
Chapter 3

THERMODYNAMIC MOTIVATION

3.1 A STATISTICAL ANALOGY

We start this section by quoting Perelman. In his paper on “The entropy formula for the

Ricci flow and its geometric application” [1], Perelman remarks (section 5.3): “The interplay

between statistical physics and (pseudo) Riemannian geometry occurs in the subject of black

hole thermodynamics developed by Hawking et al. Unfortunately, this subject is beyond my

understanding at the moment”. In this chapter we will provide a thermodynamic motivation

for addressing issues in black hole physics using the Ricci flow.

Recall that the Ricci flow [2, 3, 1, 4] is an evolution equation for Riemannian geometries

that tends to smooth and homogenize them. This flow is a (degenerate) parabolic differential

equation, and is very similar to the heat equation. This suggests a thermodynamic analogy in

which evolution of a geometry along the Ricci flow is like the approach of a physical system

to thermodynamic equilibrium.

From a physical point of view, the most striking property of the Ricci flow (which it

shares with the heat equation) is its tendency to lose memory of initial conditions. This is

very similar to the approach of an isolated physical system to thermal equilibrium.

3.2 EXAMPLES OF GRADIENT FLOWS

In this section we give some examples to make the thermodynamic motivation clearer.

1. The first instance is that of a thermally insulated circular copper wire of circumference
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L, which initially has a temperature distribution T (x), (T (0) = T (L), T (x) > 0) evolves

according to the heat equation
∂T
∂t
=

d2T
dx2 (3.1)

(by choice of units, we set the diffusion constant to one) and tends to a constant, losing

memory of the details of the initial distribution T (x). The final state is characterized by

a single number, the uniform final temperature T f and not an entire function T (x). This

“information loss” is very reminiscent of entropy increase and indeed, one can view

the heat equation in this light. Consider the functional S [T (x)] =
∫ L

0 dxa(T ), where

a(T ) = −T log T . Using the heat equation (3.1), integrating by parts and dropping a

divergence we see that S [T (x)] is monotonic along the flow. dS
dt =

∫

dxa′(T )dT/dt =
∫

dxa′(T )d2T/dx2 = −
∫

dxa′′(T )(dT/dx)2 ≥ 0 The last inequality follows since a(T )

is a convex function a′′ < 0.

2. Next we consider the equation of motion of a particle inside a viscous medium

dp
dt
= −γdq

dt
− ∂V
∂q

(3.2)

where p is the momentum and q is the position of the particle which is in a viscous

medium experiencing a viscous force that is proportional to the velocity where γ is the

proportionality constant. V is an external potential. In the over damped limit (the low

Reynold’s number limit) we can neglect the inertial term and take the LHS to be zero.

Then the equation (3.2) becomes

dq
dt
= −1

γ

∂V
∂q

(3.3)

which shows that the trajectory of the particle will be decided by the gradient of the

potential V and it will settle at the minimum of the potential where ∂V
∂q = 0 which is

the fixed point of the equation (3.3).

3. Another example is that of the theory of superconductors. We write the free energy

functional of a superconductor as

F =
∫

d3x
(

~
2

2m
|∇ψ|2 + α|ψ|2 + β

2
|ψ|4

)

(3.4)
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and the evolution of ψ is

∂ψ

∂t
= − ~

2

2m
∇2ψ + αψ + β |ψ|2 ψ. (3.5)

We expect that given any initial condition ψ(x), the system will relax following equa-

tion (3.5) and will approach the minimum of the free energy (3.4).

In the three examples chosen above, the first was purely entropic, the second was purely

energetic and the third was a flow along the gradient of the free energy.

3.3 A GRADIENT FORMULATION FOR THE RICCI
FLOW

Following a similar argument as above we may think of considering the Ricci flow equation

as the over damped limit of the Einstein’s equation in GR where q is replaced by the metric

functions hi j and the RHS of the equation (3.3) is given by the the Ricci tensor Ri j.

Can we in some sense regard the Ricci flow as representing the increase of “entropy” ?

that is to ask, “ Is there a functional of the metric which increases monotonically along the

Ricci flow?”

The answer is provided by Perelman’s gradient formulation of the Ricci flow which is

described in detail in the appendix B.

