
Chapter 3

DNA Elasticity : Topology of
Self-Avoidance in BioPolymers

3.1 Introduction

In the preceding chapter, we have described experiments [1, 2] in which single DNA

molecules are stretched and twisted to measure their elastic properties. Motivated by these

experiments Bouchiat and Mezard (BM) [3] have proposed the Worm Like Rod Chain

(WLRC) model, which gives a fair fit to the experimental data. However, as elucidated

before several theoretical aspects of the WLRC model remain unclear, as evidenced by re-

cent exchanges in PRL [4, 5]. Points of dispute are BM’s use of a local Fuller writhe formula

(as opposed to the non-local Călugăreanu-White formula [6]) and the need for a phenomeno-

logically introduced cutoff parameter, which has to be adjusted to fit the data.

In this chapter we describe a theoretical treatment of DNA stretching and twisting ex-

periments, in which we have discussed global topological subtleties of self avoiding ribbons

and provided an underlying justification for the worm like rod chain (WLRC) model pro-

posed by Bouchiat and Mezard [7]. Some theoretical points regarding the WLRC model are

clarified: the “local writhe formula” and the use of an adjustable cutoff parameter to “regu-

larise” the model. Our treatment brings out the precise relation between the worm like chain

(WLC), the paraxial worm like chain (PWLC) and the WLRC models. We have described

the phenomenon of “topological untwisting” and the resulting collapse of link sectors in the

WLC model and note that this leads to a free energy profile periodic in the applied link. This
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periodicity disappears when one takes into account the topology of self avoidance or at large

stretch forces (paraxial limit). We note that the difficult nonlocal notion of self avoidance

can be replaced (in an approximation) by the simpler local notion of “south avoidance”. This

gives an explanation for the efficacy of the approach of Bouchiat and Mezard in explaining

the “hat curves” using the WLRC model, which is a south avoiding model. We have pro-

posed a new class of experiments to probe the continuous transition between the periodic

and aperiodic behavior of the free energy [6].

The theoretical issues raised by the experiments of [2] are surprisingly subtle. A reading

of Bouchiat and Mezard’s discussion of the “local writhe formula” [3] may give the mis-

leading impression that the Călugăreanu-White formula and the Fuller formula [8, 9] are

simply different ways of expressing the same quantity, the writhe. In fact, there can be no

local writhe formula. The writhe which appears in Călugăreanu’s theorem Lk = Tw +Wr is

given by the non-local Călugăreanu-White formula and jumps by two units when the curve

is passed through itself. No local integral can replicate this behaviour. Bouchiat and Mezard

use the “local writhe formula” under the assumption that the Euler angles are regular func-

tions of the arc length parameter s. This assumption breaks down at the coordinate singular-

ities of the Euler angles. So, Bouchiat and Mezard are effectively computing the distribution

of the “Fuller writhe”, which is not the same as the Călugăreanu-White writhe. Nevertheless,

Bouchiat and Mezard obtain good agreement with experiment. The question remains: Why

does it work? In this chapter we shall clarify these issues: we shall show that these questions

are related to the topology of self avoidance.

We first describe the experimental setup and summarize the experimental data. We then

explain the problem that we address, which concerns a global topological subtlety in the

configurations of ribbons. In resolving the problem we point out the connection between the

Worm Like Chain (WLC), the Paraxial Worm Like Chain (PWLC) and the Worm Like Rod

Chain (WLRC) models. We use the term WLC model to describe a polymer with bend as

well as twist degrees of freedom.

We conclude the chapter with the proposal of an experiment which brings out the relation
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between the models by continuously interpolating between them and comparison with earlier

work.

3.2 Experiments

Experiments on single molecules had been described in chapter 1; we briefly repeat the

relevant section here to refresh the reader’s memory. Micromanipulation techniques are now

so sophisticated that experimenters can stretch and twist single DNA molecules to probe their

elastic properties under a torsional constraint. In a typical experiment, one end of a single

molecule of double stranded DNA is attached to a glass plate and the other to a magnetic

bead. The glass plate is kept fixed and the bead is pulled by magnetic field gradients and

rotated by magnetic fields[2]. Another experiment measures the torque-twist relation at fixed

force [10] using a slightly different experimental technique. The length of the DNA molecule

is typically about 20 µm, its thickness 2 nm and the bead is about 4.5µm in diameter. In

practice, this size of bead is adequate to prevent the molecule from untwisting by looping

around the bead [4]. A typical experimental plot is shown in Ref. [2]. These curves are easy

to understand qualitatively: as one twists the molecule, its extension progressively decreases

as one can guess by playing with a cord or ribbon. Further twisting leads to buckling and

the formation of twisted braids or “plectonemes” which are familiar on telephone cords.

Electron micrographs [11] of DNA show branched polymeric structures which indicate the

formation of plectonemes.

To understand the experimental curves quantitatively more work is needed. Unlike tele-

phone cords, DNA is seriously affected by thermal fluctuations and there are entropic effects

to be accounted for. Several papers have already treated this problem [3, 4, 12, 13]. The

high force regime, which is amenable to perturbation theory about the taut polymer configu-

ration is well understood [12, 13]. In the low force regime where self-avoidance effects are

appreciable [14], a consensus is still lacking and this is the primary focus of this chapter.
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3.3 Theoretical Models

In this section, we discuss the different limits of the WLC model; we recapitulate its essential

features though this has been described earlier. To define a theoretical model we need to

specify the allowed configurations C of the polymer given the experimental constraints, write

down a microscopic Hamiltonian or energy E(C) for each configuration CεC and express the

partition function as a sum over configurations with Boltzmann weight. All experimentally

accessible quantities can be got from the partition function. The problem therefore is to

calculate the partition function

Z(~r, Lk) =
∑

CεC
e−E(C)/kBT (3.1)

where ~r is the vector separation between the ends of the molecule, Lk is the number of times

the bead has been turned (which could be fractional) and the summation appearing in the

expression for the partition function represents a sum over all allowed configurations of the

polymer. E(C) is an energy functional which assigns an energy E(C) to each allowed con-

figuration C. Specification of the allowed configurations and this energy functional defines

the model completely. The next step is to “solve” the model, i.e deductively work out its

experimental consequences. The objective is to confront theory with experiment and learn

from the discrepancy as well as the agreement. Unfortunately, “solving” the model is not

always a practical proposition even in idealised situations. Solvable theoretical models are

therefore a valuable aid to understanding.

