
Chapter 1

Introduction

1.1 Gravitational Waves

Einstein’s equations of general relativity (GR) admit radiative solutions, similar to Maxwell’s

equations of electromagnetism. These waves which propagate from the source to infinity

with the speed of light are called gravitational waves (GWs). Unlike the case of electromag-

netism, where the leading contribution to the radiated power is from the dipole, GWs are

created by a time varying quadrupole moment. It should be noted that not only GR, but any

relativistic theory of gravitation will lead to gravitational waves. However their nature and

properties could be different from that in GR. The speed of GWs will depend on the details

of the metric structure of the theory [1]. Theories like scalar-tensor gravity can have dipolar

GWs. Unlike electromagnetic waves, for a long time there were conceptual issues related

to the physical nature of the GWs. These doubts were cleared by the works of Bondi and

collaborators [2]. They proved that gravitational waves do carry energy and angular momen-

tum away from the system and as a result the mass of the gravitating system will decrease.

Within GR, gravitational waves may be visualized as ripples in the space-time curvature.

Since curvature in GR is related to the geodesic deviation equation (rather than the geodesic

equation), just one test particle will not be sufficient to detect GWs. One would need at least

two particles for the detection of GWs and conventionally it is visualized as the action of

GWs on a ring of particles. The effect of GWs on a ring of particles will be to tidally distort

the ring in a direction transverse to the direction of propagation. The distortion is propor-

tional to the initial size of the ring. Thus due to equivalence principle, what is measurable

are the relative distortions.

Within GR, gravitational waves are transverse and have only two linearly independent

states of polarization, conventionally called ‘plus’ and ‘cross’ polarizations. Associated with

each polarization state there is a time dependent gravitational field which propagates with the

speed of light. In other theories of gravity, especially those which have other fields coupled
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Figure 1.1: Rough schematic of a Laser interferometric GW detector. Adapted from Ref. [7].

to the metric (Brans-Dicke theory for example) GWs may not be transverse and can have up

to six states of polarizations [1].

Strong experimental evidence, albeit indirect, exists for the existence of the GWs. This

comes from the discovery observations of the binary pulsar PSR1913+16 (also known as the

Hulse-Taylor pulsar) [3] (and many more binary pulsars after that) and its orbital decay. The

orbital decay, due to the emission of GWs, fits very well with the predictions of GR (see [4]

for an update and references therein). After the Hulse-Taylor pulsar, many pulsars have been

found in binary systems and the most recent addition to the list is the double pulsar PSR

J0737-3039 [5]. These open up new possibilities to explore and understand the strong field

gravity regime and test GR to the highest accuracy [6] so far.

The extreme weakness of the gravitational interaction implies that a direct detection of

GWs would involve the detection of very minute effects. This is a major technological

challenge posed to the experimentalists. In an interferometric GW detector set up to detect

GWs, one has four masses suspended from vibration-isolated supports. Two masses are

near to each other on one corner of a ‘L’ shaped interferometer and one mass each at the

end of the detector. Both the arm lengths are nearly equal (see Fig 1.1 for a schematic

of the interferometer). When the GWs hit the interferometer, there is a change in arm-

length difference which we denote to be ∆L. This change can be monitored by the laser

interferometer as function of time and one defines a quantity called strain amplitude h(t) =
∆L(t)

L . Based on typical astrophysical sources, the typical strain h one has to measure in order

to detect a GW is ∼ 10−21 − 10−22. In the next section we discuss the typical expected

gravitational wave sources and their strain amplitudes.
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1.2 Types of GW sources

GW sources can be very broadly classified into 4 classes: coalescence events, continuous

(periodic) emitters, GW bursts and stochastic sources.

1.2.1 Coalescence of compact binaries

Binaries made of neutron stars (NSs) and/or black holes (BHs) are one of the most promis-

ing sources for the GW interferometers. The different phases of the coalescence of the sys-

tem may be conveniently classified as inspiral, merger and ringdown. Using approximation

schemes in GR, one can predict very accurately the waveforms associated with the inspiral

and ringdown phases. Hence the most suitable data analysis strategy is to employ ‘matched

filtering’ where one uses the prior information about the waveform at hand to construct tem-

plates and filters the data against a bank of templates characterized by different signal pa-

rameters. The merger phase is much more involved and a fully general relativistic treatment

using numerical relativity is necessary for computing the corresponding waveforms.

The GW sources are conveniently characterized by the effective strain amplitudes they

produce at the detector. Given below are the effective strain amplitudes of the inspiral sources

for the ground-based and space-based detectors [8],
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and for the space-based detectors
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In the above expressions M = m1 + m2 denotes the total mass and η = m1m2/(m1 + m2)2 the

symmetric mass ratio. f and r refer to the frequency of the wave and distance to the source

respectively.

1.2.2 Gravitational wave bursts

This class of events belong to the unmodelled, transient phenomena like SN explosions,

Gamma Ray Bursts etc. In order to analyse the data to look for such events, one employs

‘excess power search’ methods, where one monitors power excesses in the frequency domain

or looks for notable amplitude variations in time to detect a signal. Coincidence analyses

involving a network of detectors will always enhance the probability of the detection. Still
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one has to address the task of carefully distinguishing the spurious noise transients from an

actual GW event, details of which are not relevant for the thesis and not pursued further.

The typical strain for the GW burst is [8]

h ∼ 4 × 10−21

(

E
10−7M�

)1/2 (

5 ms
T

)1/2 (

200 Hz
f

) (

40 kpc
r

)

, (1.3)

where E is the energy associated with the burst event, T the time of duration of the burst, f

the frequency and r the distance to the source respectively.

