a gradient

ξi = Di f (2.4)

for some function f on Σ. Following Perelman we write the coupled equations:

∂hi j

∂τ
= −2(Ri j + DiD j f ) (2.5)

∂ f
∂τ
= −R − D2 f (2.6)

to generate a flow (hi j(τ), f (τ)) for a pair (h, f ) consisting of a metric and a scalar

function.
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• Examples and special solutions: A simple example of Ricci flow is one starting from

a round sphere. This will evolve by shrinking homothetically to a point in finite time.

More generally if we take a metric hi j(0) such that

Ri j(h(0)) = λhi j(0) (2.7)

for some constant λ ∈ R (these metrics are known as Einstein metrics) then a solution

hi j(τ) of the Ricci flow equation

∂hi j

∂τ
= −2Ri j (2.8)

with hi j(τ = 0) = hi j(0) is given by

hi j(τ) = (1 − 2λτ)hi j(0). (2.9)

It is worth pointing out here that the Ricci tensor is invariant under uniform scaling

of the metric. In particular, for the round ‘unit’ sphere (S n, h(0)), we have Ri j(h(0)) =

(n − 1)hi j(0), so the evolution is h(t) = (1 − 2(n − 1)τh(0)) and the sphere collapses to

a point at ‘time’ τ = 1/2(n − 1).

2.2 RICCI SOLITONS

A soliton for the normalized Ricci flow (2.3) is a metric that changes only by pull back by a

one-parameter family of diffeomorphisms as it evolves under (2.3). This is equivalent to the

initial metric satisfying

LXhi j = −2Ri j(h) + (2r/n)hi j (2.10)

for some vector field X (LX denotes the Lie derivative with respect to the vector field X

which generates the diffeomorphism).

• Gradient soliton: A Ricci soliton whose vector field can be written as the gradient

of some function f : Σ → R is known as a ‘gradient Ricci soliton’. An example is
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the fixed point of the Perelman’s Ricci flow (2.5,2.6) where the soliton equation is

obtained by setting the RHS of these equations to be zero that is

−2(Ri j + DiD j f ) = 0 (2.11)

and

−R − D2 f = 0 (2.12)

examples of gradient solitons are Hamilton’s cigar soliton and Bryant’s soliton.

• Solitons and Breathers: In general, a “Breather” is a solution to a evolution equation

that is periodic over time which, in our case of the normalized Ricci flow (2.3), means

a solution to the flow that is periodic, up to diffeomorphism; that is

hT = φ
∗h0 (2.13)

for some fixed period τ = T and diffeomorphism φ.

2.3 THE EVOLUTION OF SCALAR CURVATURE UN-
DER RICCI FLOW

The derivation of the general evolution equation for the scalar curvature under a geometric

flow is given in the appendix- A and is as follows

Ṙ =
d
dτ

(hbdRbd) = −RbdHbd + δ2H − D2(trH) (2.14)

where

Hbd := ḣbd (2.15)

and

Hbd = hkbhldHkl (2.16)

also

δ2H := DaDbHab = hachbd(DcDdHab) (2.17)
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and

trH := habHab (2.18)

and the Laplacian operator

D2 := habDaDb. (2.19)

Substituting Hab = −2Rab in (2.14) gives us the evolution of R under the Ricci flow.

• Ricci flow preserves positivity of scalar curvature: If the scalar curvature R > 0

at τ = 0, then it remains so under the evolution. This result shows that the evolution

equation “prefers” positive curvature. The proof goes as follows

Proof: The evolution of the scalar curvature under the unnormalized Ricci flow (2.2)

is given by

Ṙ =
∂R
∂τ
= D2R + 2|Rbd |2 (2.20)

where |Rbd |2 := RbdRbd > 0 always and when R attains its minimum value at some

“time” τ, we have D2R ≥ 0 and hence Ṙ ≥ 0 which proves that the minimum of R is

non-decreasing along the flow. So if R ≥ 0 to start with then it will remain positive

throughout the evolution.