It is often convenient to deal with conjugate variables (B, ~f ) instead of (Lk,~r) and the

Fourier-Laplace transform of the partition function. Z̃(B, ~f ) =
∫

dLk d~rZ(Lk,~r)e−iBLk+ ~f ·~r.

We shall restrict ourselves to the limit of long polymers (i.e. for a polymer of contour length

L and persistence length LP, L/LP → ∞). In this limit, the (B, ~f ) and (Lk,~r) ensembles are

equivalent. This equivalence holds only in the limit of long polymers [15].

A twist storing polymer of length L is modelled [3, 12] as a ribbon {~x(s), ~u(s)} where s,

0 ≤ s ≤ L is an arclength parameter along {~x(s)}; ~u represents the “ribbon vector” and is

required to satisfy ~u · ~t = 0 where ~t = d
ds~x. The ribbon is described as a family of curves
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~x(s) + ε~u(s), where ~x(s) is a curve and ~u(s) represents a slight (ε) thickening of it along ~u(s)

with ε a small parameter. Let κ(s) = | dds~t| be the curvature and Ω3(s) = ~t · [~u × d
ds~u], the twist

of the ribbon. In the models we discuss, the energy E(C) of a configuration C is given by

E[C] = 1/2
∫ L

0
ds[Aκ2(s) + CΩ2

3(s)], (3.2)

where A is the bending modulus and C the twist modulus. Other terms can be added as in

[12] with more parameters, but these are not necessary for our purposes.

In order to compute the partition function Z(~r, Lk), at fixed link Lk and extension ~r, we

need to specify C, the allowed configurations of the polymer. This is what distinguishes the

different models we now describe. In all the models we consider here, the configurations

of the polymer are required to obey the following constraints: the polymer extends from

~x(0) = 0 to ~x(L) = ~r, has fixed tangent vectors at the ends, t̂(0) = t̂(L) = ẑ and the ribbon

vectors at the ends are given by û(0) = x̂ and û(L) = R(2πLk)x̂. R(2πLk) represents a

rotation about the z axis through Lk turns. In addition, there may be further constraints which

define the model and such constraints can alter the topology of the configuration space and

qualitatively alter the predictions of the theoretical model. For quantitative agreement with

experimental data one needs to take into account the geometry and the statistical mechanics

of the model.

An important principle to bear in mind is that in Eq. (3.1), one should only sum over a

single topological class [16]. Thermal agitation makes the polymer explore different configu-

rations. But since these agitations only cause continuous changes, the polymer will remain in

a single topological class. We should therefore sum over all configurations in a single topo-

logical class and not sum over distinct topological classes. Once this principle is understood

and consistently applied, we find that the theoretical picture becomes much clearer.

(a) Worm like chain (WLC): In this model no further constraints are imposed on ~x(s).

Thus the polymer is allowed to intersect itself. While the set of self-intersecting configura-

tions may be of small measure in the configuration space Ca, such configurations profoundly

affect the topology of the configuration space. For, a WLC polymer can release link two
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units at a time by passing through itself [16, 17, 18]. This “topological untwisting” results in

a collapse of link sectors. All link values differing by 2 are in the same topological sector and

one has to sum Z(~r, Lk) over Lk classes differing by 2. This model has been treated in ([16])

and leads to a partition function which is periodic in Lk with period two. This periodicity

is clearly at variance with the aperiodicity seen in the experimental curves [2], where as we

mentioned before, the extension progressively decreases as the bead is turned hundreds of

times. The discrepancy between the WLC model and experimental data is clearly due to not

taking into account the topological effects of self avoidance.

However, there is a limit (the paraxial worm like chain (PWLC)) of the WLC model

which yields an aperiodic free energy profile. In the high tension regime, (large force or |~r|

comparable to the contour length L), the polymer is essentially straight between its ends and

the tangent vector t̂ only makes small deviations from the direction ẑ of the applied force,

which we call the north pole (of the sphere of tangent directions). In this regime, one can

do perturbation theory and approximate the sphere of directions by the tangent plane at the

north pole. This defines the

(b) Paraxial worm like chain (PWLC): the tangent vector t̂ = d~x
ds must be near ẑ, the

direction of the applied force i.e. t̂ ∼ ẑ.

The PWLC model has been treated in [12] and a simple analytic form for the writhe dis-

tribution is given in [13]. In this model, the polymer cannot release link by passing through

itself since the high force prevents the molecule from looping back on itself to release link.

However, this model only works in the limit of large forces (theoretically, infinite) and does

not address the low force regime, which is experimentally accessible. In order to prevent the

polymer from releasing link at low forces by passing through itself, one would like to impose

a condition preventing the polymer from intersecting itself. This defines the

(c) Self-Avoiding Worm Like Chain (SAWLC): the configurations must be self avoid-

ing:

~x(s) , ~x(s′), (3.3)

for s , s′. However, even this condition (3.3) is not sufficient to prevent topological untwist-

49



ing. The experiments reported in [2] study the elastic properties of linear DNA molecules,

not circular ones. So we need to address the issue of modelling open ribbons. Open ribbons

again need careful handling because of topological untwisting: an open ribbon can untwist

itself by two turns even in model (c) by going around its end and thus can change its link

Lk by 2. Consequently, a configuration with a link Lk is in the same topological class as a

configuration with link Lk + 2 and we once again get a collapse of Lk sectors leading to a

periodic partition function [16]:

Z(~r, Lk + 2) = Z(~r, Lk).

