
Chapter 2

Fluctuations in the emission intensity

from a RAM : Crossover from the

Gaussian to the Lévy statistics

2.1 Motivation

In the previous chapter, we discussed in some detail the extensive experimental and theo-

retical studies that exist in literature on RAMs and followed it by a description of Gaussian

and Lévy statistics. Chapter 1, thus provides the requisite background for the work de-

scribed in this Thesis. In this chapter, we discuss our experimental and theoretical studies

on fluctuations in the intensity of emission from dye-scatterer RAMs, over different realiza-

tions of its randomness. These random realizations originate variously in our experiments.

For example, there is randomness inherent in the diffusive motion of the photon through

the RAM. More explicitly, the spontaneously emitted seed photon can be generated at any

position and in any random direction, within the RAM. Thereafter, this photon undergoes

many random multiple scatterings off the passive scatterers into the bulk active medium,

thereby getting amplified between successive scattering events, before it finally exits the

RAM. Each spontaneously emitted photon, thus, follows a different random path through

the RAM. Further, the configuration of the scatterers that are suspended in the liquid dye
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solution is also changing constantly due to Brownian motion. This configurational change

occurs over time-scales smaller than the interval between successive pump pulses (shots)

in our experiments, and thus each shot samples a different random realization of the RAM,

giving rise to the “sample-to-sample” fluctuation. Normally, these intensity fluctuations ex-

hibit Gaussian statistics where the individual intensity values exhibit small deviations from

a well-defined mean (following the CLT). However, a striking feature of the emission from

a RAM is its non-selfaveraging nature [1]. Thus, the emission intensity fluctuates randomly

over the ensemble of different microscopic realizations of the disorder in macroscopically

identical bulk samples, when the gain is sufficiently high or scattering strong. Indeed, we

find, both experimentally and theoretically, that for a range of parameters of the RAM, the

intensity fluctuations are non-Gaussian and, in fact, show Lévy statistics over the ensemble

of its random realizations. In particular, we observed that the amplification is dominated

by certain improbable events that are “larger than rare”, which give the intensity statistics a

Lévy-like fat tail.

In this chapter, we first analyze theoretically the emission intensity from the dye-scatterer

RAMs as a function of the two prime parameters, the gain length lg and the transport mean

free path lt. We show that the intensity statistics follows a power-law behaviour, which sug-

gests that either Gaussian or Lévy statistics may be observed in the intensity fluctuations

depending on the scattering and the gain parameters characterizing the system. We then

describe our experiments on dye-scatterer systems which indeed show Lévy intensity fluctu-

ations in the limit of high gain (l−1
g ) and strong scattering (l−1

t ). Notably, we tailor a crossover

from the Gaussian to the Lévy statistics and demonstrate continuous tunability of the Lévy

exponent. This, to the best of our knowledge, provides the first experimental realization of

non-Gaussian, in particular, Lévy statistics in the optics of a RAM, and the analysis thereof.

The chapter concludes with a physical reasoning of our observations.

Before we begin the discussion of our work, it is worth noting that the statistical fluc-

tuations in the emitted intensity from a RAM are quite different from the inherent photon

statistics that arises due to fluctuations in emission for a given complexion as a function of

time [2]. Statistical fluctuations of transmission/conductance through passive random me-
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dia have been well studied, where, for a macroscopic sample, the classical fluctuations are

small relative to the wave mechanical (or quantum) fluctuations due to coherent interference

effects. In the present case we are strictly within the regime of classical diffusion, that is,

lt � λ, the wavelength of light; the anomalously large fluctuations are due entirely to the

amplification inherent to a RAM.

2.2 Theoretical analysis

We consider a weakly scattering (diffusive) RAM composed of point-like scatterers ran-

domly dispersed in an amplifying continuum. We assume, for simplicity, a spherical RAM

of radius ‘a’, illuminated uniformly by a short pump-pulse at time t = 0 which serves to in-

vert the population. A spontaneously emitted (seed) photon diffuses with diffusion constant

D = clt/3, (c is the speed of light in the medium) getting amplified as it propagates, with

gain g = ect/lg , and finally exiting at time t = T (Fig. 2.1).