1.2.3 Periodic gravitational wave sources

These sources are those which continuously emit GWs whose frequency remains constant

over the duration of the observation. For the ground based detectors, spinning NSs emitting

GWs by different mechanisms are examples (see Ref. [9] for a review). The two prominent

mechanisms among them are

1. Normal modes as a result of residual non-axisymmetric decays

2. Accreting NS which excite non-axisymmetries (low mass x-ray binary e.g).

In the first case two important unstable modes are the f -modes and the r-modes [10, 11]. It

was Wagoner [12] who pointed out that accretion could drive unstable f -modes into strong

radiation. The rate of GW emission would be proportional to the accretion rate in such

mechanisms.

For a non-axisymmetric NS emitting GWs at a frequency f , if Izz is the moment of inertia

about the spin axis of the NS, then the gravitational amplitude at a distance r is:

h = 3 × 10−27

(

10 kpc
r

) (
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1045 g cm2

) (

f
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)2 (

ε

10−6

)

. (1.4)

In the above ε is the ellipticity of the NS.

The data analysis for these systems is computationally highly expensive for all-sky sur-

veys aimed at detections of unknown pulsars [13]. More feasible are the direct searches for

GW emission from known pulsars [14]. Details of these search methods are out of the scope

of this thesis.

1.2.4 Stochastic GW background

These are ‘random’ GW signals arising from numerous uncorrelated and unresolvable

sources in the sky. In particular, one is interested in the all-sky GW background similar
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to the cosmic microwave background for the electromagnetic case. In the GW case, this

background could arise from different physical processes in the very early universe. Obser-

vations of such a background could put severe constraints on possible ‘inflationary’ models

in the very early universe.

The method by which this GW background will be looked for depends on the charac-

teristics of the instrument. LIGO, for example, will measure the stochastic background by

comparing data sets at two different sites and looking for a correlated ‘noise’ (For a review

of the GWs from early universe see [15]).

1.3 Gravitational wave detectors

We briefly discuss the different ways to detect GWs and the frequencies at which these detec-

tors are sensitive. GW detectors are mainly of two types: resonant bars and interferometers.

Some details of these are described below. We conclude by mentioning an interesting possi-

bility to study the GWs at very low frequencies by electromagnetic means.

1.3.1 Resonant bars

Historically, bar type detectors were the first to search for GWs [16]. Bars are narrow band

instruments with a bandwidth less than 50Hz centered at around 1kHz. These are aluminium

bars of length of about 3m and weighing about 1000kg. For a short burst of GW, emitted

by a supernova explosion for example, the bar will have a strain sensitivity of ∼ 10−21 Hz−1.

Different bar detectors presently operational include Nautilus, Explorer and Auriga (in Italy),

Allegro (in US) and NIOBE (in Australia).

We do not discuss the details of the bar detectors as this thesis deals with the other class

of GW detectors, namely the laser interferometers.

1.3.2 Laser Interferometers

Ground-based detectors

These are broad band kilometer scale detectors sensitive to high frequency (∼10-1000Hz)

GWs. Different noises in different frequency ranges limit the sensitivity of these types of

detectors. At low frequency (∼ 10Hz), seismic and man-made noises limit its sensitivity,

at intermediate frequencies (∼ 100Hz) it is the thermal noise of the optical and suspended

components and finally at high frequencies (> 300 Hz) it is the photon shot noise. Methods

such as power recycling and signal recycling are employed in order to improve the detector

performance.
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At present there are four different interferometric detectors which are operational. In the

USA, the Laser Interferometer Gravitational wave Observatory (LIGO) [17] is performing

its fifth scientific run. Near Pisa, the French-Italian Virgo [18] detector is progressing fast

towards its science run. The other two detectors, British-German GEO [19] and the Japanese

detector TAMA [20] are also operational.

These detectors are capable of observing a wide variety of astrophysical sources (see

Sec. 1.2 for details). More details of the ground based interferometers, their noise character-

ization which we require for our work can be found in chapter 4.

Space-based detectors

These interferometers are sensitive to the low frequency (10−4 − 1 Hz) GWs. A typical ex-

ample is the proposed Laser Interferometer Space Antenna (LISA). LISA is an equilateral

triangular space craft constellation, whose distance between adjacent arms is 5 million kilo-

meters. This constellation will orbit around the sun with a 20◦ lag relative to earth. The

constellation will have a tilt of 60◦ with the ecliptic plane which contains the sun and the

earth.

LISA will be capable of observing the merger of binaries consisting of supermassive

black holes (SMBH) and/or intermediate mass black holes (IMBH) and hence provide valu-

able information about BH physics and put GR to test [21, 22, 23, 24] (see Sec. 5.2.1 of

chapter 5 for details of astrophysics and cosmology possible with LISA). LISA will also

observe some part of the stochastic background spectrum complementing the band width

over which LIGO will detect them. Unlike LIGO, LISA will probe the background GWs by

combining its six data streams in an appropriate way. It can thus construct a variable that is

completely insensitive to GWs measuring only the noise [25, 26, 27, 28]. This allows one to

distinguish between noise-like stochastic background and true noise of the LISA instrument.

Details of the LISA noise curve and its antenna pattern are discussed in chapter 5.

In the future, there are proposals for space-based missions entirely devoted to the stochas-

tic background in the frequency range 0.1−10 Hz. This include Big Bang Observatory (BBO)

and DECIGO [29, 30].

1.3.3 Electromagnetic observations of GWs

It is interesting to note that GWs affect the electromagnetic signals and thus produce sig-

natures measurable by observations. Prominent signals which could carry imprints of GWs

are the pulsar signals and the cosmic microwave background (CMB), more specifically tim-

ing measurements of pulsars and CMB polarization measurements. We highlight them next.

Pulsar Timing Arrays

The number of millisecond pulsars detected has increased dramatically over the last few
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years. A very precise timing of these pulsars could detect GW backgrounds (from SMBHs)

in the nano-Hertz frequency (∼ 10−9 Hz) range (See Ref. [31] for a brief review). Sources

in this frequency range are SMBH binaries either too massive to radiate in the LISA band or

inspiralling towards the LISA band.