In real experiments, there is an obstruction to releasing two units of link by going around

the ends: the size of the magnetic bead is large enough to prevent topological untwisting of

the polymer over the duration of the experiment. To model this obstruction to topological

untwisting we close the open ribbon with a reference ribbon that goes through the bead,

makes a large fixed circuit and returns to meet the polymer at the glass slide. We require that

the reference ribbon and the real ribbon together form a non-self-intersecting closed ribbon.

(Note that we can allow for a fractional link by permitting a discontinuity in the ribbon

vector û at s = L: û(L − ε) = Rû(L + ε) where R represents a rotation about t̂ and ε is a small

parameter.) The condition of self avoidance keeps the real ribbon from going around its ends

and effectively constrains the applied link. It is understood, that when we sum over polymer

configurations, we only sum over configurations in which the real polymer is changed. This

is the “active part” of the polymer, as opposed to the “passive” reference ribbon which is not

summed over. The self avoiding worm like chain is defined by only allowing configurations

which do not intersect themselves or the reference ribbon. This configuration space is called

Cc.

As we mentioned before, this model is not tractable analytically. Ideally we would like

to work with Cc and sum over (the active parts of) all non self-intersecting closed ribbons

extending from ~0 to ~r (and returning to ~0 along a reference curve) with fixed Lk. However,

the constraint of self-avoidance is far from easy to handle! The constraint is non-local in the
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arc length parameter s and is hard to implement analytically[14]. This has led Bouchiat and

Mezard [3] to propose a new model which they call the Worm like rod chain (WLRC).

(d) Worm Like Rod Chain (WLRC) : is defined by imposing the additional constraint

on the WLC configuration space Ca that the tangent vector t̂ must nowhere point south t̂ , −ẑ.

Recall that the force is applied in the z direction, which we call north. This is also the

direction in which the tangent vectors at the end are held fixed. Unlike the self avoidance

constraint, the “south avoidance” constraint is local in the arc length parameter s. As a

result, the model is amenable to semi-analytic treatment. The authors of [3] enforce the

constraint by using a repulsive potential at the south pole of the sphere of directions. The

width of this potential is ε, which serves as a cutoff. This model gives an aperiodic free

energy profile and a very good fit to the experimental data after the cutoff is suitably adjusted.

While the WLRC model does agree with the data, its theoretical significance is not clear to

many workers in the field (see the recent exchanges in PRL [4, 5] over the significance of

the cutoff and the local writhe formula). In this chapter we shall explain the nature of the

relationship between the WLC, the WLRC and the PWLC models, explore different regimes

of the elasticity of twist storing polymers and note that one can continuously interpolate

between them in experimental situations. To summarize, the self avoiding Worm Like Chain

(SAWLC (c)), the paraxial worm like chain (PWLC (b)) and the Worm Like Rod Chain

(WLRC (d)) emerge by placing additional constraints on the Worm Like Chain WLC model

(a) [16]. One important qualitative feature that distinguishes WLC from the other models is

the fact that WLC predicts a periodic free energy whereas the other models predict aperiodic

free energies. In the WLC model the system is delocalized over Lk sectors. This can be

visualized in terms of a periodic multiple well potential where the thermal energy is high

enough for a particle to visit all wells. From this point of view SAWLC, WLRC and PWLC

are topologically and qualitatively similar and markedly different from the WLC model.

The topological differences between these various models can also be expressed in terms

of the variable B conjugate to the applied link Lk variable. This conjugate variable B, can be

interpreted as a magnetic field [3, 13, 16]. In the a) WLC model B has the interpretation of
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the field of a magnetic monopole located at the center of the sphere of tangent directions to

the polymer [16] and the magnetic flux is quantized and this leads to a periodicity of the free

energy. In the b) PWLC model, the excursions of the polymer are confined to the tangent

plane at the north pole, and the magnetic field B is on a plane and therefore not quantized.

As a result the free energy is not periodic in the link Lk.

WLC

SAWLC

WLRC

PWLC

SOUTH
AVOIDANCE

AVOIDANCE
SELF

FORCES
HIGH

Figure 3.1: The free energy of the WLC model has a periodicity (due to a collapse of Lk sec-
tors) which can be removed by imposing self-avoidance or south-avoidance or large stretch
forces. All these are different ways of separating the Lk sectors and preventing the “collapse
of link sectors”.

In the WLRC model, because of the constraint of south avoidance, B is defined on a

sphere punctured at the south pole. Since the topology of the punctured sphere is identical

(by stereographic projection) to that of the plane, there is no quantization condition just as in

the PWLC model and again, this leads to an aperiodic free energy profile (see Fig.(3.1)).

3.4 Wreathe and Writhe

In fact the right model to describe a real polymer under a torsional constraint would be c)

the self-avoiding WLC (SAWLC) model which puts a constraint on the polymer passing

through itself or the reference ribbon. However, as discussed earlier, such a model is hard to

solve because of the non-locality of the constraint. We show below that the WLRC model

captures some of the essential topological features of the SAWLC model and thus enables us

to deal with a simpler and solvable model where the constraint reduces to a local one instead
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of a non-local one. Below, we show that i) the WLRC model captures the right qualitative

behaviour of the Partition function. The WLRC partition function is aperiodic in the applied

link unlike the WLC partition function [16] which is periodic. ii) Quantitatively, the WLRC

partition function is a better approximation to the SAWLC partition function than the PWLC

partition function and works even for low forces.

