
Chapter 4

Parameter estimation of gravitational

wave chirp signals for the ground-based

detectors using 3.5PN inspiral waveforms

4.1 Introduction

With the advent of a new generation of gravitational wave (GW) detectors such as LIGO,

VIRGO, GEO and TAMA [17, 18, 19, 20], we are on the eve of a new era in astronomy:

Gravitational Wave Astronomy (see Ref. [163, 164] for recent reviews). The paucity of

GW sources within a detectable distance, as well as the weakness of the gravitational wave

signals, make imperative the necessity for developing optimal data analysis techniques, both

for their detection and for the extraction of maximum information from these signals. It is

for this reason that inspiralling compact binaries, which can be well modelled within the

general relativistic framework, have become one of the most promising candidate sources

for the large scale and medium scale gravitational wave detectors.

An efficient data analysis scheme involves two independent aspects: first, the theoretical

computation of very high accuracy templates and second, the design of a detection strat-

egy adapted to the particular signal one is looking for. These strategies vary according to

the type of signal. Gravitational waves from inspiralling binaries are transients lasting for

a short duration (a few seconds) in the sensitivity bandwidth of a ground-based detector.

As the binary inspirals, the waveform sweeps up in frequency and amplitude, leading to a

characteristic chirp signal. Since the phasing of the waves is known very accurately, it is

possible to enhance their detectability by using matched filtering. Bursts of unknown shape,

as for example from a supernova, will be probed by monitoring the power excesses in the

Fourier or time-frequency domain, but the enhancement in the visibility of the signal is not
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as good as when the phasing of the signal is known and matched filtering can be applied. In

both cases, coincident observations with a network of detectors would assist the detection

significantly, by increasing the confidence level of detection and mitigating non-stationarity.

Continuous sinusoidal signals, as for example from a spinning neutron star, are also detected

by matched filtering and the signal visibility increases as the square-root of the period for

which the signal is observed. Stochastic signals require cross-correlation of data from two or

more collocated, or geographically close by, detectors. Here, the stochastic signal buried in

one of the instruments acts as a matched filter to dig out exactly (or nearly exactly) the same

signal in another. However, since the filter is noisy the efficiency is greatly degraded and the

visibility improves only as the fourth-root of the duration of observation.

As a binary inspirals adiabatically, i.e. when the inspiral time-scale is much larger than

the orbital time-scale, it is possible to treat the problem perturbatively and expand the general

relativistic equations of motion and wave generation as a power series in v/c, where v is the

characteristic orbital velocity of the system. This post-Newtonian (PN) treatment has been

successful in modelling the dynamics of a binary even at the late stages of inspiral and used

in the computation of waveforms necessary for data analysis (see [44] for a recent review)1.

4.1.1 Data analysis of the chirp signal

Among the different methods suggested for the detection of chirps from inspiralling and

merging binaries, matched filtering (also known as Weiner filtering) is the most effective

technique [165, 166, 167, 168]. Matched filtering consists of passing the detector data

through a linear filter, or a template, constructed from the expected signal h(t; θ). Here θ

is a ‘vector’ whose components are the parameters of the template.

In matched filtering, the unknown set of parameters characterizing the signal are mea-

sured by maximising the correlation of the data with a whole family of templates which

correspond to different values of the parameters. The parameters of the template which max-

imises the output of a matched filter give an estimate of the true parameters. The parameters

of a signal measured in a single experiment will be different from the actual values due to the

presence of noise. Parameter estimation basically aims at computing the probability distri-

bution for the measured values of a signal. Given a measured value from a single experiment

one then uses the probability distribution function to compute the interval in which the true

parameters of the signal lie at a specified confidence level (see Sec. 4.2 for a summary of the

theory of parameter estimation). In the next Section, we discuss the types of error bounds

proposed in the literature in the context of GW data analysis.

1In our nomenclature, (v/c)n corresponds to n
2 post-Newtonian (PN) order. Henceforth, we shall use units

in which c = G = 1.
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4.1.2 Systematic and Statistical errors in parameter estimation

In the estimation of signal parameters one encounters two kinds of errors: one is statistical

and the other systematic. The statistical error arises because of the detector noise. The

presence of the detector noise alters the signal parameters from its true values and in the

process of maximising the SNR, one errs in the estimation of the signal parameters. This

error depends inversely on the SNR associated with the signal. The systematic errors have

a different origin. This has to do with the signal model itself. If the signal model used in

matched filtering is not good enough, the measured values may yield an incorrect value.

In the context of the PN phasing formula, since higher PN order phasing formulas are

better models of the signal, one would expect the systematic errors to decrease as one em-

ploys higher PN order phasing. Further, one can investigate the convergence of the PN series

in regard to parameter estimation by examining the statistical errors at different PN orders.

The rest of this chapter is devoted to the understanding of the problem of parameter

estimation at different PN orders, studying the convergence of the PN series in the parameter

estimation context and investigating the trends seen in parameter estimation across PN series

with different descriptors such as the number of GW cycles.

We begin by a discussion of the essential parts of parameter estimation theory using the

Fisher matrix formalism and mention its limitations. Next in Sec. 4.3.4 we discuss the pa-

rameter estimation at different PN orders for fixed SNR case to analyse how does the detector

bandwidth affect the parameter estimation and to study the PN convergence for the problem

of parameter estimation. Sec. 4.3.5 discusses the parameter estimation for different detector

configurations for sources at fixed distance of 300 Mpc and studies the effect of detector

sensitivity on parameter estimation. Using these results one can compare the performances

of different detector configurations in regard to the parameter estimation. Correlations, if

any, of parameter estimation with total and useful GW cycles are investigated in detail in

Sec. 4.3.6. Parameter estimation with the third generation GW detector EGO is discussed in

Sec. 4.4. Finally, we make an attempt, albeit incomplete, to go beyond the standard restricted

waveform approximation, by including the PN corrections from the ‘frequency sweep’ in

Sec. 4.5.

4.1.3 Parameter estimation of the chirp signal:

Different kinds of error bounds

In parameter estimation it is of interest to obtain the distribution of the measured values and

error bounds on the measured values of the parameters. To this end, the starting point would

be to construct the Fisher information matrix, the inverse of which, the covariance matrix,

provides an estimate of the possible errors in the measurement of the parameters [165]. Error
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bounds obtained using the covariance matrix are called the Cramer-Rao bounds [169, 170].

However, for low values of the signal-to-noise ratio (SNR) the actual errors involved may

be much larger than the errors estimated by this method. Cramer-Rao bounds fall off as the

inverse of SNR, whereas the actual errors need not follow this behaviour. One usefulness

of the Cramer-Rao bound is that, they are asymptotically valid in the limit of high SNR and

hence provides a fiducial value relative to which one can test all other estimates.

An alternate, and more general, way is to estimate the errors by Monte Carlo methods

[171, 172, 173]. In this method, one mimics the detection problem on a computer by per-

forming a large number of simulations corresponding to different realizations of the noise in

each one of them. The advantage here is that, one no longer assumes a high SNR, which is

a crucial assumption in computing the covariance matrix. In Ref. [173] exhaustive Monte

Carlo simulations were carried out to compute the errors in the estimation of the parame-

ters and the covariances among them. It used the initial LIGO configuration and took into

account only the 1PN corrections assuming, as usual, the orbit to be quasi-circular. It was

shown that the covariance matrix grossly underestimates the errors in the estimation of the

parameters by over a factor of two at a SNR of 10. This discrepancy disappears when the

SNR is approximately 15 for a Newtonian filter and 25 for the 1PN case. Further, the reason

for the discrepancy was explained in detail in Ref. [174]. Extending the Monte Carlo sim-

ulations of Ref. [173] by the inclusion of higher order terms may be computationally quite

expensive [174].

More rigorous bounds (Weiss-Weinstein bound and Ziv-Zakai bound) on the parame-

ter estimation of inspiralling binaries are discussed in Ref. [175]. They compare, at the

Newtonian order, the results obtained by these bounds with the Cramer-Rao bounds and the

numerical Monte Carlo results. At large SNR, they find all theoretical bounds to be identical

and attained by Monte Carlo methods. At SNRs below 10, the Weiss-Weinstein bound and

the Ziv-Zakai bound provide increasingly tighter lower bounds than the Cramer-Rao bound.

4.1.4 Parameter estimation and the phasing formula: An update

Intrinsic parameters, like masses and spins, characterising the signal can be estimated from

the data collected by a single detector. On the other hand, the distance to the source and

its position in the sky require at least three geographically separated detectors forming a

detector network [103, 176, 177]. Cutler and Flanagan [103] have shown that, to a good

approximation, it is sufficient to use Newtonian waveforms for the latter analyses. We will

not, however, concern ourselves with the estimation of distance in the present work.