The effect of GWs on the pulsar timing is to create pulse period fluctuations with an

amplitude proportional to the GW strain evaluated on the earth (see [32, 33] for the theoret-

ical aspects of the problem). With the proposed Square Kilometer Array (SKA) the timing

accuracy is expected to be further improved and this offers promise for GW detection. Con-

straints on the stochastic background in this band is likely to be better than those that can be

set by any laser interferometric GW detector.

Cosmic microwave background polarization measurements

The GWs produced during inflation will generate B-mode polarization in the CMB spectrum.

Observing the B-mode polarization in the future CMB experiments to measure the polariza-

tion of CMB will provide useful information about the ultra-low frequency GWs in the very

early universe. Ultra low frequency sources (10−18Hz ≤ f ≤ 10−13Hz) have wavelengths of

the order of Hubble length today. These waves are the result of quantum fluctuations in the

early universe which are parametrically amplified during inflation to very high amplitudes.

Observing the signatures of these waves could lead to better understanding of the inflationary

era [34].

1.4 On Gravitational wave data analysis of ‘chirps’

1.4.1 Matched filtering

Matched filtering is a generalization of the pattern recognition capability of Fourier trans-

forms (see Ref. [35] for a review). One prefers Fourier domain for performing matched

filtering because of two reasons. Firstly, since the exact arrival time of the signal is not

known, there will be a arbitrary time shift parameter which is naturally a shift in phase in

the Fourier domain and easy to deal with. Secondly, correlation in the time domain is an

optimum statistic only if the noise is white (independent of frequency), which is never the

case. If the noise is stationary, which we assume generally for theoretical purposes, then

noise at different frequencies will be uncorrelated.

The relevant details of matched filtering are discussed in chapter 4. We conclude with

a few observations. Matched filter is more efficient for signals with longer duration. One

has to construct very accurate templates which match with the signal over as many cycles

as possible to extract out a weak short-lived signal. This is a big theoretical challenge. The

computational power needed to filter such short-lived signals is also high since the number
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of templates needed to effectively detect them is large. Things become even more complex

if the noise is non-stationary. Details of optimal filtering are provided in chapter 4 of the

thesis.

1.4.2 Overlaps, Effectualness and Faithfulness

A GW chirp from a nonspinning compact binary in circular orbit will be characterized by

two extrinsic parameters (the arrival time and the phase of arrival) and the two intrinsic pa-

rameters (the two masses of the system). For spinning binaries spin parameters will be added

to the space of intrinsic parameters. For a binary on a non-circular orbit, the eccentricity is

yet another intrinsic parameter of the system.

If T (t; pk) refers to the template and S (t; pl) the signal, one can define the ‘overlap’ of

the signal and template as [36]

O(T, S ) =
〈T, S 〉√
〈T, T 〉〈S , S 〉

, (1.5)

where the scalar product is defined as usual by the Wiener formula

〈X, Y〉 ≡ 2
∫ ∞

0

d f
S h( f )

[

X̃( f )Ỹ∗( f ) + X̃∗( f )Ỹ( f )
]

. (1.6)

Here ‘tilde’ denotes the Fourier transform of the function; e.g.,

ã( f ) =
∫ ∞

−∞
a(t) exp(−2πi f t)dt. (1.7)

In the above * denotes complex conjugation and S h( f ) is the (one-sided) noise spectral den-

sity of the detector.

A systematic study of overlaps is possible by the introduction of a more precise character-

ization based on effectualness and faithfulness [36]. Faithfulness is the overlap maximised

over only the extrinsic parameters. Effectualness, on the other hand, refers to the overlap

which is maximised over both the intrinsic as well as extrinsic parameters. An effectual tem-

plate is all that is required for the purpose of detection. Consequently, it is not appropriate for

parameter estimation. A faithful template on the other hand implies that the biases associated

with parameter estimation are also very small. Since we do not deal with detection issues or

issues regarding systematic biases in parameter estimation, we will not deal with these two

concepts in the rest of the thesis. The problem of parameter estimation, or the study of the

statistical errors in the determination of parameters due to the noise, is what is addressed in

this thesis. Relevant details of the theory of parameter estimation is provided in chapters 4

and 5.
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Before proceeding to discuss other issues, it may be appropriate at this point to look into

the results of the science runs of various interferometers already operational. We do this in

the next section.

1.5 Results from the science runs of LIGO, GEO and

TAMA

The results obtained from the science runs of the LIGO interferometers, GEO600 and

TAMA300 are highlighted in this section.

1.5.1 Results from LIGO science runs

Search for BH inspirals in the second science run

Signatures of GW inspiral signal from binaries with total mass ranging from 3-20 M� was

carried out analysing the data of the second science run of LIGO. The search was capable

of detecting any BH binary up to a distance of 1Mpc with efficiency of at least 90% [37],

but none were found in the 385.6 hours of data. In future this will lead to putting more

interesting bounds on the event rates for the inspiral sources.

Search for the gravitational wave bursts

Using the data of the three LIGO interferometers during the third science run of LIGO,

gravitational wave burst signals were searched in the frequency range 100 − 1100 Hz [38].

No waveform models were used and detector had an root sum square strain sensitivity of

10−20/
√

(Hz). No gravitational waves were found in the 8 days of data that was analysed.

Another interesting burst source that was looked for was the GW signal associated

with the long duration Gamma Ray Burst 030329 using LIGO detectors. Though no GW

signal was detected, the root sum square gravitational wave sensitivity was better than

6 × 10−21Hz−1/2 which is as good as the best results published in connection with the search

for GWs in association with a GRB.

Search for stochastic gravitational wave signal

Two hundred hours of data of the 3 LIGO interferometers from the third science run were

used to put limits on the GW stochastic background [39]. By searching for cross-correlations

between the three LIGO detectors upper limits for energy density stored in GWs were set for

three different spectral power laws. For flat spectrum the bound obtained

Ω0 < 8.4 × 10−4 in the 69-156 Hz range is 105 times better than any other earlier bounds.