Figure 2.1: Schematic of multiple scattering and amplification of a spontaneously emitted

photon during its transit in the active bulk in between successive scattering events in a dye-

scatterer RAM. (Line thickness is indicative of intensity)
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The rate of emission is, thus, the probability of escape of a photon from the surface

(r = a) per unit time, with the photons spontaneously created at time t = 0 within the RAM

at positions r, and is given by

pI(t) = −
∂

∂t

∫ a

0
ρ(~r, t)d3r = − ∂

∂t

∫ a

0
ρ(~r, t) 4πr2dr , (2.1)

where, ρ(~r, t) is the probability density of the diffusing photon, emitted initially anywhere

within the sample with a uniform initial probability density ρo. This requires the solution for

the diffusion equation
∂ρ(~r, t)
∂t

= D ∇2ρ(~r, t) (2.2)

Defining : τ = tD = t (clt/3), and separating variables as

ρ(~r, τ) = R(~r) T (τ) (2.3)

we obtain
∂ lnT (τ)
∂τ

=
∇2R(~r)

R(~r)
= − k2 (2.4)

which gives,

T (τ) = e−k2τ (2.5)

∇2 R(~r) = −k2 R(~r) (2.6)

The most general solution, in terms of spherical harmonics, is

Rk(r) =
∞
∑

l=0

Ckl Yl(θ, φ) r−1/2 Z1/2(kr) (2.7)

where, k = nπ/a , n = 0, 1, 2, .....

The initial condition is spherically symmetrical and so only l = 0 is retained. Thus,

Rk(r) = Ck0 Y0(θ, φ) r−1/2 Z1/2(kr) (2.8)

Using, Y0(θ, φ) = 1 and Z1/2(kr) =
√

2/πkr sin(kr), we obtain

Rk(r) = Ck0

√

2
πk

1
r

sin(kr), (2.9)
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We get,

Rk(r = a) = 0 = Ck0

√

2
πk

1
r

sin(ka) (2.10)

Substituting for k,

Rn(r) = Cn0

√

2a
nπ2

1
r

sin
(nπr

a

)

(2.11)

The coefficients Cn may be determined from the initial conditions as follows -

using Eqs (2.3), (2.5) and (2.11), we get

ρ(~r, τ) =
∞
∑

n=1

Cn0

√

2a
nπ2

1
r

sin
(nπr

a

)

e−(nπ/a)2τ (2.12)

Using the initial condition, ρ(~r, τ = 0) = constant = ρo, we get

ρo =

∞
∑

n=1

Cn

√

2a
nπ2

1
r

sin
(nπr

a

)

(2.13)

Multiplying both sides of the Eq (2.13) by sin(mπr/a) r and integrating, we have

∫ a

0
ρo sin

(mπr
a

)

r dr =
∞

∑

n=1

Cn

√

2a
nπ2

∫ a

0
sin

(nπr
a

)

sin
(mπr

a

)

dr

=

∞
∑

n=1

Cn

√

2a
nπ2

a
π

∫ π

0
sin(nx) sin(mx) dx

= Cm

√

a3

2mπ2
(2.14)

(using, πr/a = x ⇒ dr = (a/π) dx, and
∫ π

0
sin(nx) sin(mx) dx = 0 : n , m

= π/2 : n = m)

⇒ Cm =

√

2mπ2

a3

∫ a

0
ρo sin

(mπr
a

)

r dr

=

√

2mπ2

a3

( a
π2

)2

ρo

∫ π

0
sin(mx) x dx

=

√

2a
m
ρo (−1)m+1 : m = 1, 2, .... (2.15)

using Eqs (2.12), (2.13) and (2.15), we get

ρ(~r, τ) =
∞
∑

m=1

(

2aρo

πm

)

(−1)m+1

r
sin

(

πmr
a

)

e−(mπ/a)2 τ (2.16)
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In terms of t, we have

ρ(~r, t) =
∞

∑

m=1

(

2aρo

πm

)

(−1)m+1

r
sin

(

πmr
a

)

e−(mπ/a)2 tD (2.17)

Substituting Eq (2.17) in Eq (2.1), we get

pI(t) = −
∂

∂t















∞
∑

m=1

(
8aρo

m
) (−1)m+1e−(mπ/a)2 tD

∫ a

0
sin

(

πmr
a

)

r dr















= − ∂
∂t















∞
∑

m=1

(
8a3ρo

m π2
) (−1)m+1e−(mπ/a)2 tD

∫ π

0
sin(mx) x dx















= −
∂

∂t















∞
∑

m=1

(
8a3ρo

m2 π
) e−(mπ/a)2 tD















=

∞
∑

m=1

(8πaρoD) e−(mπ/a)2 tD (2.18)

(using, πr/a = x ⇒ dr = (a/π) dx, and,
∫ π

0
sin(mx) x dx = (−1)m+1 π

m
,
∂

∂t
e−(mπ/a)2 tD = −(mπ/a)2 D e−(mπ/a)2 tD )

Now, the intensity gain is given as :

g = ect/lg (2.19)