Cutler and Flanagan [103] initiated the study of the implications of higher order phas-

ing formula as applied to the parameter estimation of inspiralling binaries. They used the
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1.5PN phasing formula to investigate the problem of parameter estimation, both for spinning

and non-spinning binaries, and examined the effect of the spin-orbit parameter β (assumed

constant) on the estimation of parameters. They find that parameter estimation worsens by

a factor of about ten because of the inclusion of β. The effect of the 2PN phasing formula

was analysed independently by Poisson and Will [105] and Królak, Kokkotas and Schäfer

[104]. In both of these works the focus was to understand the new spin-spin coupling term

σ appearing at the second PN order when the spins were aligned perpendicular to the orbital

plane (constant β and σ). Compared to Ref. [104], Ref. [105] also included the a priori in-

formation about the magnitude of the spin parameters, which then leads to a reduction in the

rms errors in the estimation of mass parameters. It was shown that the effect of the inclusion

of σ is less drastic than β and that it worsens parameter estimation only by a factor of order

unity. In a more recent work [21], the implications of including the spin couplings on the

parameter estimation and the tests of alternative theories of gravity were studied using the

LISA noise curve.

4.1.5 Summary of the current work

Starting with a brief summary of parameter estimation in Sec. 4.2, we discuss in Sec. 4.3.2

the nature of the ‘chirp’ signals from non-spinning binaries using the 3.5PN phasing formula

[99] which is now completely determined following the recent computation of the hitherto

unknown parameters at 3PN [76, 73, 100, 72, 178, 75, 179, 152].

We first study parameter estimation using three different noise curves: Advanced LIGO,

initial LIGO and VIRGO. These results are then compared with the results obtained us-

ing the noise power spectral density (PSD) of European Gravitational Observatory (EGO).

Our choice is motivated by the fact that initial LIGO and VIRGO are the more sensitive in-

struments among the first generation of interferometric detectors with a somewhat different

combination of bandwidth and sensitivity while Advanced LIGO is prototypical of second

generation instruments currently being planned. The comparison of the LIGO-VIRGO re-

sults with EGO helps one to understand the differences between the initial, Advanced and

third generation detectors. We will use the planned design sensitivity curves of initial LIGO

and VIRGO as in Ref. [47], and Advanced LIGO2 as in Ref. [163] and discuss in Sec. 4.3.3

the sensitivity and span of these instruments for binary coalescences. We use the EGO noise

curve of [180].

As mentioned earlier, Poisson and Will [105] analysed the implications of the 2PN phas-

ing formula on parameter estimation of spinning binaries [117]. Recently the spin effects

2For the sake of comparison with previous work we have also carried out our study with the Advanced
LIGO noise curve as in Refs. [103, 105]. However, most of the work reported in this study uses the Advanced
LIGO noise curve quoted in Ref. [163].
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(spin-orbit coupling) in the dynamics of the inspiralling compact binary was extended to

2.5PN by Blanchet, Buonanno and Faye [160, 119]. In this work we will follow the proce-

dure adopted in [105], but consider only the non-spinning case. We study in Sec. 4.3.4 the

effect of higher order phasing terms by incorporating them in steps of half-a-PN order from

1PN up to 3.5PN and examine the convergence of parameter estimation with PN orders.

We compare the errors for the different noise curves and assess their relative performance

in two different ways: at a fixed signal-to-noise ratio (Sec. 4.3.4), with the aim of under-

standing how the detector bandwidth improves parameter estimation, and for a fixed source

(Sec. 4.3.5), to gauge the relative importance of sensitivity and bandwidth. We have exam-

ined the correlation of parameter estimation results to the number of useful cycles [46] and

the detector bandwidth (Sec. 4.3.6), which together can explain the performance of different

detectors with regard to parameter estimation.

In Sec. 4.5 we study the effect of the amplitude terms arising from the ‘frequency-sweep’

dF/dt within the stationary phase approximation [167, 181, 182, 183, 46]. These corrections

cause the SNR (which is related to the total energy emitted by the system) of a given binary to

vary as we go from lower to higher PN orders. The results are compared against the standard

restricted waveform approach and should be viewed as a prelude, albeit inconsistent, to

parameter estimation using the complete waveform. We conclude in Sec. 4.6 with a summary

of our results, their regime of validity, limitations and future directions.

Our main conclusion is that the 3.5PN phasing formula leads to an improved estimate of

the binary parameters. For instance, in the case of black hole binaries, at a SNR of 10, the

estimate of chirp mass (symmetric mass ratio), more specifically lnM (ln η), improves while

using the 3.5PN phasing formula as compared to the 2PN by about 19% (52%) for a equal

mass binary BH of 20M� . Improvements are seen in all cases but are relatively smaller

for lighter binaries. At a fixed SNR, VIRGO provides a better estimate of the parameters

compared to both initial and Advanced LIGO configurations owing to its better bandwidth.

This is true over the entire mass range and even for lower mass binaries for which VIRGO

accumulates fewer number of useful cycles. For a fixed source, however, Advanced LIGO

measures the parameters most accurately, as expected, with VIRGO doing better than initial

LIGO. The third generation GW detector EGO would have the smallest errors among all and

will measure the mass parameters with incredibly small error bars. Our investigation of the

amplitude corrections from the ‘frequency-sweep’ within the stationary phase approximation

finds that the percentage change induced by this effect in parameter estimation is less than

10% for initial LIGO at a SNR of 10.
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4.2 A brief summary of parameter estimation theory

A firm statistical foundation to the theory of gravitational wave data analysis was laid down

by the works of e.g. Finn and Chernoff [184, 185] and Cutler and Flanagan [103]. This

Section briefly outlines the problem of parameter estimation relevant to this chapter. Notation

and treatment of this Section essentially follow Ref. [186, 187, 103, 105] (see also [166, 165,

188, 189] for further details). We restrict our discussion to measurements made by a single

detector.

4.2.1 Matched filtering

The output of a gravitational wave detector contains both the signal and noise and is schemat-

ically represented as

x(t) = h(t) + n(t) , (4.1)

where h(t) is the signal content in the data and n(t) is the noise, which is assumed to be a

stationary Gaussian random variable, with zero mean, i.e.,

n(t) = 0. (4.2)

Here an overbar denotes the ensemble average (over many realisations of the noise or, equiv-

alently, over an ensemble of detectors). Let q(t) define a linear filter and c(t) its correlation

with the detector output x(t)

c(t) =
∫ ∞

−∞
dt′ x(t′) q(t + t′) . (4.3)

Define a new quantity σ[q](t), such that c(t) is normalized by the square root of its variance,

σ[q](t) =
c(t)

[

c2(t) − c(t)
2
]1/2
=

2<
∫ ∞

0
d f x̃( f ) q̃∗( f ) e2πi f t

[∫ ∞
0

d f S h( f ) |q̃( f )|2
]1/2

, (4.4)

where x̃( f ) and q̃( f ) are the Fourier transforms of x(t) and q(t), respectively, S h( f ) is the

real, one-sided power spectral density defined only for positive frequencies by

n( f )ñ∗( f ′) =
1
2
δ( f − f ′) S h( f ) , (4.5)
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and ñ( f ) is the Fourier transform of n(t) defined as ñ( f ) =
∫ ∞
−∞ dt n(t)e−2πi f t. The filtered SNR

ρ is defined by the ensemble average

ρ[q](t) = σ[q](t) =
2<

∫ ∞
0

d f h̃( f ) q̃∗( f ) e2πi f t

[∫ ∞
0

d f S h( f )|q̃( f )|2
]1/2

. (4.6)

An optimal filter is the one which maximises the SNR at a particular instant, say t = 0, and

is given by the matched filtering theorem as

q̃( f ) = γ
h̃( f )

S h( f )
, (4.7)

where γ is an arbitrary real constant. Thus, the SNR corresponding to the optimal filter is

given by

ρ2 = 4
∫ ∞

0
d f
|h̃( f )|2
S h( f )

. (4.8)

4.2.2 Parameter estimation

Though we may have a prior knowledge of the form of the signal we will not know what

its parameters are. Indeed, the parameters are to be measured in the process of matched

filtering. This is achieved by maximising the correlation in Eq. (4.4) with a whole family

of templates corresponding to different values of the signal parameters. The parameters of

the filter which maximise the correlation are the measured values attributed by the analyst to

the signal presumed to be buried in the data. These parameters need not agree, in general,

with the actual parameters of the signal since the measured values depend on a particular

realization of the detector noise.

For a given incident gravitational wave, different realizations of the noise will give rise

to somewhat different best-fit parameters. However, if the SNR is high enough, the best-fit

parameters will have a Gaussian distribution centered around the actual values.

Let θ̃a denote the ‘true values’ of the parameters and let θ̃a+∆θa be the best-fit parameters

in the presence of some realization of the noise. Then for large SNR, errors in the estimation

of parameters ∆θa obey a Gaussian probability distribution of the form [184]

p(∆θ1, · · ·∆θn) = p(0)e−
1
2Γbc∆θ

b∆θc
, (4.9)

where p(0) is a normalization constant and n the number of parameters. In the above expres-

sion Γab ≡ (ha | hb) is the Fisher information matrix evaluated at the measured value of the

parameters θ. Here, ha ≡ ∂h/∂θa, and ( | ) denotes the noise weighted inner product. Given

72



any two functions g and h their inner product is defined as:

(g | h) ≡ 2
∫ ∞

0
d f

g̃∗( f ) h̃( f ) + g̃( f ) h̃∗( f )
S h( f )

. (4.10)

Using this definition of the inner product one can re-express Γab more explicitly as

Γab = 2
∫ ∞

0

h̃∗a( f )h̃b( f ) + h̃a( f )h̃∗b( f )

S h( f )
d f . (4.11)

The variance-covariance matrix, or simply the covariance matrix, defined as the inverse

of the Fisher information matrix, is given by

Σab ≡ 〈∆θa∆θb〉 = (Γ−1)ab, (4.12)

where 〈·〉 denotes an average over the probability distribution function in Eq. (4.9). The

root-mean-square error σa in the estimation of the parameter θa is

σa =
〈

(∆θa)2〉1/2
=
√
Σaa , (4.13)

while the correlation coefficient cab between parameters θa and θb is defined as

cab =
〈∆θa∆θb〉
σaσb

=
Σab

√
ΣaaΣbb

. (4.14)

(There is no summation over repeated indices in Eqs. (4.13) and (4.14).) As a consequence of

their definition the correlation coefficients must lie in the range [−1, 1]. When the correlation

coefficient between two parameters is close to 1 (or −1), it indicates that the two parameters

are perfectly correlated (respectively, anti-correlated) (and therefore redundant) while a value

close to 0 indicates that the two parameters are uncorrelated.