Search for gravitational waves from known pulsars

Continuous gravitational wave signals from 28 known radio pulsars were looked for using
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multi-detector analysis using the data of the second science run of LIGO [14]. Using the un-

precedented sensitivity of the instrument the limits in the strain was as small as 10−24 which

translates into equatorial ellipticities of the pulsars which are smaller than 10−5 for the four

closest pulsars.

1.5.2 Joint searches of LIGO with other detectors

Joint LIGO-TAMA search for inspiralling NSs were carried out using a simple trigger ex-

change method [40]. This puts bounds on the number of coalescences with component

masses between 1 and 3 M� of 49 per year per Milky Way equivalent galaxy at a 90%

confidence level. Similar analysis was carried out for the burst case also [41] which looked

for millisecond duration unmodelled bursts in the coincident data. The detector network

was found to be sensitive to bursts with root-sum-square strain amplitude above approxi-

mately 1 − 3 × 10−19Hz−1/2 in the frequency band 700-2000 Hz. Joint LIGO-GEO search

for continuous GWs were carried out during the first and second science runs of LIGO [42].

This includes directed searches for known pulsars and blind searches for the unknown ones.

Similar studies with LIGO and VIRGO are also being planned [43]

1.6 Different phases of binary coalescence: inspiral,

merger and ringdown

Having discussed in the previous sections the different types of sources the GW interferom-

eters will observe, we focus on the compact binary sources from now on. In the following

subsections, the three phases of the binary dynamics, inspiral, merger and ringdown, are

discussed and the detectability of these signals and the theoretical methods relevant for mod-

elling them are explained.

1.6.1 Inspiral

This is the early stage of the dynamical evolution of the binary where it loses energy and

angular momentum via gravitational radiation and spirals in. The adiabatic approximation,

where the gravitational radiation reaction time scale is longer than the orbital time scale, is

a valid approximation during this phase. This phase continues approximately all the way

up to an orbital separation of r ' 6G M
c2 called the last stable orbit (LSO). At the LSO, the

effective potential of the system undergoes a transition from having a well-defined minimum

to one without a minimum and after this point stable orbits are no longer supported. The

gravitational waveform from this adiabatic inspiral is well modelled within GR using PN
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approximations, where the relevant physical quantities are expressed as a perturbative series

in powers of v/c (see [44] for a review).

The waveform is characterized by the two masses of the binary, the spins, some of the

orbital elements of the binary and the distance to the source from the detector. The typical

shape of the waveform is one which sweeps up in amplitude and frequency with time and is

hence called a GW ‘chirp’. The typical frequency of the GWs during this phase is roughly

given by [45]

f ≤ 400

[

10M�
(1 + z)M

]

Hz, (1.8)

where M is the mass of the binary in units of solar mass M� and z is the redshift to the source.

From the above expression it is clear that typical stellar mass BH coalescences occur in the

heart of the sensitivity band of the ground based detectors which have maximum sensitivity at

a few hundred Hertz. On the other hand, the inspiral phase of a pair of SMBHs of 106M� will

emit GWs of frequency 1 mHz where the proposed space-based experiment LISA is most

sensitive. Matched filtering will be employed for detection as well as parameter estimation

of these binaries because one can model the waveform very accurately using approximation

methods to GR.

The late inspiral, where the system moves at relativistic speeds ∼ 0.3c and plunge

have attracted special attention of the theorists since convergence of the PN series be-

comes progressively worse in this case and eventually the PN approximation breaks down.

Resummation methods like Padé approximants have been suggested as a tool to improve

the convergence [36, 46, 47]. The effective one body method proposed by Buonanno and

Damour [48, 49] provides an analytical method to study the transition from the inspiral to

plunge.

In this thesis we deal only with the adiabatic inspiral part, the issues related to modelling

them using the PN approximation and finally studying the convergence of the PN series in

the context of parameter estimation.

1.6.2 Merger

This is the phase beyond the adiabatic inspiral when the bodies approach and eventually

cross the LSO. Modelling this phase, where the internal structure plays an important role

and the approximation of point particles is no longer valid, warrants solving the full Ein-

stein equations without any approximations. Astrophysically, if the binary is composed of

two NSs, the GWs will carry information about the internal structure, equation of state and

physics at very high densities which are otherwise not accessible by any other observational

means.

Efforts to calculate the waveform from this phase are under way by the numerical rel-
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ativists. There are two different problems numerical relativists have to tackle. The first is

that of the NS-NS coalescence, which is very important not only for the GW community but

also to the high energy astrophysicists because of the recent evidence that they could be the

progenitors of the short duration Gamma Ray Bursts. The second is the problem of binary

stellar mass BH/SMBH mergers which are of relevance to the ground-based and space-based

interferometers.

In the case of binary NS simulations Ref. [50] performed a three dimensional simulation

within full GR paying special attention to the resulting BH and the mass of the disk formed

since it is important in the GRB context.

Recently there have been many breakthroughs in solving the binary BH problem numer-

ically [51, 52]. Ref. [51] discussed the evolution of a binary BH based on a numerical code

based on generalized harmonic coordinates. It investigated the evolution of an equal mass

nonspinning binary BH through a single plunge orbit, merger and ringdown. The angular

momentum parameter of the resultant BH was estimated to be a ≈ 0.70. It also concluded

that about 5% of the initial rest mass will be radiated during the final orbit and ringdown.

Using a conformal (BSSN) formulation of Einstein’s evolution equations on a cell-centered

numerical grid, Ref. [52] studied the evolution in the last few orbits and merger of a binary

BH system for a wide variety of initial separations. The orbits were assumed to be circular

and individual masses were assumed nonspinning. The simulations resulted in the forma-

tion of a final BH with spin parameter 0.69. Plotting the frequencies as function of time,

they compared the results of their simulations with that of PN theory and found excellent

agreement up to 2PN.