We briefly describe this formulation. Consider the Ricci flow, supplemented by a dif-

feomorphism Lξhab = Daξb + Dbξa generated by a vector field ξa, which is itself a gradient

ξa = Da f , where f is a scalar function on Σ.

dhab

dτ
= −2Rab + 2DaDb f . (3.6)

Perelman gave a gradient formulation for this flow by considering the following “entropy

functional” which depends on the pair (hab, f ), of tensor fields on Σ.

FP(hab, f ) :=
∫

Σ

d3x
√

h (exp f ) [ R + (D f )2]. (3.7)

(Here f is reversed in sign from Perelman’s equations). There is a subtlety in the variation

however: the degrees of freedom in the metric can be split up into a conformal factor and
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a conformal structure [hab(x)], where the square brackets signify a conformal class. In the

variation of FP, the conformal structure is freely varied, but the conformal factor is subject

to the constraint that the “distorted volume”
√

h(exp f ) is held fixed. Performing a variation

δhab =
dhab

dτ δτ and using the notation dhab

dτ = hachbd dhcd

dτ , we find using a standard geometric

identity for the variation of R,

dR
dτ
= −Rab

dhab

dτ
+ DaDb

dhab

dτ
− D2(hab

dhab

dτ
) (3.8)

and after dropping some divergences.

dFP
dτ
=

∫

Σ

d3x
√

h (exp f )[−Rab + DaDb f ]dhab

dτ
. (3.9)

Thus dhab

dτ in (3.6) is twice the gradient of FP subject to the constraint of preserving the

distorted volume. It follows that FP is non decreasing along the flow

dFP
dτ
≥ 0. (3.10)

Hence the use of the word “entropy” for the Perelman functional. The evolution equation for

f is not independent, but determined by the constraint on the distorted volume.

3.4 THERMODYNAMIC APPROACH TO PENROSE
INEQUALITY

Recall the Penrose inequality which is a condition on the initial data of GR.

Let (M, gab) (a, b = 0, 1, 2, 3) be an asymptotically flat, globally hyperbolic spacetime

(with signature (−,+,+,+)) and (Σ, hi j,Ki j) be a spatial slice inM. The induced metric of

Σ is hi j (i, j = 1, 2, 3) and its extrinsic curvature is Ki j. An initial data set for the spacetime

(M, gab) is the pair (hi j,Ki j) along with a local mass density ρ, and a local current density Ja.

The fields on Σ must obey the constraint equations

R − KabKab + K2 = 16πρ (3.11)

Da(Kab − Khab) = 8πJb (3.12)
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where R is the Ricci scalar of the metric hab, K is the trace of the extrinsic curvature Kab,

and Da is the covariant derivative operator with respect to the metric hab. Furthermore, ρ and

Ja must satisfy the local energy condition

ρ ≥ (JaJa)1/2. (3.13)

If we consider an initial data set having the topology R3 and with Kab = 0 i.e. the case of

time symmetric initial data, then equations (3.11-3.13) imply that

R ≥ 0 (3.14)

and the Penrose inequality reduces to the Riemannian Penrose inequality, which states that

A ≤ 16πM2 (3.15)

where A is the area of the outermost minimal surface in Σ and M is its ADM mass. Thermo-

dynamically we can interpret (3.15) as saying that the Schwarzschild space (which saturates

(3.15)) maximizes its entropy for a fixed energy. Any other initial data set can be “flowed”

towards this equilibrium state of maximum entropy. We can now hope to find a geometric

flow with the following properties

1. The condition in equation (3.14) is preserved under the flow so that we do not violate

the local energy condition during the flow.

2. The area A of the outermost apparent horizon does not decrease under the flow.

3. The ADM mass M of the initial data set does not increase under the flow.

We immediately notice that the existence of such a geometric flow will prove the PI for

the special case of time symmetric initial data. The flow that first comes to our mind is RF as

this has the property that it preserves the positivity of the scalar curvature R which is the first

of the three properties mentioned above. With this in mind, we wish to go further and study

first the evolution of the area A and the mass M under RF and then possibly the evolution of

other geometric quantities of interest.
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