In our analysis we will apply the method outlined above to three prototypical systems

normally considered in gravitational wave studies related to ground-based detectors. These

include a binary neutron star system (NS-NS), a neutron star-black hole system (NS-BH)

and a binary black hole system (BH-BH). Throughout our analysis we shall assume that the

mass of a NS is 1.4M� and that of a BH is 10M�.
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4.3 Parameter estimation using the 3.5PN GW phasing

formula

Having outlined the essential results from the theory of parameter estimation, we proceed

to address the question of extracting the parameters from the chirp signal using the 3.5PN

phasing formula. Our computation parallels the one by Poisson and Will [105] except that

we confine our attention to the case of non-spinning binaries whereas Ref. [105] dealt with

spinning binaries.

4.3.1 Model for the waveform

Before we go into the details of the calculation, the assumptions made about the model of the

waveform is summarized below. The present work deals with only the nonspinning binaries

4.3.1.1 Model for orbit

Since radiation back reaction causes the orbital eccentricity e to fall-off (for small e) as

e ∝ P19/18 and the orbital radius to decay much more slowly r ∝ P2/3 [139], the binary

orbit will essentially be circular by the time the system reaches the late stages of the inspiral

phase. Thus, in our analysis we shall restrict our attention to the case of compact binaries in

quasi-circular orbits, i.e. circular but for the adiabatic decay of the orbit under gravitational

radiation reaction. One should bear in mind that there could be binaries which even towards

the epoch of coalescence are eccentric. As discussed in chapter 6, data analysis strategies for

such binaries are much more complicated. An alternate and simplified strategy to deal with

binaries with non-zero but small eccentricity is discussed in Ref [104]. However we do not

consider this effect in the discussions to follow.

4.3.1.2 Restricted waveform approximation

As first suggested by Ref [96], restricted waveforms would be an excellent approximation

for most of the data analysis purposes in the first instance. In the restricted waveforms for

binaries in quasi-circular orbits the phase is computed to the highest PN order available, but

the amplitude is taken to be Newtonian, involving only the dominant signal harmonic at twice

the orbital frequency. This is different from the complete waveform, which incorporates the

PN corrections to the amplitude, arising from the ‘plus’ and ‘cross’ GW polarizations, and

hence includes the contribution from other harmonics (both higher and lower) besides the

dominant one. Till date, for non-spinning binaries, the restricted waveform is computed to

3.5PN accuracy [140, 97, 67, 98, 143, 99] and the complete waveform up to 2.5PN order

74



[101, 102]. The best template is probably the one which consists of the phasing at 3.5PN

and the amplitude at 2.5PN. Presently, both the detection and parameter estimation problems

mainly employ the restricted PN waveform although there have been some investigations on

the ensuing improvement achieved when corrections arising from the other harmonics are

incorporated by using the complete waveform [121, 122, 123, 124]. In this chapter, we con-

fine ourselves mostly to the restricted waveform; specific amplitude corrections arising from

the ‘frequency-sweep’ are considered, however, in Sec. 4.5. We use the restricted waveform

truncated at different PN orders from 2PN to 3.5PN, for comparison, in the calculations. We

discuss the implications of including the amplitude corrections in the concluding section.

4.3.1.3 Stationary phase approximation

We use the Fourier domain representation of the waveform, which is computed using the

stationary phase approximation (SPA) [167, 181]. Different studies have examined the ac-

curacy of the SPA in representing the Fourier domain gravitational waveform [183, 46] and

found that it reasonably well approximates the actual Fourier domain waveform. Given a

function B(t) = 2 A(t) cos φ(t), where d ln A/dt � dφ(t)/dt and |d2φ/dt2| � (dφ/dt)2, the

SPA provides the following estimate of the Fourier transform B̃( f ):

B̃( f ) '
A(t f )
√

Ḟ(t f )
ei[Ψ f (t f )− π4 ] , f ≥ 0 , (4.15a)

where Ψ f (t) ≡ 2π f t − φ(t) , (4.15b)

and
dφ
dt
≡ 2πF(t). (4.15c)

In this equation t f is defined as the time at which F(t f ) = f and Ψ f (t f ) is the value of Ψ f (t)

at t = t f .

Our waveform model is valid only in the early phase of the binary inspiral. Towards later

stages, as is well-known, the PN expansion is not convergent. To model the late inspiral or

plunge phases one may want to use effective one body approach proposed by Buonanno and

Damour [48]. We do not consider this possibility in the present work.

4.3.2 Fourier transform of the chirp at 3.5PN order

To compute the Fisher information matrix we would need the Fourier transform h̃( f ) of the

signal h(t). (Note that here and in what follows f is the Fourier transform variable which

should not be confused with F, the instantaneous frequency of emitted radiation). Following

earlier works, we employ the stationary phase approximation (SPA) to evaluate the Fourier

amplitude of the waveform.
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Starting from the 3.5PN phasing formula in [99], the Fourier transform has been explic-

itly calculated in Refs. [47, 106]. This Fourier domain waveform, which forms the basis of

our further calculations, is given by

h̃( f ) = A f −7/6eiψ( f ), (4.16)

whereA ∝ M5/6Q(angles)/D, and to 3.5PN order the phase of the Fourier domain waveform

is given by

ψ( f ) ≡ Ψ f (t f ) −
π

4

= 2π f tc − φc −
π

4
+

3
128 η v5

N
∑

k=0

αk v
k, (4.17)

where v = (πM f )1/3, M = m1 + m2 is the total mass of the binary, η = m1m2/M2 is the

dimensionless mass ratio and D the distance to the binary. We shall find it useful in our

study to deal with the chirp mass defined byM = η3/5M rather than the total mass M. The

coefficients αk’s, k = 0, . . . ,N, (with N = 7 at 3.5PN order) in the Fourier phase are given by

α0 = 1, (4.18a)

α1 = 0, (4.18b)

α2 =
20
9

(

743
336
+

11
4
η

)

, (4.18c)

α3 = −16π, (4.18d)

α4 = 10

(

3058673
1016064

+
5429
1008

η +
617
144

η2

)

, (4.18e)

α5 = π

(

38645
756

+
38645
252

log

(

v

vlso

)

− 65
9
η

[

1 + 3 log

(

v

vlso

)])

, (4.18f)

α6 =

(

11583231236531
4694215680

− 640 π2

3
− 6848 C

21

)

+ η

(

−15335597827
3048192

+
2255 π2

12

− 1760 θ
3
+

12320 λ
9

)

+
76055
1728

η2 − 127825
1296

η3 − 6848
21

log (4 v) , (4.18g)

α7 = π

(

77096675
254016

+
378515

1512
η − 74045

756
η2

)

, (4.18h)

where C is the Euler constant 0.577216 · · · . It is important to note the different notations

used for the symmetric mass ratio in this chapter (and in chapter 5) and chapters 2, 3 and

chapter 6. In chapters 2, 3 and 6 we denote it by ν and in the two parameter estimation

chapters (the present chapter and chapter 5) we use η. This is to be consistent with the

conventions followed by the theorists and the data analysts. Among the coefficients above,
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α5 can be simplified further. This interesting possibility arises because of the cancellation

of v5 of the 2.5PN term with that of the overall factor in the denominator of Eq. (4.17).

Consequently, all but the ln v terms in α5 are constants and can be absorbed in a redefinition of

the phase. Indeed, we find that all our estimations, except ∆φc, remain unchanged irrespective

of whether we choose α5 as above, or a simplified one retaining only the ln v term.

In the 3PN phasing, until recently, there were two undetermined parameters, λ and θ, aris-

ing from the incompleteness of the Hadamard self-field regularisation at 3PN3. By dimen-

sional regularisation λ and θ have been now determined in Ref. [76, 73] and [100, 72, 178, 75]

respectively, completing the general relativistic compact inspiral phasing to 3.5PN order:

λ = − 1987
3080 ' −0.6451 and θ = − 11831

9240 ' −1.28. λ has also been determined by an alternate

approach [179, 152].

The appearance of log v terms in the phasing formula is one of the interesting features of

the PN series. Recently, Refs [22, 23] examined the accuracy with which these log terms,

the presence of which is a good test of the PN structure of the phasing formula, can be

determined . They concluded that with the Advanced LIGO, the log terms at 2.5PN and 3PN

can be estimated with fractional accuracy smaller than unity [190].