As far as the data analysis strategies for this phase are concerned, it is instructive to

employ sub-optimal methods to detect this phase and use the numerical relativity results to

gain more insights into its understanding (see e.g. [53] for a discussion).

1.6.3 Ringdown

The last part of the compact binary evolution is when the two merged objects form a resultant

BH (or a NS) and it settles to a quiescent state by radiating the deformations in the form of

GWs. These gravitational waveforms can be computed using BH perturbation methods. If

the newly formed compact object is a BH, then its waveform is completely determined only

by its mass and the spin whereas for a NS the waveform is sensitive to the equation of state of

the material. The quasi-normal-mode waveform for BHs typically has the shape of a damped

sinusoid. The characteristic frequency of such sources is

fQNM = 750
[

1 − 0.63(1 − a)0.3
]

(100M�/M)Hz, (1.9)
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where a is the dimensionless spin parameter taking values in the range [0, 1].

1.7 Modelling the inspiral: MPM formalism

The basic aspects the formalism we use to model the compact binary is summarized in this

section. The model we follow has three parts to it. The first module is to study the motion

of the compact binary and obtain equations of motion of the binary by an iteratively solving

Einstein’s equations in GR. The second module addresses the generation problem. One

computes the various multipole moments associated with the compact binary by iterative

solution of Einstein’s equation and these moments are used to obtain the far-zone energy and

angular momentum fluxes. The third part is to account for the effects of radiation reaction.

One uses the expressions for the conserved energy obtained in the first module and the far-

zone fluxes derived in the second and uses an energy balance argument to obtain accurate

expressions for the phase φ(t) of the binary. In the section to follow, we discuss the generation

formalism in more detail.

1.7.1 The post-Newtonian wave generation formalism

The wave generation formalism relates the gravitational waves observed at a detector in the

far-zone of the source to the stress-energy tensor of the source. Successful wave-generation

formalisms mix and match approximation techniques from currently available collections.

These include post-Minkowskian (PM) methods, post-Newtonian (PN) methods, multipole

(M) expansions and perturbations around curved backgrounds. A recent review [44] dis-

cusses in detail the formalism we follow in the computation of the gravitational field; we

summarise below the main features of this approach. This formalism has two independent

aspects addressing two different problems. The first aspect, discussed in Sec. 1.7 is the

general method applicable to extended or fluid sources with compact support, based on the

mixed PM and multipole expansion (usually referred to as MPM expansion), and matching

to some PN source. The second aspect, discussed in Sec. 1.7.3, is the application to point

particle binaries modelling ICBs and issues related to regularization.

1.7.2 The MPM expansion and matching to a post-Newtonian source

To define the solution in the exterior of the source within the complete non-linear theory we

follow Refs. [54, 55, 56, 57, 58, 59], which built on earlier seminal works of Bonnor [60] and

Thorne [61], to set up the multipolar post-Minkowskian expansion. Starting from the general

solution to the linearized Einstein’s equations in the form of a multipolar expansion (valid in

the external region), we perform a PM iteration and treat individually each multipolar piece
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at any PM order. In addition to terms evaluated at one retarded time, the expression for the

gravitational field also contains terms integrated over the entire past “history” of the source

or hereditary terms. For the external field, the general method is not limited a priori to PN

sources. However, closed form expressions for the multipole moments can presently only be

obtained for PN sources, because the exterior field may be connected to the inner field only

if there exists an “overlapping” region where both the MPM and PN expansions are valid and

can be matched together. For PN sources, this region always exists and is the exterior (r > a)

near (r � λ) zone. After matching, it is found that the multipole moments have a non-

compact support owing to the gravitational field stress-energy distributed everywhere up to

spatial infinity. To include correctly these contributions coming from infinity, the definition

of the multipole moments involves a finite part operation, based on analytic continuation.

This process is also equivalent to a Hadamard “partie finie” of the integrals at the bound at

infinity.

The formalism, notably the asymptotic matching procedure therein, has been explored

in detail and extended in a systematic way to higher PN orders [62, 63, 64, 65]. The

final result of this analysis is that, the physical post-Newtonian (slowly moving) source

is characterized by six symmetric and trace free (STF) time-varying moments, denoted

{IL, JL, WL, XL, YL, ZL},1 which are specified for each source in the form of functionals of

the formal PN expansion, up to any PN order, of the stress-energy pseudo-tensor τµν of the

material and gravitational fields [65]. These moments parametrize the linear approximation

to the vacuum metric outside the source, which is the first approximation in the MPM algo-

rithm. In the linearized gravity case τµν reduces to the compact-support matter stress-energy

tensor T µν and the expressions match perfectly with those derived in Ref. [66].

Starting from the complete set of six STF source moments {IL, JL, WL, XL, YL, ZL}, for

which general expressions can be given valid to any PN order, one can define a different set of

only two “canonical” source moments, denoted {ML, S L}, such that the two sets of moments

{IL, · · · , ZL} and {ML, S L} are physically equivalent. By this we mean that they describe

the same physical source, i.e. the two metrics, constructed respectively out of {IL, · · · , ZL}
and {ML, S L}, differ by a mere coordinate transformation (are isometric). However, the six

general source moments {IL, · · · , ZL} are rooted closer to the source because we know their

expressions as integrals over τµν. On the other hand, the canonical source moments {ML, S L}
are also necessary because their use simplifies the calculation of the external non-linearities.

In addition, their existence shows that any radiating isolated source is characterized by two

and only two sets of time-varying multipole moments [61, 54].