Also for the Perelman Ricci flow the evolution of the scalar curvature is given by

∂R
∂τ
= D2R + 2RabRab + LXR, (2.21)

where X is the vector field generating the diffeomorphism as mentioned earlier. We

argue by contradiction. Suppose that the RF evolves a positive scalar curvature metric

to a negative scalar curvature one. R has to cross zero at some τ. Let τ1 be the first τ

for which R vanishes. This point p ∈ Σ where this happens is a minimum of R since R

is positive elsewhere on Σ (where Σ is the manifold considered). Since D2R ≥ 0 and

LXR = 0 at the minimum, it follows from (2.21) that ∂R
∂τ
≥ 0. Thus R increases with τ

and remains positive. This contradiction proves that the positivity of R is preserved by

the RF.
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Figure 2.1: A (topological) 2-sphere.

2.4 RICCI FLOW IN TWO DIMENSIONS

In two dimensions, we know that the Ricci curvature in 2D can be written in terms of the

Gaussian curvature KG as Ri j(h) = KGhi j where hi j denotes the metric in 2D. Working directly

from the equation (2.8), we then see that regions, in which KG < 0, tend to expand, and

regions, where KG > 0, tend to shrink. From the inspection of fig.(2.1), one might guess that

the Ricci flow tends to make a 2-sphere “rounder”. This is indeed the case, and it is shown

that the Ricci flow on any closed surface tends to make the Gaussian curvature constant, after

renormalization of the flow. This gives a qualitative feel for the Ricci flow and its tendency

to uniformize.

2.5 RICCI FLOW AND RENORMALIZATION GROUP
FLOW

The gradient formulation of the Ricci flow (RF) by Perelman was motivated by the connec-

tion between the RF and renormalization group (RG) flow. In his paper on “The entropy

formula for the Ricci flow and its geometric application” (section 5.1) [3], Perelman showed

that, after fixing a closed manifold M with an appropriate probability measure m and a metric

hi j(τ) which depends on the ‘temperature’ τ, his entropy functional FP is in a sense analo-
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gous to minus the actual thermodynamic entropy of the system considered.

The Ricci flow first appeared in physics in the context of statistical physics and the use

of the RG flow. To start with, we consider viewing the world through a microscope called

the Ricci microscope as described below.

• The Ricci microscope: We imagine a microscope that allows us to look at objects

with a variable magnification M, which can range from 1 to a very large (theoretically

infinite) number. Suppose that we are able to view a 2 manifold under such a micro-

scope. At a higher magnification M = e−τ we will be able to see the bumps and wiggles

on the manifold. These features will disappear as we lower the magnification.

Let us define the Ricci microscope by the property that as we change the magnification

from M = eτ to M = eτ+dτ the metric on the 2 manifold changes according to the RF

∂hi j

∂τ
= −2Ri j + Lξhi j. (2.22)

If one looks at the manifold with a high M (small τ), each frame of the picture will

cover a small part of the manifold and since the frame has a fixed resolution (number

of pixels), storing the data would take a large number of files whereas a lower value of

M (i.e., a higher τ) would lower the number of frames and hence the number of files

resulting in a decrease in the total information about the manifold. From a physical

point of view, the decrease in the information content can be viewed as the increase

of “entropy”. In fact the notion of entropy in useful in understanding the RF. The RF

is interesting precisely because it decreases the amount of information that we have

to look at. We are not interested in the information contained in the initial geometry

of the manifold. We use the RF to decrease the amount of information and bring it

down to a manageable size. In the programme developed by Thurston and Hamilton,

one is interested in the topology of the manifold and this is considerably less infor-

mation than the geometry of the initial manifold. With this motivation we would like

to construct the Ricci microscope. The way to do this can be borrowed from physics
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where the Ricci microscope is realized as the RG. RG is a technique which is used in

statistical mechanics and quantum field theory for understanding physics at different

scales. The first point to note about RG is that it is not a group in the mathematical

sense. It is a flow or a vector field. This vector field “lives” on the space of parameters

(p1, p2, ..., pn) where these parameters are used for building up a theoretical model

in statistical mechanics to make predictions about physical phenomena and for each

value of the parameter the model makes certain predictions about the outcome of ex-

periments.

The parameter space may be n-dimensional. One can then perform n experiments

(assuming that the outcome depends on all the p’s) to fix all the n parameters. The

outcome of subsequent experiments can then be predicted from the theory. Note that

if the parameter space is infinite dimensional, the theory has no predictive power as

one has to perform infinitely many experiments to fix all the parameters, which is

impossible. Such theories are called non-renormalizable.