Following earlier works, we choose the set of independent parameters θ describing the

GW signal to be

θ = (lnA , f0tc , φc , lnM , ln η), (4.19)

where tc refers to the coalescence time, φc refers to the phase at coalescence instant, f0 is

a scaling frequency related to the power spectral density (PSD) of the detectors (see next

Subsection). Note that A is taken to be one of the independent parameters. Computing

the Fisher information matrix Γab, whose elements are given by (ha|hb) (where a and b are

indices which run over the parameters), is the first step towards our goal. The upper cut-off

in computing the integrals in Eq. (4.8) and (4.11) is taken to be the GW frequency at the last

stable circular orbit (LSO) given, for a test mass in a Schwarzschild spacetime of mass M, to

be

Fupper = Flso =
(

63/2πM
)−1

. (4.20)

Here we have ignored the finite mass corrections to flso obtained by Padé approximants [36]

or by effective one body method [48] since they are negligibly small in our case. We take the

lower limit in the integrals to be the seismic cut-off frequency fs of the detector.
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Figure 4.1: Amplitude spectrum (left panel) of initial LIGO, VIRGO and Advanced LIGO
together with the luminosity distance (right panel) at which RMS-oriented binaries would
produce a SNR of 5.

4.3.3 Sensitivity and span of LIGO and VIRGO

We compute the covariance matrix for three noise curves to understand the effect of detector

characteristics on parameter estimation. The noise curves used are Advanced LIGO as in

[163] and initial LIGO and VIRGO as in [47]. We have fitted the following expression to the

noise PSD of Advanced LIGO given in [163]

S h( f ) = S 0

[

x−4.14 − 5x−2 +
111(1 − x2 + x4/2)

(1 + x2/2)

]

, f ≥ fs (4.21a)

= ∞, f < fs, (4.21b)

where x = f / f0,
4, f0 = 215 Hz (a scaling frequency chosen for convenience), fs = 20 Hz is

the lower cutoff frequency [defined such that for NS-NS binaries the gain in SNR by reducing

the lower limit of the integral in Eq. (4.8) below fs is less than 1%], and S 0 = 10−49 Hz−1.

Note that the above PSD is significantly different from the Advanced LIGO noise curve used

in earlier studies. Indeed, authors of Ref. [103, 105, 167, 7] use the PSD of Advanced LIGO

to be S h( f ) = S 0

[

x−4 + 2 + 2x2
]

, f ≥ fs, and S h( f ) = ∞, f < fs,with x = f / f0, f0 = 70 Hz,

fs = 10 Hz and S 0 = 6×10−49 Hz−1,which has a significantly better low-frequency sensitivity

than what is currently believed to be possible for the next generation of LIGO. Hence, we

have chosen to work with the more recent estimate given in Eq. (4.21).

3The ambiguity parameter θ occurring at 3PN should not be confused with the set of parameters θa describ-
ing the GW.

4The definition of x = f
f0

here should not be confused with the gauge independent PN parameter x =

( G mω
c3 )2/3 in chapters 2,3and 6.
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The initial LIGO noise curve from Ref. [47] is given by

S h( f ) = S 0

[

(4.49x)−56 + 0.16x−4.52 + 0.52 + 0.32x2
]

, f ≥ fs (4.22a)

= ∞, f < fs, (4.22b)

where again x = f / f0, with f0 = 150 Hz, fs = 40 Hz and S 0 = 9 × 10−46 Hz−1. Finally, for

the VIRGO detector the expected PSD is given by [47]:

S h( f ) = S 0

[

(6.23x)−5 + 2x−1 + 1 + x2
]

, f ≥ fs (4.23a)

= ∞, f < fs, (4.23b)

where f0 = 500 Hz, fs = 20 Hz and S 0 = 3.24 × 10−46 Hz−1. The amplitude spectra [i.e.

the square-root of the power spectral densities given in Eqs. (4.21)-(4.23)] of the various

detectors are plotted in the left hand panel of Fig. 4.1.

The SNR achieved by these detectors for binaries of different masses not only depends

on the distance D at which the source is located but also on the orientation of the orbital

plane with respect to the line-of-sight. In order not to be biased one can consider binaries of

root-mean-square (RMS) orientation and compute the SNR they would produce in a given

detector. One can turn around the question and ask the distance at which sources of RMS

orientation would produce a specified SNR. Indeed, the distance D at which a binary of RMS

orientation achieves a SNR ρ0 is given by [46]

D(M, η) =
1

ρ0π2/3

√

2 η M5/3

15

[∫ flso(M)

fs

f −7/3

S h( f )
d f

]1/2

. (4.24)

As is well known the SNR depends only on the chirp mass M = η2/3 M and not on the

masses of the two bodies separately. The SNR is maximum for equal mass binaries (for

which η = 1/4) and is smaller by a factor
√

4η for systems of the same total mass but

consisting of stars of unequal masses. The right-hand panel of Fig. 4.1 plots the luminosity

distance at which binaries of RMS orientation and consisting of stars of equal masses would

produce a SNR of ρ0 = 5. After computing the covariance matrix we shall use this plot

to study how parameter estimation varies in different interferometers for sources at a fixed

distance.

4.3.4 Parameter estimation using the 3.5PN GW phasing – Fixed SNR

In this Section, we examine how the addition of higher order terms in the phasing formula

affects the parameter estimation of the binary. We start from the 1PN phasing formula and
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Figure 4.2: Comparison of errors in the estimation of tc, M and η for sources with a fixed
SNR of 10 (left panels) with those for systems at a fixed distance of 300 Mpc (right panels).

add terms in steps of half-a-PN order up to 3.5PN, which is the most accurate expression cur-

rently available. We are interested in the case of non-spinning binaries (ignoring spin and or-

bital angular momentum) and hence estimate only five parameters (lnA, f0tc, φc, lnM, ln η).

We calculate the elements of Γab by explicitly computing the derivatives of the Fourier do-

main waveform with respect to (w.r.t) different parameters and taking their noise-weighted

inner products. The derivatives and the Fisher matrices are too lengthy to be displayed here.

We note that Γ1a = δ1aρ
2, which renders the Fisher information matrix in block diagonal

form. Since lnA is now entirely uncorrelated with all other parameters, we only consider

the Fisher matrix calculated from the partial derivatives of h̃( f ) with respect to the four pa-

rameters ( f0tc, φc, lnM, ln η). Γ11 can be thought of as an independent block, and further

calculations involvingA become trivial. Finally, by inverting the Fisher information matrix

one constructs the covariance matrix.

First, we computed the covariance matrix using the Advanced LIGO noise PSD as de-

fined in Ref. [103], which facilitates a comparison of our results with those discussed in the

literature. Indeed, at 1.5 PN order we found our results in perfect agreement with the num-
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bers given in Table I of Ref. [103] and at 2PN order our calculation reproduces the results in

Table V of Ref. [104]. In both of these papers, ln µ, where µ is the reduced mass, is chosen

to be the independent parameter instead of ln η. However, the errors in these quantities are

simply related by

∆µ

µ
=













(

∆M
M

)2

+

(

2
5
∆η

η

)2

+
4
5

(

∆M
M

) (

∆η

η

)

cMη













, (4.25)

and thus the comparison is straightforward. In the rest of this chapter we study only the most

recent Advanced LIGO noise PSD together with initial LIGO and VIRGO and contrast them

against that of the third generation EGO.

Next, let us consider the covariance matrix computed using the noise PSDs of Advanced

and initial LIGO, and VIRGO, as given in Eq. (4.21)-(4.23). The errors in the measurement

of the various parameters are tabulated in Table 4.1, for all the interferometers and for three

prototypical binaries (NS-NS, NS-BH and BH-BH), assuming a fixed SNR of 10 in each

case. Although the SNR is fixed, different detectors might accumulate the SNR over dif-

ferent bandwidths, causing the errors to be greater or smaller compared to one another. In

agreement with what one expects intuitively based on the bandwidth of the various detectors

(cf. Fig. 4.1, left panel), we find the errors in the various parameters to be the smallest for

VIRGO, followed by a factor of roughly 10-70% larger errors in Advanced LIGO compared

to VIRGO, and a factor of 3 larger errors in initial LIGO compared to Advanced LIGO.

In going from lower to higher post-Newtonian orders, we find that there is an ‘oscillation’

of the errors in the chirp mass and reduced mass. However the amplitude of the oscillations

decreases as we proceed to higher orders and the errors at 3.5PN are always smaller than at

2PN.