The MPM formalism is valid all over the weak field region outside the source includ-

1As usual L = i1i2 · · · il denotes a multi-index made of l spatial indices (ranging from 1 to 3). The integer l
is referred to as the multipolar order.
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ing the wave zone (up to future null infinity). It is defined in harmonic coordinates. The

far zone expansion at Minkowskian future null infinity contains logarithms in the distance

which are artefacts of the harmonic coordinates. One can define, step by step in the PM

expansion, some radiative coordinates by a coordinate transformation so that the log-terms

are eliminated [55] and one recovers the standard (Bondi-type) radiative form of the metric,

from which the radiative moments, denoted {UL, VL}, can be extracted in the usual way [61].

The wave generation formalism resulting from the exterior MPM field and matching to the

PN source is able to take into account, in principle, any PN correction in both the source

and radiative multipole moments. Nonlinearities in the external field are computed by a

post-Minkowskian algorithm. This allows one to obtain the radiative multipole moments

{UL, VL}, as some non-linear functional of the canonical moments {ML, S L}, and then of the

actual source moments {IL, · · · , ZL}. These relations between radiative and source moments

include many non-linear multipole interactions as the source moments mix with each other

as the waves propagate from the source to the detector. The dominant non-linear effect is

due to the tails of wave, made of coupling between non-static moments and the total mass

of the source, occurring at 1.5PN order (∼ 1/c3) relative to the leading quadrupole radiation

[57]. There is a corresponding tail effect in the equations of motion of the source, occurring

at 1.5PN order relative to the leading 2.5PN radiation reaction, hence at 4PN order (∼ 1/c8)

beyond the Newtonian acceleration [56]. At higher PN orders, there are different types of

non-linear multipole interactions, that are responsible for the presence of some important

hereditary (i.e. past-history dependent) contributions to the waveform and energy flux.

A different wave-generation formalism from isolated sources, based on direct integration

of retarded Einstein’s equations in harmonic coordinates, is due to Will and Wiseman [67].

This provided a major improvement and elucidation of earlier investigations on the same

lines [68, 61]. This formalism is based on different source multipole moments (defined by

integrals extending over the near zone only), together with a different scheme for computing

the non-linearities in the external field. It has currently been completed up to the 2PN order.

At the most general level, i.e. for any PN extended source and in principle at any PN order,

the Will-Wiseman formalism is completely equivalent to the present formalism based on

MPM expansions with asymptotic matching (see Section 5.3 in [44] for the proof).

1.7.3 Applications to compact binaries: point particle binaries and

regularization schemes for the self-field

Damour [69], during his careful analysis of the Hulse-Taylor binary pulsar introduced a

matching approach to deal with compact binaries (objects whose physical radii and gravita-

tional radii are comparable) which consists of two parts:
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1. An external perturbation scheme: an iterative weak-field (post Minkowskian) approx-

imation scheme valid in a domain outside the world-tube of the two bodies.

2. An internal perturbation scheme: describing the small perturbations of each body by

the far-field of the companion.

He showed that for compact objects the effects of internal structure of the body are effaced

when seen in the external scheme. The effect of internal structure of the two bodies starts to

appear only at 5PN order in the equation of motion. This result is the rationale for the point

particle description of the compact binary.

Though treating the two compact bodies as point particles, allows a nice analytical treat-

ment of the whole problem, it comes at the cost of handling δ-functions in a nonlinear theory.

This happens because the general formalism, described in the previous section 1.7 is set up

for a smooth and continuous matter distribution and cannot be applied to point particles di-

rectly since they lead to divergent integrals at the location of the particles. Thus for using

the expressions for the smooth matter distribution to the case of compact binaries we have

to supplement them with a clear prescription for removing the infinite self-field of point

particles.

The various regularization methods used in earlier works include Reisz regularization,

Hadamard regularization, extended Hadamard regularization and more recently dimensional

regularization [70, 71, 72, 73, 74, 75, 76]. At 3PN order Hadamard regularization cannot

unambiguously regularize all the badly divergent integrals which appear and one is left with

four ambiguity parameters. Appearance of these ambiguity parameters at a fundamental

level is due to the violation of the gauge symmetry of perturbative GR in the Hadamard

regularization. Recently, dimensional regularization, which respects the gauge symmetry of

perturbative GR, was employed to fix these ambiguity parameters [76, 73] (see Ref. [77] for

a more exhaustive reference list).

1.8 Inspiralling compact binaries on eccentric orbits

This section is devoted to a survey of the possible mechanisms which will produce binaries

with non-negligible eccentricity and an update of the data analysis strategies in dealing with

the GW signals from these sources. A detailed technical description of the theoretical inputs

needed to construct the templates for eccentric binaries is in chapter 6.

1.8.1 Mechanisms which produce eccentric binaries

One of the most important mechanisms which could make the eccentricity of the binary

non-zero, even towards late stages of their inspiral, is the Kozai mechanism [78]. Though in-
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troduced in the context of astroids in the solar systems, the mechanism involving three body

interaction was found to be more general and has been studied in the context of compact

binaries [79, 80, 81, 82] by Monte Carlo simulations. These works studied the dynamical

evolution of a bound hierarchical triple of SMBHs in the nuclei of galaxies undergoing se-

quential mergers. Kozai oscillations induced on the inner binary by the outer BH can make

the binary merger time substantially small. Kozai oscillations of triples in globular clus-

ters could produce eccentric binaries in the sensitivity band of the ground based detectors

whereas these oscillations in the nuclei of galaxies could produce eccentric SMBH binaries

detectable by LISA.

Another scenario recently discussed is in the context of a semi-analytical treatment of

the evolution of a NS-BH binary system [83]. In cases where the NS is not completely

disrupted in the first phase of mass transfer, the remains of the NS could be set to move on

a wider eccentric orbit. The study predicted that there could be eccentric binaries involving

stellar mass NS/BH even towards late stages of inspiral. The recent SWIFT observations of

GRB050911 was explained invoking the above scenario. There have been other scenarios

also in the context of NS-NS and NS-BH mergers [84, 85, 86], details of which we do not

discuss here. In brief, there could be a sub-class of compact binary sources, which will have

non-negligible eccentricity when the GWs emitted by them enters the sensitivity band of the

detectors, both ground-based and space-based.