We begin with the qualitative features, which are of a topological nature. The central

quantity of interest [Eq.3.1] is the partition function Z(Lk) which is the sum over ribbon con-

figurations with fixed link (Lk). Călugăreanu’s theorem [6] tells us that Lk = Tw+Wr, where

the twist Tw =
∫

Ω3(s)ds is the integral of the local twistΩ3(s) along the curve. Writhe (Wr)

is a quantity that only depends on the curve {~x(s)} and not on the ribbon vector {~u(s)} [14].

The problem thus neatly splits into two parts. The link distribution is the convolution of the

twist distribution and the writhe distribution [3, 13]. The twist distribution is a quadratic path

integral and is easily evaluated. The problem that remains is to compute the writhe distribu-

tion. Thus the problem reduces from one defined on the space of ribbon configurations (C)

to one defined on the space of ribbon backbones (C̃) or the space of curves. We can formally

set the twist elastic constant to infinity (C = ∞, the molecule is impossible to twist) so that

Lk = Wr and then the Lk distribution is identical to the Wr distribution.

The writhe is a non-local quantity defined only on closed non-self intersecting curves: Let

s range over the entire length L0 of the closed ribbon (real ribbon + reference ribbon) and let

us consider ~x(s) to be a periodic function of s with period L0. Let ~R(s, σ) = ~x(s + σ) − ~x(s).

~R(s, σ) is non-vanishing for σ , 0, L0 and the unit vector R̂(s, σ) is well-defined. It is easily

checked that as σ → {0, L0}, R̂ → {t̂,−t̂} respectively. The Călugăreanu-White writhe is

given by [18, 19]

WCW =
1

4π

∮ L0

0
ds
∫ L0−

0+
dσ[dR̂(s, σ)

ds × dR̂(s, σ)
dσ ] · R̂ (3.4)

Notice that the integrals for the writhe formula are incorrectly given in [18] as two cyclic

integrals (ie. the integration ranges over a torus). The range of integration is in fact a cylinder
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rather than a torus. Our limits are the same as those used in [19]. The non-locality ofWCW

makes it difficult to handle analytically. However, the key point to note is that variations

in WCW are local [8]. Let C̃(τ) be a family of non-self intersecting closed curves with

writheWCW (τ). Taking the τ derivative of Eq. (3.4) we find that the resulting terms can be

rearranged to give [20]

dWCW

dτ =
1

2π

∮ L0

0
ds[ dt̂

ds ×
dt̂
dτ ] · t̂ (3.5)

which clearly has the interpretation of the rate at which t̂(s, τ) sweeps out a solid angle in the

space of directions. Note that Eq.(3.5) is a single integral [20] and therefore a local, additive

quantity. Changes of writhe are local integrals and get contributions only from the active

parts of the curve. Eq. 3.5 can be rewritten as:

dWCW

dτ =
1

2π
dΩ(τ)

dτ (3.6)

where Ω is the solid angle enclosed by the oriented curve {t̂(s)|0 ≤ s ≤ L0} on the unit sphere

of tangent directions as s goes from 0 to L0[14, 16]. Note that Ω is only defined modulo 4π:

for a solid angle Ω to the left of the oriented curve t̂(s) is equivalent to a solid angle (4π−Ω)

to the right. dΩ/dτ is however well defined and local. Integrating Eq. (3.6) we arrive at [8]:

WCW(τ) = 1
2πΩ − 1 + 2n (3.7)

where n is an arbitrary integer.

There is a quantity one can construct from the writhe which is well defined on all curves

(not just simple ones)

w(C̃) = exp[iπWCW (C̃)] = −exp[iΩ/2]

is a complex number of modulus unity which we call the wreathe. From the geometric

phase point of view (see the analogy developed in [16]) the wreathe is a very natural object

to consider: it is simply the geometric phase of a spin half system in a cyclically varying

magnetic field. When a curve is passed through itself,WCW jumps by 2, but the wreathe is
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unchanged. We can therefore smoothly extend w to all closed curves including non-simple

curves. The wreathe can be used to define a local quantity, the “Fuller writhe” [8] for curves

which are nowhere south pointing.

Let us define the “wreathe angular velocity” Aτ = −iw−1 dw
dτ =

1
2dΩ/dτ as a “vector

potential” on the space of curves. It is easily seen that Aτ is curl free. However, Aτ is not

a gradient in the space of all curves: there exists no function W defined on all curves such

thatAτ is given by dW
dτ . This follows because there exist closed circuits C̃(τ) in the space of

curves for which the integral
∮

dτAτ is non zero. Such circuits enclose a nonzero topological

flux and are link changing closed circuits (LCCCs). They describe the process of topological

untwisting.

Let us choose a fiducial curve C̃∗, which goes from ~0 to ~r in a straight line, whose tangent

vector is identically north pointing. Observe that all south avoiding curves are deformable

to the fiducial curve C̃∗ via south avoiding curves. One simply deforms the tangent vector

t̂(s) along the unique shorter geodesic connecting t̂(s) to the north pole. We now define the

Fuller writhe as

WF = 1/π
∫ C̃

C̃∗
dτAτ − 1

Writing the unit tangent vector as t̂ = (sin θ cosφ, sin θ sinφ, cos θ),
∫ 1

0 dτ dΩ
dτ can be written as

∫

ds dφ
ds (1 − cos θ) for all curves for which the tangent vector never points towards the south

pole of the sphere of tangent directions. We can therefore write a “local writhe” on such

curves which we call “south avoiding curves”:

WF =
1

2π

∫

ds(1 − cos θ)dφ
ds − 1. (3.8)

While (3.8) is expressed in local co-ordinates on the sphere, it has a clear geometric meaning:

2π(1 +WF) is equal to the solid angle swept out by the unique shorter geodesic connecting

the tangent vector t̂ to the north pole [21, 22]. This definition is explicitly not rotationally

invariant, since it uses a fixed fiducial curve C̃∗ and singles out a preferred direction.