The RG is a flow or a vector field on the parameter space (p1, p2, ..., pn). The integral

curves of this vector field are obtained by solving the differential equation

dpi

dτ
= βi(p), i = 1, 2, ..., n. (2.23)

The RHS is called the beta function. The zeros of beta are the fixed point of the RG

flow. τ describes the scale at which one probes the system under consideration. Over

the years one of the ideas that has emerged from statistical mechanics is that physics

is scale dependent i.e., the parameters of a model may depend on scale.

• Models in statistical mechanics (SM): A model consists of a configuration space C

and an energy functional E : C → R. We require E to be bounded below. The problem

of SM is to compute the partition function

Z(T,V; p1, p2, ..., pn) =
∑

C

exp(−E(C, p1, p2, ..., pn)/kBT ) (2.24)
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where T is the temperature and V is the volume of the system, and kB is Boltzmann’s

constant. The partition function is like a generating function: by differentiating this

with respect to T , V one can derive all experimental consequences of the model. e.g.

the average energy is given by < E >= −( ∂

∂β̃
)logZ where β̃ := (kBT )−1, also the entropy

is S = β̃ < E > +logZ and the energy fluctuation σ =< (E− < E >)2 >= ∂2

(∂β̃)2 logZ.

Example: Let us take an example where C = R+, the positive z axis E(z) = mgz (where

mg is a parameter). and Z(T,mg) =
∫ ∞

0 dzexp(−mgz/kBT ). This model describes a

particle restricted to the half line in a uniform and infinite constant gravitational field.

This was a simple example where the partition function is easily calculable and finite.

More usually the partition function cannot be calculated exactly and has infinities. This

happens when the configuration space C is itself a map f from one space to the other.

f : Rn → M. (2.25)

Let us first take the case where M is the linear space R, with a norm. x ∈ Rn, f (x) ∈ R.

A typical energy functional is

E[C] = 1
2

∫

[a∇ f∇ f + b f 2 + c f 4]dnx. (2.26)

The sum over configurations ∑

C means that we have to sum over all functions f (x). If

we work in Fourier space, the sum is over all Fourier coefficients f̃ (k). We do the sum

in stages. Let us fix an absolute k space cutoff Λ0, which corresponds to the smallest

spatial scale of the theory (large k is small spatial scale). We write Λτ = Λ0exp(−τ)

and use Λτ as a sliding scale. Starting from τ = 0, we integrate exp(−E[C]/kBT ) suc-

cessively over all f̃ (k) for which Λτ+dτ < k < Λτ. After integrating exp(−E[C]/kBT )

over this shell of k vectors, we rewrite the answer again as exp(−E[C]/kBT ), where

E[C] is the same functional (2.26), possibly with changed (renormalized) parameters

ã, b̃, c̃ which are functions of a, b, c and T and dτ. Taking dτ to be infinitesimal, the

flow can be written as a vector field

d
dτ

Ai = βi(Ai) (2.27)
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where i = 1, 2, 3 and A1 = a, A2 = b and A3 = c.

This is an example of the RG flow. An important class of models, called theσ- models,

is the case where (M, h) is a Riemannian manifold. In this case there is a natural energy

functional

E[C] = 1
2

∫

dnxhi j∇ f i∇ f j (2.28)

where hi j( f ) are the metric functions on M and f i are the local coordinates on M. In

this case, a calculation using perturbation theory gives

∂hi j

∂τ
= −2Ri j + λhi j + LXhi j (2.29)

where λ is a scaling on M, Ri j is the Ricci tensor of M and X is an arbitrary vector field

on M.

• Remarks:

1. The parameter τ is just −logΛ and represents the scale of observation.

2. A fixed point of RG flow is of great importance to physicists. Many different

choices of parameters p “flow” to the fixed point p∗. The large scale description

of the system is dictated by the region near p∗. The set of p values that flow

to p∗ is called the “basin of attraction” of p∗. All theories in the same basin

are said to be in the same universality class. Fixed points of the Ricci flow are

called Ricci solitons. They are also important for physicists, since they represent

a universality class of theories .

3. One illustration of RG at work is superconductivity theory. The RG flow is such

that even a tiny attraction between electrons at a small scale grows with the flow

and finally dominates the physics at large scales. The transition between normal

and superconducting behaviour is abrupt because of this reason. A small change

in the microscope parameters leads to a large change in macroscopic behaviour.
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