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Preface
A compact binary system consisting of neutron stars (NS) and/or black holes (BH) loses

energy and angular momentum via gravitational radiation as it orbits about its common cen-

tre of mass causing the orbit to shrink. Gravitational waves (GWs) emitted during this in-

spiral phase (when the change in orbital frequency due to GW emission is smaller than the

orbital frequency itself) constitute one of the most important sources for the ground-based

interferometers such as LIGO, VIRGO and the proposed space-based experiment LISA. The

reason why these sources are prime targets is that using different approximation schemes

to general relativity (GR), one can compute the gravitational waveforms accurately for the

inspiral phase. This allows experimenters to use data analysis techniques such as matched

filtering for detecting the signal and estimating the parameters of the signal.

For the computation of waveforms from the inspiralling compact binaries one needs to

solve the two-body problem in general relativity. No exact solution to this problem is avail-

able till today and one resorts to a variety of approximation schemes to tackle it. We ap-

proach the problem at hand using the multipolar post-Minkowskian formalism which uses a

combination of post-Minkowskian expansion of the gravitational field (expansion in powers

of Newton’s constant G which is valid at all points outside the source) complemented by a

multipole expansion, which makes it easier to handle the technical implementation. This is

followed by a post-Newtonian (PN) expansion (expansion in powers of a velocity parameter

v/c, which is valid only in the near zone of the source).

The theoretical description of the gravitational waveform needs to be very accurate and

as close to reality as possible when one uses matched filtering because mismatches between

the signal and the template (which is the pre-calculated waveform) will result in a loss of

signal to noise ratio. Computing very accurate theoretical templates and including effects

such as spin and orbital eccentricity are challenging tasks for the theoreticians. This thesis

addresses some of the issues related to the waveform modelling of the inspiralling compact

binaries and their implications for gravitational wave data analysis.

Most of these compact binaries move in circular orbits during the last stages of their

inspiral. Hence one usually models the binary orbit to be circular for computation of the

waveforms. Usual templates which are used for gravitational wave data analysis are cur-

rently the ‘restricted waveforms’ (RWF). The restricted waveforms ignore the presence of

harmonics other than the dominant one at twice the orbital frequency and models the phase

of the waveform to the maximum PN accuracy possible, keeping the amplitude at the leading

Newtonian order. This is justified because matched filtering is more sensitive to the phase

of the wave rather than the amplitude, since the correlation builds up as long as the signal

and the template remain in phase. Recent studies showed that going beyond the RWF ap-

proximation could improve the efficiency of detection as well as parameter estimation of the

xiii



inspiral signal.

Motivated by the necessity to go beyond the standard RWF approximation we compute,

in chapters 2 and 3, the gravitational waveform of inspiralling compact binaries moving

in quasi-circular orbits at the second and a half post-Newtonian (2.5PN) approximation to

general relativity, using the multipolar post-Minkowskian and matching formalism. The in-

puts we use include notably the mass-type quadrupole at the 2.5PN order, the mass octupole

and current quadrupole at the 2PN order, the mass 25-pole and current 24-pole at 1PN. The

non-linear hereditary terms come from the monopole-quadrupole multipole interactions or

tails, present at the 1.5PN, 2PN and 2.5PN orders, and the quadrupole-quadrupole interac-

tion arising at the 2.5PN level. In particular, the specific effect of non-linear memory is

computed using a simplified model of binary evolution in the past. The “plus” and “cross”

wave polarizations at the 2.5PN order are obtained in ready-to-use form, extending the 2PN

results calculated earlier by Blanchet, Iyer, Will and Wiseman. The results we have obtained

should be of use for data analysis of the inspiral signal for the ground-based as well as space-

based detectors. Recent studies, which actually used the nonrestricted waveform presented

in chapters 2 and 3, showed that the higher harmonics in the amplitude could improve the de-

tectability of binaries whose leading harmonic does not enter the detector’s sensitivity band

or spends too little time to be effectively detected.

As mentioned earlier, higher PN order waveforms should, in principle, improve the ef-

ficiency of detection and parameter estimation. Recently, the ambiguity parameters which

appeared at 3PN order in the phasing formula for nonspinning compact binaries on circular

orbit were computed, and this leads to a complete 3.5PN phasing formula. It is instructive

to examine the convergence of parameter estimation as a function of the PN order of the

approximation used in modelling the waveform. Chapters 4 and 5 contain an exhaustive

analysis of the effect of higher PN order terms in the phasing on parameter estimation in the

context of ground-based detectors and space-based detectors, respectively.