The opposite oscillation is observed for the errors in tc : the error in tc at 3.5PN is always

higher than at 2PN. The fact that the reduced mass and chirp mass show the same trend is

due to the correlation coefficients cMη (listed in Table 4.2) all being close to 1.
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Table 4.1: Convergence of measurement errors from 1PN to 3.5PN at a SNR of 10 for the three prototypical binary systems: NS-NS, NS-BH
and BH-BH using the phasing formula, in steps of 0.5PN. For each of the three detector noise curves the table presents ∆tc (in msec), ∆φc

(in radians), ∆M/M and ∆η/η.
NS-NS NS-BH BH-BH

PN Order ∆tc ∆φc ∆M/M ∆η/η ∆tc ∆φc ∆M/M ∆η/η ∆tc ∆φc ∆M/M ∆η/η

Advanced LIGO
1PN 0.3977 0.9256 0.0267% 4.656% 0.5959 1.261 0.1420% 7.059% 1.162 1.974 1.041% 59.88%
1.5PN 0.4668 1.474 0.0142% 1.638% 0.7394 2.091 0.0763% 2.316% 1.441 3.188 0.6115% 9.609%
2PN 0.4623 1.392 0.0143% 1.764% 0.7208 1.848 0.0773% 2.669% 1.404 2.850 0.6240% 10.79%
2.5PN 0.5090 1.359 0.0134% 1.334% 0.9000 1.219 0.0686% 1.515% 1.819 1.574 0.5300% 5.934%
3PN 0.4938 1.331 0.0135% 1.348% 0.8087 1.131 0.0698% 1.571% 1.544 1.580 0.5466% 6.347%
3.5PN 0.5193 1.279 0.0133% 1.319% 0.9966 0.9268 0.0679% 1.457% 2.078 1.161 0.5241% 5.739%
Initial LIGO
1PN 0.3598 1.238 0.0771% 9.792% 0.9550 2.510 0.5217% 20.06% 2.406 5.038 4.750% 216.2%
1.5PN 0.4154 1.942 0.0419% 2.768% 1.182 4.135 0.2850% 5.410% 2.986 8.143 2.781% 28.81%
2PN 0.4109 1.816 0.0423% 3.007% 1.148 3.597 0.2903% 6.316% 2.900 7.179 2.851% 32.82%
2.5 0.4605 1.650 0.0384% 2.129% 1.467 1.975 0.2491% 3.305% 3.836 3.119 2.351% 16.48%
3PN 0.4402 1.618 0.0389% 2.170% 1.286 1.798 0.2554% 3.474% 3.159 3.123 2.446% 17.94%
3.5PN 0.4754 1.517 0.0383% 2.099% 1.666 1.324 0.2456% 3.151% 4.512 1.912 2.314% 15.77%
VIRGO
1PN 0.1363 0.5134 0.0183% 3.044% 0.4906 1.069 0.1134% 5.782% 1.621 1.854 0.8745% 52.12%
1.5PN 0.1578 0.7981 0.0098% 1.004% 0.6069 1.763 0.0603% 1.923% 1.430 2.972 0.5095% 8.586%
2PN 0.1562 0.7515 0.0098% 1.085% 0.5918 1.561 0.0611% 2.215% 1.395 2.667 0.5199% 9.625%
2.5PN 0.1743 0.7045 0.0091% 0.7957% 0.7384 1.039 0.0541% 1.263% 1.787 1.545 0.4417% 5.370%
3PN 0.1671 0.6920 0.0092% 0.8083% 0.6632 0.9672 0.0551% 1.309% 1.532 1.547 0.4552% 5.724%
3.5PN 0.1797 0.6562 0.0091% 0.7858% 0.8183 0.7968 0.0536% 1.215% 2.024 1.173 0.4369% 5.201%
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Table 4.2: PN variation in parameter estimation and the associated correlation coefficients
for the NS-BH system for the Advanced LIGO noise curve.

PN Order ctcM ctcη cMη ∆tc (ms) ∆M/M (%) ∆η/η (%)
0PN −0.6451 − − 0.2775 0.0255 −
1PN 0.8166 −0.8810 −0.9859 0.5959 0.1420 7.059
1.5PN 0.7983 0.9280 0.9444 0.7394 0.0763 2.316
2PN 0.7947 0.9239 0.9460 0.7208 0.0773 2.669
2.5PN 0.8145 0.9519 0.9309 0.9000 0.0686 1.515
3PN 0.8001 0.9405 0.9333 0.8087 0.0698 1.571
3.5PN 0.8274 0.9608 0.9294 0.9966 0.0679 1.456

The oscillation in the variances with PN order can be partially understood by an exam-

ination of the correlation coefficients between tc,M and η. In Table 4.2 we have listed the

correlation coefficients together with the errors in the estimation of parameters in the case of

Advanced LIGO for a NS-BH system for all PN orders starting from Newtonian but let us

first discuss the trend at orders beyond the 1PN correction. From this Table we see that the

estimation ofM and η improves (degrades) depending on whether the correlation coefficients

cMη decrease (respectively, increase) with varying PN order. Similarly, the estimation of tc

improves (degrades) depending on whether the correlation coefficients ctcM (or, equivalently,

ctcη) decrease (respectively, increase) with PN order. We have also checked that the estima-

tion of φc becomes better (worse) with PN order with reduction (respectively, enhancement)

in the correlation coefficients cφcM (or cφcη). The same trend is seen for other systems and

detector configurations, though we do not list those numbers to avoid proliferation of details.

The behaviour of the errors at 0PN and 1PN is not in agreement with this general trend be-

cause at 0PN we have only three parameters - tc, φc andM. As we go from 1PN to 1.5PN

the ambiguity function greatly changes its orientation because of the change in sign in the

PN series at 1.5PN [cf. Eq. (4.18c) and Eq. (4.18d)].

Though the PN variation of parameter estimation accuracy seems to be dominantly ex-

plained by the variation of the correlation coefficients, it should be borne in mind that the

variances in a particular parameter is a combination of the covariances and the availability

of a greater structure or variety in the waveforms not fully assessed in this chapter. This will

be the subject of a study we shall take up in the near future; it is important to understand in

more detail why the errors in tc worsen at higher PN orders as it has implications in the de-

termination of the direction to the source. Table III summarizes the results of this Section. It

provides the percentage decrease in the errors due to the greater accuracy (3.5PN as opposed

to 2PN) in the phasing of the waves: the reduction is the highest for a BH-BH binary for

which the improvement in the estimation of η is 52% and that ofM is 19% at an SNR of 10

for the initial LIGO noise curve.
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4.3.5 Parameter estimation using 3.5PN GW phasing – Fixed source

The focus of this Section is to understand the effect of detector sensitivity (as opposed to

bandwidth) on parameter estimation. The results of the previous Section, wherein the errors

are quoted at a fixed SNR, cannot be used to gauge the performance of different detectors: a

more sensitive detector has a larger SNR for a given source and therefore a better estimation

of parameters. Hence, we translate the results for the errors in parameter estimation for

different detectors but normalized to a fixed distance instead of a fixed SNR. Since the errors

associated with the parameter estimation are inversely related to SNR (σ ∝ 1/ρ), given the

error σ0 corresponding to a known SNR ρ0 (results for ρ0 = 10 are quoted in Table 4.1), one

can calculate the error σ at another SNR ρ (corresponding to a fixed distance, say, 300 Mpc)

by a simple rescaling of the results listed earlier. Indeed, σ = ρ0σ0/ρ, which can be recast in

terms of the distance to the source, using Eq. (4.24), as

σ(DL) = ρ0σ0π
2/3DL

[

2 η M5/3

15

∫ flso(M)

fs

f −7/3

S h( f )
d f

]−1/2

. (4.26)

Fig. 4.2 summarises the results shown in Table 4.1 (3.5PN entries) over the entire param-

eter space of interest for sources with a fixed SNR of 10 (left panels) and also the consequent

results from the scaling in Eq. (4.26) for sources at a fixed distance of 300 Mpc (right pan-

els). The advantage of having a greater bandwidth is revealed by looking at panels on the left

which shows the errors in VIRGO to be the smallest, followed by Advanced and initial LIGO

instruments. Although the signal-to-noise ratios in the case of VIRGO are similar to those of

initial LIGO (cf. Fig. 4.1, right panel), Fig. 4.2 reveals that VIRGO measures the parameters

more accurately. Indeed, the errors in VIRGO are smaller than in initial LIGO by a factor of

2 to 4 and this is entirely as a result of VIRGO’s larger bandwidth. Unlike the case of fixed

SNR, detector performance is explicit in the plots for sources at a fixed distance. It is evident

that the errors reduce by about 30-60 times in Advanced LIGO as compared to initial LIGO.

Advanced LIGO gains a factor of 10-15 in SNR relative to initial LIGO and this accounts for

most of the improvement in its parameter estimation. However, it also gains another factor

of 3 to 4 because of its greater bandwidth. From the foregoing discussion we conclude that

as far as parameter estimation is concerned VIRGO performs better than initial LIGO and

that Advanced LIGO can measure the parameters significantly better than what one might

conclude based on the improvement over VIRGO in its visibility of the signals.

A final comment: The plots on the right-hand panel of Fig. 4.2 are somewhat flattened

as compared to those on the left-hand panel due to the fact that errors for sources at a fixed

distance are (anti) correlated with the variation of SNR with mass. In other words, there are

two competing effects on parameter estimation as the mass of the binary is increased. On
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Table 4.3: Percentage change of parameter estimation accuracy at SNR ρ = 10 for non-
spinning compact binaries due to improved phasing accuracy from 2PN to 3.5PN. Percentage
change for the parameter σn is taken to be = 100×

(

1 − σ3.5PN
n /σ2PN

n

)

. Negative values imply
worsened parameter estimation in going from 2PN to 3.5PN.