1.8.2 Data analysis of GW signal from eccentric binaries

The stellar mass binaries consisting of NS and/or BH, which we discussed in the last section,

are interesting sources for LISA as well and there have been studies about the necessity to

model them with eccentricities. For an eccentric system, the power is spread over a large

bandwidth of frequencies rather than localized at a particular dominant value of twice the

orbital frequency. Consequently, the contributions from other harmonics would need to be

taken into account to optimize the search templates.

Seto in Ref. [87] argued that it is possible to measure the total mass of these eccentric

binaries with LISA if one includes the effect of periastron advance (which is a leading 1PN

effect). Jones [88] examined the possibility of bounding the mass of graviton in massive

graviton theories using eccentric binaries.

Like spin, eccentricity can also have implications for the signal-to-noise extracted by

matched filtering in gravitational wave data analysis [89, 90, 91, 92, 93]. The loss of signal-

to-noise ratio resulting from employing a quasi-circular orbit template to detect the signal

from a binary moving in a quasi-elliptical orbit was discussed in [91]. The loss would in-

crease with the eccentricity of the system for a fixed mass but decrease with the mass of the
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system for a fixed eccentricity. Further due to the more rapid evolution of the system in the

presence of eccentricity, a circular orbit template would estimate the parameters of the binary

wrongly. The parameter most affected could be chirp mass which would be overestimated.

This is because an increase in the chirp mass would enhance the orbital evolution mimicking

the effect of orbital eccentricity [91]. Ref. [93] investigated the implications of including the

harmonics of the eccentric binaries when the fundamental frequency is below the cut-off fre-

quency from galactic confusion noise. Inclusion of the other harmonics not only improves

the SNR but also gives a better estimation of the angular resolution of the binaries whose

orbital periods are larger than 2,000 seconds.

A related scenario where modelling the eccentricity of the binary is important is the

‘foreground’ subtraction problem for advanced space based detectors. Recently Cutler and

Harms [94] analysed the NS binary subtraction problem in the context of Big Bang Ob-

server (BBO) estimating the effect of eccentricity. They conclude that the effects of higher

harmonics should be carefully accounted to construct an efficient subtraction scheme.

In connection with the astrophysical paradigm discussed above where the assumption of

vanishing eccentricity is grossly incorrect, one may need to include orbital eccentricity as

an essential parameter on equal footing with the masses and spins in the data analysis. In

this thesis we compute the instantaneous contribution to the 3PN angular momentum flux

for eccentric binaries and apply it to discuss the evolution of orbital elements for binaries

in eccentric orbits under 3PN gravitational radiation reaction in chapter 6. This would form

the basis for any attempt to incorporate higher PN corrections to the data analysis problem

specifically addressing the eccentric binaries.

1.9 Gravitational waves from compact binary inspiral:

issues related to waveform modelling

Having discussed the essential features of the three phases of compact binary evolution, we

list the most important issues in modelling this system and the progress made in addressing

them. This section will be used to emphasize the issues related to waveform modelling which

are relevant to this thesis.

1.9.1 Model for the orbit of the binary: circular vs elliptic orbits

GWs emitted by a compact binary system are detectable by ground-based and/or space-based

interferometers towards the last stages of its inspiral. As shown in [95], even if the binary

has eccentricity when it was formed, radiation reaction effects will circularize the orbit by

the time the binary coalesces. Hence most, if not all, of the sources which will be detected
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by the GW detectors will be moving in circular orbits. This realization has simplified the

data analysis strategies considerably as circular orbit binaries are characterized by a smaller

number of parameters as opposed to the eccentric ones.

Significant progress has been made towards the construction of templates for these bina-

ries and waveforms have been computed, for nonspinning binaries of arbitrary mass ratio, up

to 3.5PN [96, 97, 98, 99, 100] in the phase and 2.5PN in the amplitude [101, 102]. Several

accuracy analyses [103, 104, 105, 36, 46, 47, 106] showed that though the 1.5PN and 2PN

phasing may not be good enough for an accurate detection and parameter estimation, the

3.5PN should be reasonably accurate for the purpose.

The performance of 3.5PN templates for parameter estimation of a nonspinning binary

is one of the important issues addressed in this thesis. The analytical computation of the

2.5PN accurate GW amplitude for nonspinning binaries moving in circular orbits is another

important investigation of the thesis.

Though most of the binaries will be in circular orbits by the time the interferometers

observe them, there could be a subclass of sources which may still have non-negligible ec-

centricity (see Sec 1.8 for more details). Data analysis strategies for these binaries are more

involved. Equivalent to the phasing formula for the circular case, one is interested in com-

puting how the elements of the ellipse describing the binary’s orbit evolve with time. The

evolution of these orbital elements can be expressed in terms of the energy and angular mo-

mentum losses of the system via GWs. The corresponding fluxes of energy and angular

momentum and the corresponding orbital evolution are currently available only up to 2PN

accuracy [107, 108, 109, 110, 111, 112, 113].

The instantaneous terms in the angular momentum flux at 2.5PN and 3PN orders are

computed in this thesis and averaged over an orbit. This is employed to evaluate the evolution

of orbital elements under gravitational radiation reaction. The energy flux up to 3PN comes

from Refs [114, 115]. One has to supplement the present calculation by the evolution of

the orbital elements under ‘hereditary’ terms at 2.5PN and 3PN in order to complete the

problem up to 3PN. This complete 3PN angular momentum flux and evolution of orbital

elements under GW radiation reaction will be necessary for constructing a 3PN accurate

GW phasing in the future.