This definition of “Fuller writhe” is motivated by a theorem of Fuller [8], which gives

the CW writhe of a curve which is deformable to the fiducial curve by a family of curves
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which is self avoiding and south avoiding. For such curves, the Fuller writhe agrees with the

CW writhe. However, in general, the “Fuller writhe” is not equal to the CW writhe, which

is what appears in the Călugăreanu-White formula. In fact, the definition of Fuller writhe

extends easily to all curves which are south avoiding, since Eq. (3.8) does not require any

more conditions.

We remarked earlier that Aτ is not a gradient on the space of all curves. Only in certain

restricted classes of curves can it be expressed as a gradient. For example, A is a gradient

in the space of self avoiding curves Aτ = π
dWCW

dτ . It is also a gradient in the space of south

avoiding curves Aτ = π
dWF

dτ . The space of south avoiding curves is contractible, unlike the

space of self avoiding curves, which splits into distinct knot class sectors. To summarise,

WCW is defined on all self-avoiding curves, WF on all south avoiding curves. On curves

which are deformable to the fiducial curve C̃∗ through south and self avoiding curves the two

notions agree [8] (WCW = WF). When a curve passes through itself,WCW jumps by two

and when the tangent vector to a curve swings through the south pole, WF jumps by two

units. The writhe is a real number which has both geometric and topological information.

The topological part is the integer part of Wr
2 and the geometric part is the fractional part

of Wr
2 . The geometric part is completely captured by wreathe but the topology is lost since

wreathe is insensitive to changes in writhe by 2 units. From the definitions it is clear that on

curves where these quantities are well defined,

−iw−1

π

dw
dτ =

dWCW

dτ =
dWF

dτ (3.9)

so changes in writhe are the same whether measured by WCW ,WF or w. Note that w is

well-defined on all curves.

Let us now apply these general topological ideas to understand the configuration space

of the polymer ribbon. As stated earlier, we need to sum over a single topological sector

of the configuration space. For a ribbon, this means summing over a single knot class K of

the ribbon backbone C̃ and a single link class Lk of the ribbon. So, in fact the true partition

function ZK(~r, Lk) would depend not only on the extension and the link, but also the knot
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class of the ribbon backbone. Needless to say, this is a hopelessly intractable problem.

The constraint of self avoidance is a non-local constraint in s and very hard to handle

analytically. Even in the pure bend model [23, 24] one cannot handle this constraint and

so one just gives up self avoidance and sums over all configurations. This is of course an

approximation, but it seems to work well. Instead of evaluating (3.1) with C̃ equal to simple

curves in a single knot class K (for example, the trivial knot class) :

ZK =
∑

CεK
e−βE(C) (3.10)

we are effectively summing over knot classes and computing Z = ∑K ZK since we are unable

to impose self-avoidance. The resulting analysis still gives a reasonable account of the data

[1, 23]. This suggests that the contribution from the non-trivial knot classes may not be

significant. In fact, in the presence of a force f , there is an energy cost f LP leading to a

suppression e− f LP of the probability of forming knots [25].

In the case of twisting polymers, giving up self-avoidance has a more serious conse-

quence. Giving up self avoidance leads not only to an identification of knot sectors, but also

link sectors separated by two units. This is due to LCCCs. These are closed circuits in the

space of curves, which when lifted up to the space of ribbons by continuity become open and

lead to an identification of link sectors. We show below that LCCCs must pass through both

south pointing and self intersecting curves.

More precisely, our main result is: in any closed circuit, the number of signed self cross-

ings is equal to the number of signed south crossings.

Proof: The proof uses the fact that the wreathe is defined on all curves. Consider a closed

circuit C̃(τ) (0 ≤ τ ≤ 1) in C̃a which starts from C̃∗ and returns to it: C̃(0) = C̃(1) = C̃∗. If we

now compute the wreathe (which is defined on all curves) we find that as τ varies from 0 to

1, 0 ≤ τ ≤ 1, the wreathe w(τ) describes a motion on the unit circle and returns to its starting

point. The number of times w(τ) winds around the unit circle is given by

k = −i
π

∫ 1

0
dτw−1dw/dτ = 1

π

∮

dτAτ

Using Eq. (3.9) we find that k measures i) the number of times (counted with sign) the
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polymer passes through itself (i.e. k = 1/2
∫ 1

0 dτ dWCW
dτ ). ii) the number of times (counted

with sign) the polymer tangent vector swings through the south pole (i.e. k = 1/2
∫ 1

0 dτ dWF
dτ ).

The above discussion can be “lifted” in a sense (made precise in the appendix) to the

space of ribbons which is the true configuration space. Starting with a closed circuit C̃(τ)

and an initial ribbon C∗ whose base curve is C̃∗. One can lift the circuit C̃(τ) in the space

of curves, by continuity to the space of ribbons. However, closed circuits in the space of

curves may be open in the space of ribbons! This is the well known anholonomy effect. Our

main result can then be re-expressed on the space of ribbons: two ribbons based on the same

ribbon backbone C̃∗ are homotopic as self avoiding ribbons if and only if they are homotopic

as south avoiding ribbons.

Proof: The argument above also shows that 2k is equal to the net change in the Lk class

of a ribbon if its backbone is continuously deformed along C̃(τ) (since Lk = Wr in our

analysis).