NS-NS NS-BH BH-BH
Interferometer lnM ln η lnM ln η lnM ln η

Adv. LIGO 6.993 25.23 12.16 45.41 16.01 46.81
Ini. LIGO 9.456 30.20 15.40 50.11 18.84 51.95
VIRGO 7.143 27.58 12.28 45.15 15.97 45.96

EGO 4.746 22.13 8.932 40.20 13.33 40.66

the one hand, estimation becomes worse since the signal spends smaller amount of time in

the detector band and the number of cycles available to discriminate different signals goes

down. On the other hand, as we increase the mass of the binary the SNR increases thereby

aiding in discriminating between different systems. These competing trends cause the error

in the estimation of the time-of-coalescence and symmetric mass ratio to show a minimum

for a binary of total mass M ∼ 10M�. No such minimum is seen, however, in the case of the

chirp mass. This is because the error in the chirp mass rises more steeply with mass than the

SNR can cause it to dip.

4.3.6 Parameter estimation and the number of useful cycles

To investigate further the correlation of parameter estimation performance with detector

characteristics we consider the total number of cycles in the detector bandwidth and more

importantly the number of useful cycles for a particular detector for the three systems under

consideration. The total number of cycles Ntotal, is defined as

Ntotal =

∫ Fend

Fbegin

dF

(

1
2π

dφ
dF

)

, (4.27)

where φ is the phase of the GW, Fbegin and Fend correspond to the upper and lower cut-off

frequencies for the astrophysical system under consideration. Since the phasing of the waves

is a post-Newtonian expansion in the parameter v, the total number of cycles depends on the

post-Newtonian order. At the dominant Newtonian order, assuming that the lower frequency

cutoff of the detector is much smaller compared to the last stable orbit frequency of the

system, the total number of cycles for a binary of total mass M and mass ratio η is given by

Ntotal =
(πM fs)−5/3

32πη
. (4.28)
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Figure 4.3: Left hand panel is the plot of the derivative dNuseful/d(ln f ) against the frequency
(in arbitrary normalization) for the three detectors. Similarly, right panel gives the number
of useful cycles as a function of the total mass of the binary for the three detectors.

The total number of cycles goes inversely as the mass ratio being the smallest (for a given

total mass) for equal mass binaries and is quite a sharp function of the total mass. It has

an artificiality to it in that it depends on the chosen lower-frequency cutoff, increasing quite

rapidly as the the cutoff is lowered. Moreover, Ntotal has no information about detector char-

acteristics. Motivated by these facts Ref. [46] proposed that the detector performance can be

better understood using the idea of the number of useful cycles Nuseful defined as

Nuseful =

[∫ Fmax

Fmin

d f
f
w( f ) N( f )

] [∫ Fmax

Fmin

d f
f
w( f )

]−1

, (4.29)

where N(F) is the instantaneous number of cycles (i.e., the number of cycles spent at the

instantaneous frequency F) and w( f ) is the weighting function that depends on the effective

noise of the interferometer and the amplitude of the source defined as

N(F) =
F2

dF/dt
, w( f ) =

a2( f )
h2

n( f )
, (4.30)

with a( f ) being the ‘bare amplitude’ appearing in the Fourier domain waveform within the

SPA, |h̃( f )| ' a( f )/
√

Ḟ and h2
n ≡ f S h( f ). Unlike the total number of cycles, the number

of useful cycles contains information about both the detector and the source: it is weighted

by the noise PSD of the instrument and amplitude of the source. Moreover, while the total

number of cycles depends critically on the choice of the lower-cutoff, the number of useful

cycles is a robust estimator and it is pretty much independent of the cutoffs chosen as long

as the frequency range covers the sensitivity bandwidth of the instrument.

86



At Newtonian order, the instantaneous number of cycles is given by N( f ) =

5(πM f )−5/3/(96η),which clearly exhibits the well-known fact that irrespective of the mass of

the system it is best to design a detector with a good sensitivity at as low a frequency as pos-

sible. The instantaneous number of cycles decreases rapidly with frequency, but most of the

contribution to the integral in Eq. (4.29) comes from the region of the band where weighting

function w( f ) = a2( f )/h2
s( f ) = f 1/3/S h( f ), has a minimum. As shown in Fig. 4.3 (right-

hand panel) for binaries whose total mass is larger than 11 M� the number of useful cycles is

larger in VIRGO than the other two instruments, while just the opposite is true for systems

whose mass is smaller than 11 M�. The reason for this behaviour can be seen by inspecting

the left-hand panel of Fig. 4.3 where we have plotted the integrand dNuseful/d log f of the

number of useful cycles [cf. Eq. (4.29)]. A binary of total mass 100M� has its last stable

orbit at Flso ' 43 (M/100 M�)
−1 Hz, and increases in inverse proportion to the mass for sys-

tems with lower masses. Since the integral in Eq. (4.29) is terminated at F lso, from Fig. 4.3

we see that as the upper limit of the integral increases (equivalently, the mass of the binary

decreases) at first the number of useful cycles for VIRGO begins to increase. This feature

explains why VIRGO has more number of cycles than the LIGO instruments for binaries

with greater masses. However, owing to their relatively narrower bandwidth (as compared to

VIRGO) both the LIGO instruments quickly catch up and for F lso
>∼ 300Hz, (equivalently,

a total mass of M <∼ 14 M�), they have greater number of useful cycles than VIRGO. Thus,

the relatively broader bandwidth of VIRGO is responsible for the smaller number of useful

cycles at lower masses.

In general, one can correlate the larger errors associated with the estimation of param-

eters of massive systems with the smaller number of useful cycles for these systems (see

Table 4.4). It may be recalled that Ref. [46] showed that the number of useful cycles is a

good quantifier of detector performance with regard to detection issues such as effectual-

ness. However, the efficiency in parameter estimation is a combination of bandwidth and the

number of useful cycles and not the latter alone. Thus, though VIRGO has a smaller number

of useful cycles than the two LIGO detectors for the NS-NS system, its parameter estimation

at a fixed SNR is far better because of its broader bandwidth.

Following Ref. [105], where the effects induced in parameter estimation due to the inclu-

sion of the 2PN term was understood in terms of the additional total number of GW cycles

accumulated at that order, we also use a very similar idea to understand the PN variations

in parameter estimation of Table 4.1. But unlike [105], we use the number of useful cycles

instead of the total number of cycles. From Table 4.5, wherein we have given the errors in

chirp mass and symmetric mass ratio together with the contributions to the useful GW cycles

from each PN order term in phasing, it is obvious that, in general, when the number of cycles

increases in going from one order to another, errors decrease (and vice versa) suggesting a
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possible correlation. Further, following [105], we tested this argument by artificially flipping

the sign of each PN order term in the phasing (keeping all lower order terms with the correct

sign) and comparing the errors. If such a correlation exists, one would expect the trend to

be reversed, as the additional number of useful cycles accumulated reverses its sign. Indeed

Case B of the table does show the opposite trend confirming this correlation. There is an im-

portant exception to this correlation while going from Newtonian to 1PN, where though the

number of useful cycles increase, the parameter estimation worsens. A little thought reveals

that another more dominant aspect comes into play at this order due to the inclusion of the

new parameter η which could increase the errors associated with the original set of param-

eters. This is confirmed by looking at the parameter estimation of the Newtonian and 1PN

orders using a smaller set of four parameters i.e. {lnA, tc, φc, lnM}, excluding ln η. We find

that the percentage error in chirp mass decreases from 0.0126 to 0.0120 for NS-NS case and

0.4833 to 0.4183 in the BH-BH case in step with the increase in number of useful cycles.

However, the reason behind the anomalous behaviour in going from 1 to 1.5PN and 3 to

3.5PN – where despite the decrease in the number of useful cycles, the parameter estimation

improves – is not clear from the present analysis. Thus the previous considerations are not

sufficient to completely understand the variation of parameter estimation with the PN order.

Based on the understanding obtained in the previous paragraph, we conclude the Section

with the following comment: At present we do not have a detailed understanding of the

reason underlying the variation in parameter estimation with PN orders since the inclusion

of higher PN terms could lead to one or more of the following:

1. introduction of a new parameter (e.g. η in going from 0PN to 1PN) leading to an

increase in the variance of the existing parameters

2. increase in the ‘variety’ of waveforms leading to a reduction in the variance

3. change in the covariance among the various parameters.

Though by a critical examination of the results summarised in Tables 4.1 and 4.2 some of

these effects can be seen in action, it is not easy to disentangle these individual effects and

present a consistent quantitative picture. This, we leave to a future study.

4.4 Parameter estimation with EGO

The European gravitational observatory (EGO) is a third generation GW interferometer en-

visaged by the European GW community. In this section we compare the parameter estima-

tion efficiency of EGO with that of the second generation Advanced LIGO. For EGO, we
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Figure 4.4: Amplitude spectrum (left panel) of Advanced LIGO and EGO together with the
signal to noise ratio (right panel) for different systems

explore a possible sensitivity curve, given by [180],

S n( f ) = S 0

[

xp1 + a1xp2 + a2
1 + b1x + b2x2 + b3x3 + b4x4 + b5x5 + b6x6

1 + c1x + c2x2 + c3x3 + c4x4

]

, (4.31)

where again x = f / f0, but with f0 = 200 Hz, and S 0 = 1.61×10−51 Hz−1. The low-frequency

cut-off is fs = 10 Hz. One has p1 = −4.05, p2 = −0.69, a1 = 185.62, a2 = 232.56, b1 =

31.18, b2 = −64.72, b3 = 52.24, b4 = −42.16, b5 = 10.17, b6 = 11.53, c1 = 13.58, c2 =

−36.46, c3 = 18.56, c4 = 27.43.