1.9.2 Assumption about the spin of the binary:

spinning vs nonspinning cases

Though one may argue that the spin effects are more important for binaries with large mass

ratio, including the spin effects is an important step towards constructing more realistic and

general templates. Theoretically, computation of waveforms with spin effects is more com-
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plex. Till date spin effects are computed in the phase up to 2.5PN order [116, 117, 118, 119]

and in the amplitude up to 2PN order [118, 120]. Ref. [116] gave a prescription to incorporate

orbital precession effects and the consequent modulations in the model of the gravitational

waveform.

Throughout this thesis we deal only with nonspinning binaries and do not address the

issues related to spin at all.

1.9.3 Fourier domain waveform: restricted waveform vs full waveform

Further to the assumptions on a model of the orbit and the binary’s spin, analytical expres-

sions for the Fourier domain waveform which are employed to construct templates for data

analysis, use the ‘restricted waveform approximation’. The usual waveforms routinely em-

ployed in analysing the data use a very high PN accurate phasing of the binary, keeping the

amplitude of the wave to be at leading Newtonian order [96]. This is justified by the argu-

ment that the matched filtering is more sensitive to the phase of the GW than its amplitude.

There have been investigations about the validity of the restricted waveform approxima-

tion in the detection as well as parameter estimation contexts [121, 122, 123, 124, 125, 126].

These analyses evaluated the differences arising by the use of the non-restricted waveform in

both detection as well as parameter estimation. The overestimation in SNR by the restricted

waveform templates due to the absence of higher harmonics have to be accounted for while

constructing the templates for data analysis [125, 126].

As part of the thesis (chapters 2 and 3), we provide the complete 2.5PN GW polariza-

tions for inspiralling compact binaries in circular orbits. In view of the recent developments

mentioned earlier we expect our calculation to be important for the data analysis of both

ground-based and space-based detectors.

1.9.4 Modelling the late inspiral: adiabatic vs non-adiabatic

waveforms

The computation of the waveforms for the inspiralling compact binary systems are imple-

mented using the PN approximation to general relativity. One assumes here that though the

orbital frequency of the system changes with time, the change in frequency per orbital pe-

riod is negligible compared to the orbital frequency itself, i.e., ω̇

ω2 � 1. Strictly speaking,

this adiabatic approximation is valid only in the early part of the inspiral and not during the

very late inspiral and merger phases. Hence the standard PN approximation is expected to

break down towards the very late part of the inspiral.

Alternatives have to be explored to include the effects of non-adiabaticity and to model

the plunge and merger phases. The effective one body (EOB) approach [48, 49, 127, 128]
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first proposed by Buonanno and Damour is one of the most important among them. This

method uses the Hamilton-Jacobi formalism to map the conservative dynamics of the two

body problem involving two masses m1 and m2 into an effective one body problem of a test

particle of mass µ = M η, where M = m1 + m2 and η = m1m2/M2, moving in an effective

background metric which is a deformed Schwarzchild metric with a deformation parameter

η. This description of the conservative dynamics is supplemented by an additional radiation

reaction force obtained from Padé resummation of the GW flux. This method, for the first

time, does not assume adiabaticity anymore and provides an analytical description of the

transition from plunge to merger and subsequent ‘ringing’.

Other approaches to go beyond the adiabatic approximation, have been made by Buo-

nanno et al [129, 130, 131, 132] and Ajith et. al [133, 134]. Buonanno et al used a variant of

the non-adiabatic model using an effective Lagrangian constructed in the PN approximation.

Ajith et al proposed a new class of templates (complete non-adiabatic approximants) that re-

instate the ‘missing’ conservative terms in the acceleration at 1PN and 2PN and consequently

improve the standard adiabatic treatment.

With the recent progresses in numerical relativity, there is hope that one will have better

waveforms for the late inspiral and merger parts of the binary evolution which can be used

for constructing templates as well as to test the robustness of the analytical adiabatic and

non-adiabatic models.

Throughout this thesis we work only within the adiabatic approximation.

1.9.5 Convergence of the PN series

The post-Newtonian expansion is an asymptotic expansion in the set of gauge functions

c−n(log c)m. It converges slowly and hence the rate of convergence of the PN series is a

practical issue to deal with in data analysis, both for detection and parameter estimation.

There have been many studies examining this aspect in the arbitrary mass ratio case and in

the test mass limit. In the latter case, its even more interesting as there are exact expressions

for the energy function (analytical) and flux function (numerical) which are the two crucial

ingredients for constructing the phase evolution.

One method to examine the convergence of the series is to examine the total number

of GW cycles each PN order contributes and investigate whether they show a convergent

behaviour as we go to high PN orders [135, 105, 98, 99]. These works showed that the

number of cycles arising from higher PN orders do get smaller but follow an oscillatory

pattern, characteristic of the PN series. In Ref. [46], the authors introduced a more precise

definition for number of cycles by weighing it by the noise PSD of the detector and termed

it number of useful cycles. Details of this are discussed in chapter 4

21



Another method, more instructive from the data analysis point of view, is to calculate the

‘overlap’ between the PN template of a particular order with the exact (in the test particle

case) or fiducial exact (arbitrary mass ratio case) templates which are considered to be the

best representation of the actual signal. Studies in Refs [136, 36, 46, 47, 137, 133, 129, 130]

also showed similar trend as for the number of cycles. More specific measures were defined

specific to the problem of detection (effectualness) and parameter estimation (faithfulness)

that allowed one characterize the biases in parameter estimation [36, 46, 47, 129, 130, 133].

A similar study in the parameter estimation context is lacking at present. Studies of

[104, 105] compute errors associated with the estimation of the signal parameters only up to

2PN order. In this thesis, we extend this analysis including the higher order terms available

at present and examine the convergence of the PN series in the parameter estimation context

for the ground-based GW detectors and LISA cases. The results of this study suggest that

using the 3.5PN phasing is important in both the cases to avoid systematic errors from the

neglect of higher order terms.
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