If we specialise to self avoiding curves C̃c then k = ∆WCW = 0. If we work with south

avoiding curves C̃d, then k = ∆WF = 0. This proves that self and south avoidance present

the same topological obstruction to release of link Lk. This provides a formal justification

for Bouchiat and Mezard’s work [3] where they impose a south avoidance constraint in place

of a self avoidance constraint.

k also has the interpretation of the “quantized magnetic flux” passing through the loop

{C̃(τ); 0 ≤ τ ≤ 1}. We can write k as

k = 1/(2π)
∮ 1

0
dτ
∮ L0

0
ds[ dt̂

ds ×
dt̂
dτ ] · t̂ = 1

π

∮

dτAτ (3.11)

which measures the “topological flux” passing through C̃. k is also the degree of the map

t̂(τ, s) from the torus {0 ≤ s ≤ L0, 0 ≤ τ ≤ 1} to the sphere of tangent directions. Clearly

if the flux is non zero, then the degree is non zero and the tangent vector must point south

somewhere. Removing the south pole (as Bouchiat and Mezard [3] do) forces the degree to

be zero and prevents link collapse.

Our arguments above show that the topology of self avoidance is captured by south avoid-
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ance. This is a qualitative feature related to topology. At this qualitative level, the excised

point on the sphere of tangent directions need not be the south pole (recall that the force

direction is taken to be the north pole), but can be any direction n̂ on the sphere. However,

in order to achieve quantitative success in explaining the experimental data, we show below

that it is advantageous to choose n̂ along the south pole. Ideally we would like to compute

the partition function of the SAWLC model to compare with experiment. The replacement

of SAWLC by WLRC seems to give a reasonable account of the data. Why does it work? To

see why, consider the region R in the space of curves which can be reached from the fiducial

curve C̃∗ without ever self intersecting or pointing south. Let us notice the following: i) The

region R has a finite measure in the space of curves. ii) All over R,WCW = WF. iii) The

region R dominates the partition function. More precisely, regions outside R are suppressed

by a factor e− fe f f LP . Here fe f f = f − B2/(4LP) is an effective force [12, 13] that takes into ac-

count the competition between the stretch and the twist. Consequently, the WLRC partition

function is a good approximation to the SAWLC partition function over a range of parameter

space.

Let us successively consider the regimes of low, intermediate and high twist. Quan-

titatively, this is measured by fe f f . (i) For fe f f LP large, the tangent vector makes small

excursions about the north pole and < θ2 >= 1/
√

fe f f LP is small. In this regime, one can

approximate the sphere by its tangent plane at the north pole and as explained earlier, this

is the regime of the PWLC model. (ii) For < θ2 > of order 1,( fe f f LP of order 1), this is

not a good approximation, since the geometry of the sphere is not well approximated by

the planar geometry. However, in this regime, the WLRC works well since the suppression

factor e− fe f f LP is small. Since the WLRC retains the geometry of the sphere (changing only

the topology, by removing a point), the WLRC is an improvement on the PWLC model. (iii)

At very low (or negative) fe f f , in the SAWLC model, the polymer accommodates writhe by

winding around itself. A similar behaviour occurs in the WLRC model where the tangent

vector is mostly near the south pole. In both models a cutoff set by the thickness of the

polymer (see below) is needed to regularise the model.
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Had we chosen to exclude some other direction instead of the south pole, the suppression

factor would have been e fe f f LP cos θ, where θ is the polar angle of the excluded point. Clearly,

the advantageous choice is θ = π i.e., the south pole of the sphere. The choice θ = π leads

to an axially symmetric quantum mechanical problem, for which the Hamiltonian can be

solved. This is exactly what Bouchiat and Mezard choose in their WLRC model.

Need for a cutoff: In summing over all south avoiding paths one finds that the problem

of computing Eq. (3.1) is ill defined. Recall that S̃d, the set of south pointing paths have

been removed from C̃a, the WLC configuration space to get the WLRC configuration space

C̃d = C̃a− S̃d. The problem is that near S̃d there are paths (points in C̃d) with arbitrarily large

writhe and vanishingly small energy. This problem is due to paths which wind around the

south pole in tiny circles accumulating large writhe at zero energy cost [26].

This problem does not occur at large forces. At large forces there is a large energy cost

preventing the tangent vector from visiting the south pole. Indeed, in the paraxial limit there

is no pathology [4, 12, 13]. As one lowers the force, the energy cost for accommodating

writhe tends to zero near S̃d and these dominate the sum in Eq. (3.1). In order to get sensible

results from the WLRC model one has to impose a cutoff: the tangent vector is excluded

from a small circle θ = θc = π − ε around the south pole. In more detail, we see that for

paths winding around the south pole the energy per unit length E/L ∼ ε2 while the writhe

per unit length Wr/L ∼ 2− ε2. This implies that in the limit ε → 0 any amount of writhe can

be accommodated at zero energy cost. Maggs and Rossetto [4] claim that this pathology of

the WLRC model is an artefact of the local Fuller writhe formulation. However, we notice

that the same pathology afflicts the SAWLC model (which involves a non local notion of

writhe, the CW writhe) as well. This can be seen as follows. Consider a polymer twined on

a cylindrical rod like a garden climber twines around a pole. As explained in Fuller [8], for

a plectoneme of pitch angle α, (in the limit that α goes to π/2 the helix is almost a straight

line) the curvature goes as κ = (d/2)−1cos2α, while the writhe per unit lengthWCW/l goes

as sinα, where d is the diameter of the rod. (See Fuller, figure 1 and its caption in the 1971

paper). From the geometry cosα = πd/(l), where l is the length of the polymer. When α goes
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to π/2, the writhe (per unit length) goes to a constant and the energy per unit length goes as

d2. Note that we are holding the length of the polymer constant as we take the limit α going

to π/2. in actual terms the polymer wraps around itself to form plectonemic structures as

in telephone cords. Thus the thickness of the polymer plays the role of the diameter of the

cylinder.