Figure 4.4 compares the noise spectral characteristics and SNR of Advanced LIGO and

EGO. The SNR of events observed by EGO can be as high as 6 times that of Advanced

LIGO. This high SNR facilitates a very accurate parameter estimation. With EGO, one can

measure chirp massM with a relative accuracy of about 1% and η with 16% for a 2 × 10M�
binary at 300 Mpc. This is almost an order of magnitude better than Advanced LIGO.

The variation of errors inM and η with mass for different PN orders in phasing is shown

in Fig 4.5. From the plot, the convergent nature of the PN series is evident. Also, one may

notice that most of the improvement in going from 2PN to 3.5PN comes from the 2.5PN

term in phasing after which the series converges but showing small oscillations. Another im-

portant feature worth noticing is that the improvement due to the additional phasing terms is

more or less same for all detector configurations which means that the improvement brought

in by the higher PN order terms do not depend strongly on the noise PSD of the detector.
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Figure 4.5: Variation of errors with mass for 2PN and 3.5PN restricted waveform for EGO
noise curve. The improvement because of the 3.5PN phasing is evident, especially in esti-
mation of η. Sources are assumed to be at 300 Mpc.

4.5 Beyond the restricted waveform: Amplitude

corrections due to frequency-sweep and its implications

In the foregoing Sections we worked with the restricted PN approximation. In this approx-

imation the GW phase is taken to as high a PN accuracy as available while the amplitude

is assumed to be Newtonian. Indeed, all harmonics, except the dominant one at twice the

orbital frequency, are neglected. From Eq. (4.15), one can see that the Fourier-domain am-

plitude is determined by the product of the time-domain amplitude A(F) ∝ F2/3 and the

factor (dF/dt)−1/2, where dF/dt is the ‘frequency-sweep’ or ‘chirp rate’ of the signal. The

frequency-sweep provides a way of (partially) computing the dependence of the wave am-

plitude on different PN orders. This correction, in addition to being calculable, should be of

some relevance when we compared in Sec. 4.3.4 parameter estimation accuracy at different

PN orders where, following Ref. [105], we assumed the SNR to be the same at all PN orders.

Our assumption was justified since in the restricted PN approximation there is no change in

the amplitude of the signal as we go from one PN order to the next. However, the frequency-

sweep causes the Fourier amplitude to change across the PN orders and leads to variations

in the SNR with the PN orders. Since the errors depend on the SNR, one should rescale the

errors by the ratio of SNRs to compare fairly the PN trends in parameter estimation of the

chirp signal. In what follows, we will set up the necessary formulas to normalize the errors to

the same SNR. However, it is immediately obvious that a more consistent calculation should

begin with the full amplitude corrections arising from the GW polarizations computed in

Ref. [101, 102], in lieu of the restricted approximation used here, and by including the sub-

dominant harmonics. Inclusion of these terms is beyond the scope of this chapter and will

be addressed elsewhere.
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Table 4.4: Number of useful cycles (and total number of cycles in brackets) for different
systems and different detectors computed using 3.5PN phasing. To compute the total number
of cycles the lower cut-off is chosen to be the seismic cutoff frequency of each detector and
the upper cutoff is the frequency corresponding to the LSO.

Detector NS-NS NS-BH BH-BH
Adv. LIGO 284 (5136) 60 (1111) 14 (184)
Ini. LIGO 251 (1615) 59 (330) 12 (52)
VIRGO 140 (5136) 64 (1111) 18 (184)

EGO 301 (16266) 77 (3603) 20 (608)

Table 4.5: Correlation of parameter estimation and number of useful cycles with PN order
(n) for NS-NS and BH-BH Binaries for initial LIGO noise curve. Case A corresponds to
the standard PN coefficients in the phasing formula (εa = 1, a ≤ n). Case B refers to
the results corresponding to a flip in sign of the a = nPN term keeping all other lower
orders with correct sign (εa = −1 for a = n and 1 for a < n). Errors listed are all in
percentages. The values for the Newtonian order are obtained using a set of four parameters,
{lnA, tc, φc, lnM}, excluding ln η.

NS-NS BH-BH
PN Order (n) ∆M/M ∆η/η Nuse f ul ∆M/M ∆η/η Nuse f ul

Case A
0PN 0.0126 247.8 0.4833 14.98
1PN 0.0771 9.792 27.13 4.750 216.2 7.283
1.5PN 0.0419 2.768 −22.98 2.781 28.81 −9.148
2PN 0.0423 3.007 −1.197 2.851 32.82 −0.496
2.5PN 0.0384 2.129 2.406 2.351 16.48 1.850
3PN 0.0389 2.170 −1.735 2.446 17.94 −1.971
3.5PN 0.0383 2.098 −0.151 2.313 15.75 −0.236
Case B
1PN 0.0771 8.858 −21.65 4.750 158.2 −3.579
1.5PN 0.0547 1.842 80.65 3.237 28.04 21.56
2PN 0.0415 2.564 −53.64 2.727 25.63 −19.30
2.5PN 0.0515 5.085 −4.700 14.96 473.7 −2.395
3PN 0.0380 2.089 6.563 2.271 15.26 6.461
3.5PN 0.0395 2.248 −3.453 2.625 20.89 −4.978
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To estimate the amplitude corrections due to the frequency-sweep Ḟ, we start from the

Fourier domain waveform in the stationary phase approximation which can be written as

h̃( f ) ≡
∫ ∞

−∞
h(t) e−2πi f t dt =

[

2η
M
d

Q(angles)
]

v2

√

Ḟ(v)
eiψ( f ), (4.32)

where v = (πM f )1/3. Using the expression for Ḟ at the Newtonian order, it can easily be

shown that Eq. (4.32) reduces to Eq. (4.16). From Eq. (4.32) it is clear that the PN corrections

in the frequency-sweep Ḟ [see Eq. (4.39) below] introduces a related PN correction in the

amplitude as discussed earlier in the Section. To proceed further we note that the formula

for Ḟ can be normalized w.r.t. its Newtonian value ḞN and written as the product of the

Newtonian value and PN corrections ḞC:

Ḟ = ḞN ḞC. (4.33)

Schematically ḞC can be written as

ḞC =
[

1 + Ḟ1PN
C + Ḟ1.5PN

C + Ḟ2PN
C + Ḟ2.5PN

C + Ḟ3PN
C + Ḟ3.5PN

C + · · ·
]

. (4.34)

Using FN = 96
5πM2 (πMF)11/3 and vF = (πMF)1/3 and some simple algebra, one can write,

h̃C( f ) = BN BC eiψ( f ), BN = A f −7/6, BC =
1

√

ḞC
(4.35)

where BN , as in Eq. (4.8), is the Newtonian functional dependence. Using Eq. (4.35), the

expression for SNR can be re-written as

ρ2 = 4
∫ ∞

0
d f BC2 B2

N
S h( f )

. (4.36)

From the definition of SNR, Eq. (4.8), it is clear that the SNR varies with the PN order of

ḞC. Similarly, one can write down the components of the Fisher matrix Γab as

Γab = 2
∫ +∞

0
d f
BN2

S h( f )

[

∂BC
∂θa

∂BC
∂θb
+ BC2 ∂ψ

∂θa

∂ψ

∂θb

]

, (4.37)

where θa and θb are the parameters in the GW signal. (BC is a PN series in v and its θ

dependence arises solely from the mass dependence of v). In Sec. 4.3, BC was effectively

taken to be unity. Here we relax that assumption by taking into account the PN corrections

involved.

The frequency-sweep appearing in Eq. (4.32) above can be straightforwardly calculated
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Table 4.6: Variation in SNR with the PN order due to the amplitude corrections arising from
the frequency-sweep dF/dt in the stationary phase approximation. We assume initial LIGO
noise spectral density and place the source such that at 0PN order we have a SNR of 10.

PN Order NS-NS NS-BH BH-BH
0PN 10.00 10.00 10.00
1PN 10.53 11.26 12.19
1.5PN 10.08 9.560 9.357
2PN 10.06 9.483 9.178
2.5PN 10.11 9.736 9.861
3PN 10.08 9.355 9.157
3.5PN 10.07 9.341 9.060

from the expressions for the flux function F and the energy function E, determining the GW

phasing in the adiabatic approximation. It is given by [47]

Ḟ(v) = − 3v2

πM2

F (v)
E′(v)

, (4.38)

where v = (πM f )1/3 and E′ = dE
dv . Using the 3.5PN accurate expression for E andF available

in [99], the expression for Ḟ up to 3.5PN is given by

(

dF
dt

)3.5PN

=
96

5πM2
(πMF)11/3

[

1 −
(743
336
+

11
4
η

)

(πMF)2/3 + (4π)(πMF)

+

(34103
18144

+
13661
2016

η +
59
18
η2

)

(πMF)4/3 +

(

−4159π
672

− 189π
8

η

)

(πMF)5/3

+

[

16447322263
139708800

+
16π2

3
− 1712

105
C +

(

−273811877
1088640

+
451π2

48
− 88

3
θ +

616
9
λ

)

η

+
541
896

η2 − 5605
2592

η3 − 856
105

log (16 x)

]

(πMF)2

+

(

−4415
4032

+
358675

6048
η +

91495
1512

η2

)

π(πMF)7/3
]

. (4.39)

In the above expression, recall that, C is the Euler’s constant and the coefficients λ = − 1987
3080 '

−0.6451, θ = − 11831
9240 ' −1.28.