We revisit the problem of parameter estimation of the gravitational-wave chirp signals

from inspiralling non-spinning compact binaries in the light of the recent extension of the

post-Newtonian (PN) phasing formula to order (v/c)7 beyond the leading Newtonian order.

We study in detail the implications of higher post-Newtonian orders from 1PN up to 3.5PN in

steps of 0.5PN (∼ v/c), and examine their convergence. In both initial and advanced detectors

the estimation of the chirp mass (M) and symmetric mass ratio (η) improve at higher PN

orders but oscillate with every half-a-PN order. In initial LIGO, for a 10M�-10M� binary at

a signal-to-noise ratio (SNR) of 10, the improvement in the estimation of M (η) at 3.5PN

relative to 2PN is ∼ 19% (52%). We compare parameter estimation in different detectors

and assess their relative performance in two different ways: at a fixed SNR, with the aim of

understanding how the bandwidth improves parameter estimation, and for a fixed source, to
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gauge the importance of sensitivity. Errors in parameter estimation at a fixed SNR are smaller

for VIRGO than for both initial and advanced LIGO. This is because of the larger bandwidth

over which it observes the signals. However, for sources at a fixed distance it is advanced

LIGO that achieves the lowest errors owing to its greater sensitivity. Finally, we compute

the amplitude corrections due to the ‘frequency-sweep’ in the Fourier domain representation

of the waveform within the stationary phase approximation and discuss its implication on

parameter estimation. We find that the amplitude corrections change the errors in M and

η by less than 10% for initial LIGO at a signal-to-noise ratio of 10. Our analysis makes

explicit the significance of higher PN order modelling of the inspiralling compact binary on

parameter estimation. These results are finally compared against those obtained for the case

of third generation European Gravitational Observatory (EGO).

Laser Interferometer Space Antenna (LISA) will routinely observe coalescences of su-

permassive black hole (BH) binaries up to very high redshifts. LISA can measure mass

parameters of such coalescences to a relative accuracy of 10−4 − 10−6, for sources at a dis-

tance of 3 Gpc. The problem of parameter estimation of massive nonspinning binary black

holes using post-Newtonian (PN) phasing formula is studied in the context of LISA. Specifi-

cally, the performance of the 3.5PN templates is contrasted against its 2PN counterpart using

a waveform which is averaged over the LISA pattern functions. The improvement due to

the higher order PN corrections to the phasing formula is examined by calculating the errors

in the estimation of mass parameters at each order. The estimation of the mass parameters

M and η are significantly enhanced by using the 3.5PN waveform instead of the 2PN one.

For an equal mass binary of 2 × 106M� at a luminosity distance of 3 Gpc, the improvement

in chirp mass is ∼ 11% and that of η is ∼ 39%. Estimation of coalescence time tc worsens

by 43%. The improvement is larger for the unequal mass binary mergers. These results are

compared to the ones obtained using a non-pattern averaged waveform. The errors depend

very much on the location and orientation of the source and general conclusions cannot be

drawn without performing Monte Carlo simulations. The effect of the choice of the lower

frequency cut-off for LISA on the parameter estimation is also studied.

Though most of the sources will be in circular orbits by the time the GWs emitted by the

system enter the sensitivity band of the laser interferometers, astrophysical scenarios such

as Kozai mechanism could produce binaries which have nonzero eccentricity. Studies have

shown that filtering the signal from an eccentric binary with circular orbit templates could

significantly degrade the SNR. For constructing a phasing formula for eccentric binaries one

has to compute the energy and angular momentum fluxes carried away by the GWs and

thence compute how the orbital elements evolve with time.

In chapter 6 the instantaneous terms in the 3PN angular momentum flux from the inspiral

phase of a binary system of compact objects moving in quasi-elliptical orbits is computed

xv



using the Multipolar post-Minkowskian wave generation formalism. Using the 3PN quasi-

Keplerian representation of elliptical orbits obtained recently, the angular momentum flux is

averaged over the binary’s orbit. The evolution of orbital elements under 3PN gravitational

radiation reaction is studied in the quasi-elliptic case. The angular momentum flux provided

here has to be supplemented with the hereditary part to obtain the final input needed for the

construction of templates for binaries moving in elliptical orbits, a class of sources for both

the space based detectors and the ground based ones.
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