We thus come to the conclusion that both SAWLC (involving the non local CW writhe)

and WLRC (involving the local Fuller writhe) suffer from the same pathology which can be

cured by introducing a cutoff parameter which has the same origin ( the finite thickness of

the polymer) in both formulations. In fact Bouchiat and Mezard’s WLRC model is a simple

analytically tractable model which captures the essential qualitative physics of the SAWLC

model.

3.5 Tunnelling

So far we have used topological ideas to split up the configuration space into disconnected

sectors. However, the difference between topology and energetics can be blurred by activated

processes [4]. To appreciate this point, consider a Brownian particle in a double well poten-

tial. If the barrier height is not too large, the particle will randomly visit both wells during the

observation time. If one increases the barrier height, the activated process is exponentially

suppressed. In the limit that the barrier height goes to infinity, we may say that the two wells

belong to distinct topological sectors and sum over only one of them. The transition from

one regime to the other is measured by the Kramers’ time τKramers ∼ exp(V/kT ), where V is

the height of the barrier and kT the temperature. If τKramers >> τObservation, then we would

sum over a single well, but if the reverse is true, then we would sum over both wells. By

tuning V , the barrier between the wells, we can continuously interpolate between the single

well and the double well descriptions. The picture can be extended to include multiple wells,

for example, a potential profile V(x) = −V0Cosx which has multiple minima at x = 2nπ. In

the polymer context, the different Lk sectors correspond to different minima of this potential.

Tunnelling between different minima is an activated process and the classical solution that
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dominates this process is an “instanton” [27]. The physics involved here is very similar to the

tunnelling between different topological sectors of vacuum classical configurations in QCD.

The “θ vacuaa” that emerge in QCD are delocalised over all the topological sectors, just as

the WLC polymer is delocalised over link sectors. Tunnelling between different minima is

ruled out in the models (b), (c) and (d) but permitted in the model (a). In order to interpolate

between these models theoretically we can soften the cutoff in the WLRC model by putting a

potential of height V0 and width ε. As V0 → ∞ we recover the WLRC model and as V0 → 0

we recover the WLC model. V0 serves as a natural parameter in interpolating continuously

between these models. In the next section we show how one can experimentally explore the

continuous transition between these models using the catalytic effect of enzymes. We will

see how addition of Topoisomerase II enzymes effectively lowers the energy barrier V0 per-

mitting the molecule to pass through itself and thus enabling the polymer to be delocalised

over distinct link sectors.

3.6 Proposed Experiments

We now explore the experimental realization of the WLC model (model (a)). The process

of “topological untwisting” can be made possible by using the enzyme Topoisomerase II to

permit the DNA molecule to pass through itself [28, 29]. (Similar experiments are referred

to in [30].) As the concentration of enzyme c is increased we would expect a transition from

aperiodic behavior to periodic WLC behavior. A low concentration would correspond to

a large energy barrier to passing through itself and a high concentration lowers the energy

barrier. We may expect the energy barrier V0 to go as c−1. A similar effect is also expected

to happen as a function of force f . At large forces (or extensions), the energy barrier to

looping back and passing through itself is prohibitive. As one lowers the force, one expects

again a transition from the aperiodic behavior noticed in a paraxial worm like chain (PWLC)

model Ref.[[12], [13]) to the periodic WLC behavior [16]. The height of the barrier can be

worked out in the WLRC model ( model (d)). It is given by V0+2 f where V0 is the repulsive

potential at the south pole of the sphere of tangent directions and f is the applied stretching
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Figure 3.2: The theoretically expected “phase diagram” in the force-concentration ( f − c)
plane. c is the concentration of the enzyme Topoisomerase II, which permits self crossing.

force. Plotting the lines of constant Kramer’s time gives a qualitative phase diagram in the

force-concentration ( f − c) plane (see Fig.(3.2)). At high forces and low concentrations the

free energy is aperiodic. At low forces and high concentrations the free energy is periodic in

the link.

During the process of replication the DNA molecule undergoes supercoiling and it needs

to unwind to release its stress. The viscous cell environment offers resistance to this process.

The unwinding of these supercoiled structures takes place via Topoisomerase enzymes which

cut the polymer and helps it to release its stress. This real biological context is where the

WLC periodic free energy finds a natural application. These effects can be studied under

controlled circumstances in single molecule experiments.
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3.7 Conclusion

In this chapter we have provided a formal justification for the WLRC model in terms of the

topological effects of self-avoidance. The main result is that: In any closed circuit of curves,

the number of signed self-crossings is equal to the number of signed south-crossings. Or

equivalently, in the language of ribbons, two ribbons based on the same ribbon backbone C̃∗

are homotopic as self avoiding ribbons if and only if they are homotopic as south avoiding

ribbons.

Replacing the non-local notion of self-avoidance by the local notion of south avoidance

results in the analytically tractable WLRC model. The Călugăreanu-White formula for the

writhe is explicitly nonlocal (the formula is expressed as a double integral) and no local

formula valid on all simple curves exists. In Fuller’s treatment [8] a theorem is proved that

the writhe difference for two closed non self-intersecting space curves is given by a local

formula under certain conditions[8, 9]. Taking the special case that the reference curve has

constant tangent vector ẑ, we arrive at the formula [Eq. (3.8)] for non self-intersecting (i.e

simple) curves which are nowhere south pointing. Note, however, that the restriction of non

self-intersection can be relaxed since it nowhere appears in the Fuller writhe formula. Our

treatment which uses the wreathe as the starting point has a larger domain of validity since

wreathe is well defined on all curves. Our main result provides the theoretical framework

and justification for the calculational scheme employed by [3] in the WLRC model.

We have focussed on long polymers to keep this discussion simple and because the ex-

perimental situation permits it. Needless to say, the general topological discussion applies

to short polymers as well. In particular consider a very rigid polymer (Łp → ∞, L/Lp → 0)

with the tangent vector clamped at both ends to ẑ. This system can be modelled as a paraxial

worm like chain (even if the applied force is zero) and according to the general discussion,

will have an aperiodic free energy. In this case, the energy barrier to looping around is given

by the elastic energy of the stiff polymer and goes as A/L.