In Table 4.6, we summarize how the SNR varies with the PN order for different sources

assuming that the SNR corresponding to the Newtonian order is 10. The convergence of the

SNR’s with PN orders is pretty obvious, although it should be recalled that the complete

waveform includes PN corrections from other harmonics that are comparable to the higher

order terms in the frequency-sweep [101, 102]. It would be interesting to see how the results
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Table 4.7: Parameter estimation with amplitude corrections from the frequency-sweep incor-
porated for the initial LIGO noise curve and SNR ρ = 10. nPN refers to the choice of nth PN
order both in the amplitude and phase of the frequency-domain waveform.

NS-NS BH-BH
PN order ∆tc ∆φc ∆M/M ∆η/η ∆tc ∆φc ∆M/M ∆η/η

1PN 0.3208 1.157 0.0752% 9.431% 1.717 3.544 3.400% 152.6%
1.5PN 0.4417 2.018 0.0426% 2.851% 2.929 7.883 2.647% 27.71%
2PN 0.4427 1.903 0.0432% 3.115% 2.830 6.897 2.680% 31.24%
2.5PN 0.4693 1.672 0.0387% 2.149% 3.801 3.093 2.316% 16.28%
3PN 0.4768 1.709 0.0398% 2.261% 3.106 3.068 2.307% 17.20%
3.5PN 0.5186 1.615 0.0393% 2.199% 4.474 1.939 2.203% 15.33%

change when these are included. We also note that the variation of the SNR is greater for

systems with larger masses. Using a 3.5PN frequency-sweep, instead of the Newtonian one,

increases the SNR by 0.7% for a NS-NS binary, while the SNR decreases by 9.5% for a BH-

BH binary. Though these amplitude corrections may not be important for NS-NS binaries,

they might be relevant for the BH-BH case.

Using the results in Table 4.6 one can implement a simple procedure to obtain better error

estimates. One can scale the results of Sec. 4.3, obtained within the restricted waveform

approximation, by the factor ρn/ρ0, where ρn and ρ0 are the SNRs at nPN and 0PN orders,

respectively. In this simple estimate one is effectively neglecting the contributions to the

Fisher matrix from the variation of the Ḟ terms in the amplitude w.r.t the signal parameters θ

(see Eq. (4.37). We incorporate this contribution in a more general and rigorous way in what

follows.

Our more general procedure is based on Eqs. (4.36) and (4.37) which accounts for the

SNR and the Fisher matrix, respectively, with the full Ḟ dependence in amplitude. The steps

leading to the final results listed in Table 4.7 are as follows:

(i) compute the amplitudeA such that the SNR at 0PN is 10; (ii) compute the Fisher matrix

taking into account the amplitude corrections from the frequency-sweep using Eq. (4.37);

(iii) scale the final results by ρn/ρ0. The covariance matrix obtained from such a procedure

can then be compared with that obtained in Sec. 4.3. The procedure above is obviously

equivalent to choosing a ‘running’ amplitudeAn, with ρ0 = 10.

In Table 4.7, the variation of errors with different PN orders is shown for the initial

LIGO noise curve5. The oscillation of errors with PN orders remains after the inclusion of

the frequency-sweep and one infers that changes due to these amplitude terms are not very

significant. At an SNR of 10 the difference is at most 10%.

5The numbers listed in Tables 4.6 and 4.7 are those obtained by numerically integrating Eqs (4.36) and
(4.37) without any further re-expansion of BC in Eq. (4.35).
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4.6 Conclusion

4.6.1 Summary and discussion of results

We have carried out a detailed study to understand the implication of the 3.5PN phasing

formula on parameter estimation of non-spinning binaries using the covariance matrix. We

also compare parameter estimation using four different noise curves, Advanced LIGO, initial

LIGO, VIRGO and EGO. The results of our study can be summarised as follows:

1. The parameter estimation of non-spinning binaries improves significantly, as expected,

by employing the 3.5PN phasing formula instead of the 2PN one. It is no surprise that

the same trend is observed for all the four detectors we have considered. Improvements

are larger for the NS-BH and the BH-BH systems and least for NS-NS binary. For

initial LIGO, at a SNR of 10, the improvement in the estimation of parametersM and

η for BH-BH binaries is as large as 19% and 52%, respectively, whereas for NS-BH

binaries it is 15% and 50%. Improvements in the case of VIRGO are slightly less

compared to LIGO (cf. Table 4.3).

2. In proceeding from 1PN to 3.5PN, one sees an oscillation of variances with each half

PN order. However, the errors in the mass parameters at 3.5PN are always smaller than

at 1PN and one can see a convergence within this limited sequence. The oscillation

of errors is a characteristic feature of the PN approximation. In Ref. [133], a similar

oscillatory behaviour is seen in the context of the detection problem. The variation in

parameter estimation accuracies with PN orders seem to be dominantly determined by

the covariances between the parameters tc, φc,M and η.

3. For sources at a fixed distance the errors in the estimation of parameters are least for

Advanced LIGO and the highest for initial LIGO, the performance of VIRGO being

in between. Although initial LIGO and VIRGO obtain similar SNRs for sources with

the total mass in the range [1, 50]M�, the errors in VIRGO are smaller than in initial

LIGO by a factor 2–4 due entirely to its greater bandwidth of observation.

4. The third generation EGO will allow a very accurate parameter estimation with its high

sensitivity. It can measureM with 1% accuracy. This is an order of magnitude better

than Advanced LIGO. As argued in Ref [23]this will enable testing many strong-field

aspects of gravity in future.

5. The number of useful cycles is greater in VIRGO than LIGO for higher mass binaries

(M ' 10M�) but the opposite is true for lower mass binaries. EGO has the maxi-

mum number of (useful) cycles compared to other configurations. The total number of

cycles is almost thrice that of Advanced LIGO.
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6. Parameter estimation is better if the number of useful cycles is higher but the perfor-

mance also depends on the sensitivity bandwidth of the instrument. The notion of

number of useful cycles together with bandwidth can be used to gauge detector per-

formance with regard to parameter estimation.

7. The variation of the Fourier amplitude of the gravitational waveform across different

PN orders arising from its dependence on the frequency-sweep dF/dt, and its implica-

tion on parameter estimation is examined. We present a Table showing how the SNR

varies across the PN orders for the initial LIGO noise curve. This correction affects

the errors associated with parameter estimation by less than 10% and motivates an

analysis using the complete waveform including all other harmonic contributions to

the GW amplitude from the ‘plus’ and ‘cross’ polarisations which are now available

up to 2.5PN in the comparable mass case [102].

4.6.2 Limitations, caveats and future directions

We conclude by pointing out the regime of validity of our analysis of error bounds, its limi-

tations and possible future directions.

1. Our estimates are based on the Cramer-Rao bound which is valid only in the regime of

high SNR. Though at a SNR of 10 our calculations may be reasonably secure, in gen-

eral they are less rigorous and provide only an upper bound on the errors involved. A

full-fledged Monte-Carlo simulation would provide tighter bounds, though that would

be computationally quite expensive.

2. The effect of using the complete waveform instead of restricted waveform was recently

investigated by Van den Broeck [125] in the detection context. He obtained an analyt-

ical expression using SPA for the full waveform, including the higher harmonics and

amplitude corrections to the leading harmonic. This was used to compare the SNRs of

the restricted and full waveforms. The restricted waveform significantly over estimates

the SNR, according to this study.

In Sec. 4.5 we addressed the effect of inclusion of amplitude corrections arising from

the frequency-sweep on parameter estimation. This treatment is not fully consistent

as it neglects the presence of other harmonics of the orbital frequency. Using the

full waveform expression of Ref [125], a future study should address this issue more

consistently.

3. Based on the recent runs of the GW detectors LIGO and VIRGO more ‘realistic’ noise

curves are now available. The parameter estimation using these realistic noise curves

should be eventually addressed.
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4. A similar study in the case of spinning binaries is not possible until the terms corre-

sponding to the effect of spins in the phasing formula are available beyond the present

2PN accuracy. Recent computation of the GW phasing for spinning binaries, including

all the spin effects up to 2.5PN [160, 119] is an exciting development in this respect.

5. A more detailed study is needed for completely understanding of the reasons for PN

variations of the errors. We leave this for future study.

6. The higher order phasing terms could also play a significant role also in the estimation

of distance of the binary for a network of detectors. We hope to address this problem

in a future work.

7. The late inspiral and plunge which we have neglected in our waveform model may be

incorporated using the effective one body approach. It will be interesting to study the

effects of this on parameter estimation since most of the SNR comes from this phase.

The differentiation of the waveform w.r.t the parameters of the signal in this case may

have to be done numerically, complicating the calculation.

8. Recently Luna and Sintes [191] investigated the effect of including ringdown infor-

mation into the inspiral waveform model, in the parameter estimation problem. Due

to the additional information from ring-down and the enhanced SNR, they concluded

that the parameter estimation could be drastically improved.
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