We have emphasized the need for introducing a regularizing cutoff in a theoretical anal-

64



ysis of this problem. It has been suggested [4] that the divergence in the writhe distribution

seen in Ref. [3] is an artefact of the Fuller formulation of the writhe and will not be present in

a CW formulation. We have shown that the CW writhe also suffers from the same pathology.

One sees [8] that it costs (almost) no energy to accommodate any amount of writhe. As a

result, large values of writhe are possible. This pathology is only cured by considering the

physical thickness of DNA (about 2 nm), which results in an energy cost for writhe and sup-

presses large writhe fluctuations. Writhe fluctuations can be suppressed either by increasing

the tension on the molecule (PWLC model) or by taking into account the physical thickness

of the molecule (WLRC model).

Ribbons homotopic as self avoiding ribbons are also homotopic as south avoiding rib-

bons. Note that the converse is not true: knots cannot be undone if one imposes self avoid-

ance. But one can remain within the set Cd of south avoiding curves and undo any knot.

Consider projecting the knot onto the x − y plane and by small movements of the tangent

vector to the polymer undo the knot by passing the ribbon through itself since there is no

self avoidance constraint. When we sum over all south avoiding ribbons we are automati-

cally summing over all knot classes of the central curve. This is an approximation valid only

when the contribution of the nontrivial knot sectors is negligible.

In future it would be interesting to address the theoretical issues that stem from consid-

ering distinct knot classes. The recent class of experiments [31] probing the dynamics of

complex knots on single molecules of DNA would perhaps enable us to connect the theoret-

ically challenging energetic and topological aspects of knots [17, 25] to experiments. One

can also experimentally explore the low force stretching regime to explore deviation from

the pure bend WLC model of Ref. [23] to probe the effect of knotting of a DNA molecule.

As an offshoot of the observation of the topological distinction between various models

of twisting polymers we are led to a new class of experimentally testable predictions. We

hope this work will generate interest amongst experimentalists to test these predictions.
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3.8 Appendix: Ribbons, Curves and Fibres

To clearly put across the topological point at issue here we use some mathematical notation.

Let C be the configuration space of all closed ribbons and C̃ the space of all curves. There is

a natural map P : C → C̃, which maps each ribbon C to its backbone curve C̃. The ribbons

based on C̃ are classified upto homotopy by their link class Lk. The structure (C, C̃, P)

constitutes a fibre bundle. Given a closed circuit in C̃, which starts from and returns to

C̃∗ and a starting ribbon C∗, one can continuously “lift” the circuit to the space of ribbons.

However, a closed circuit in C̃ may lift to an open circuit in C. The initial and final ribbons

have the same backbone curve, but belong to different link classes. We refer to such circuits

as link changing closed circuits (LCCCs) in the text.

Let C∗ be a fiducial ribbon whose backbone is C̃∗. Our sum in Eq. (3.1) extends only over

the component connected to C∗. We call this component π∗0(C). In order to perform the sum

correctly we need to understand the structure of π0(C) and π∗0(C) correctly in the different

models.

We start with the model (c) the SAWLC model, which is the one of experimental interest.

π0(Cc) is labelled by K the knot class of the ribbon backbone C̃ and Lk, the link class of

the ribbon based on C̃. (Strictly speaking we should write [K] and [Lk], the equivalence

classes being denoted by the square brackets, but we do not do so here). The Link is an

integer and counts the Gauss linking number of the two edges of the closed ribbon. Thus

π0(Cc) = (K, Lk). π∗0(Cc), the component connected to C∗ consists of all ribbons in (K∗, Lk∗),

those in the knot class of C̃∗ (the unknot class) and which have the same link as C∗.

(a) WLC model: If one gives up self avoidance and works with Ca, then the structure of

π0(Ca) is quite different from Cc. There are no knot classes since any knot can be undone by

self crossings. The even link classes get identified with one another and similarly the odd link

classes. This is due to the presence of Link Changing Closed Circuits (LCCCs) in C̃a. These

curves are closed circuits in C̃a. If one lifts them up by continuity to Ca, the space of ribbons,

we find that the continuous lift of a closed curve in C̃a may be open in Ca. The LCCCs can
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be recognised by the fact that they enclose a nonzero topological flux k = 1/π
∮

dτAτ. The

final ribbon has a link which differs from the initial one by 2k. Thus, the link classes of like

parity are identified with each other and π0(Ca) has just two components. π∗0(Ca) includes

all the link sectors which differ from C∗ by 2k. This is what we refer to as the “collapse of

link sectors”. The configuration space Ca has a vastly different topological structure from

Cc, the space of interest. This is where the south avoiding WRLC model (d) comes in.

Knots can be undone in C̃d but (as we see below) links cannot. So π0(Cd) = Z, where Z

is the set of integers, the link Lk. The claim that south avoidance captures the topological

effects of self avoidance is based on the following observation. Consider a LCCC with

flux k. This provides a continuous deformation in Ca, between ribbons (based on the same

backbone), which differ in Lk by 2k. It is shown in the text that these LCCCs pass through

self intersecting curves and south pointing curves k times (both counted with sign). Imposing

self avoidance eliminates these LCCS. Alternatively we can permit self intersections and

impose south avoidance. This also has the same effect of eliminating LCCCs and preventing

the collapse of link sectors, which occurs in Ca. This proves that self and south avoidance

both present the same topological obstruction to link release. Mathematically, the link class

bundle over C̃a is nontrivial. One can locally trivialise this bundle by omitting points (in

fact sets of measure zero) from C̃a . Restricting the bundle to C̃d and C̃c gives two different

trivialisations of the same bundle.
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