⇒ g ≡ g(t) (2.20)

From the law of probabilities, we get

pg(g) dg = pI(t) dt

⇒ pg(g) = pI(t)
dt
dg

(2.21)

Using Eqs (2.18), (2.19) and (2.21), we get

pg(g) =
∞
∑

m=1

(8πaρoD)
lg

cg
e−m2π2Dlg lng/a2c (2.22)

Thus,

pg(g) =
∞

∑

m=1

(8πaρoD)
lg

cg
eln g−αm

=

∞
∑

m=1

(8πaρoD)
lg

cg
g−αm , (2.23)

where, αm = (mπ/a)2 D lg/c = m2(π2ltlg/3a2)

(using, D = clt/3 and eln (g)−αm
= g−αm)
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The probability distribution for the gain pg(g) is thus obtained as

pg(g) =
∞

∑

m=1

(

8πaρoDlg

c

)

1
g1+αm

≡
∞

∑

m=1

(

8πaρoltlg

3

)

1
g1+αm

, (2.24)

where, αm = m2(π2ltlg/3a2) ≡ the mth Lévy exponent.

We now show that the smallest exponent α1 dominates the sum, and it suffices to consider

only the first term in Eq (2.24). From the expression (Eq 2.24) above, we get

ln (pg(g)) = ln

(

8πaρoltlg

3

)

+ ln















∞
∑

m=1

g−(1+αm)















(2.25)

Considering only m = 1,

ln (pg(g)) = ln

(

8πaρoltlg

3

)

− (1 + α1) ln g (2.26)

with, α1 = π
2ltlg/3a2 ≡ the first Lévy exponent.

This is a straight line equation. ln (pg(g)) depends linearly on ln g with a negative slope

(1+α1). Figure 2.2 gives pg(g) as function of g (log-log scale), calculated from the expression

(Eq 2.24) above by retaining increasing number of terms on the right-hand side for the RAM

parameters : lg = 0.5 cm, lt = 6 × 10−4cm, ns = 1012/cc, ρo = 0.5/cc, a = 1.0 cm and λ = 0.633

µm. Interestingly, each of these appear as straight lines, and their slopes are seen to remain

nearly the same indicating that m = 1 suffices for determining the Lévy exponent (α); the

higher order terms serve to alter only the intercept. Thus,

pg(g) '
(

8πaρoltlg

3

)

1
g1+α1

(2.27)

We now check for the normalization of pg(g) and calculate its first two moments.

Normalization :

∫ ∞

g=1
pg(g)dg =

8πaρoltlg

3

∞
∑

m=1

(∫ ∞

g=1

dg
g1+αm

)

=
8πaρoltlg

3

∞
∑

m=1

1
αm

=
8πaρoltlg

3

(

3a2

π2ltlg

) ∞
∑

m=1

1
m2

=
4πa3ρo

3















using :
∞

∑

m=1

1
m2
=
π2

6















(2.28)
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Figure 2.2: Probability distribution of gain (pg(g)) as function of gain (g), on a log-log scale,

summed over different number of terms; � (blue) : m=1; × (pink) : m = 1 to 10; 4 (gray) :

m = 1 to 100; + (red) : m = 1 to 1000; • (black) : m=1 to 5000. The RAM parameters are :

lg = 0.5 cm, lt = 6×10−4cm, ns = 1012/cc, ρo = 0.5/cc, a = 1.0 cm, λ = 0.633 µm.

Thus, the normalization condition gives :

∫ ∞

g=1
pg(g)dg =

4πa3ρo

3
= 1

⇒ ρo =
1

(4πa3/3)
, (2.29)

where, 1/(4πa3/3) is the volume of RAM of radius a.

First moment of g (mean value) :

< g > =
∫ ∞

g=1
gpg(g)dg =

8πaρoltlg

3

∞
∑

m=1

(∫ ∞

g=1

dg
gαm

)

=
8πaρoltlg

3

∞
∑

m=1

(
∣

∣

∣

∣

∣

∣

g1−αm

1 − αm

∣

∣

∣

∣

∣

∣

∞

1

)

(2.30)
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Clearly, < g > is finite for α1 > 1 i.e., for lg > 3a2/π2lt. We then have,

< g > =
8πaρoltlg

3

∞
∑

m=1

(

1
αm − 1

)

(2.31)

Thus, for high gain (low lg) i.e., for lg < 3a2/π2lt, the mean diverges.

Second moment of g :

< g2 > =

∫ ∞

g=1
g2 pg(g)dg =

8πaρoltlg

3

∞
∑

m=1

(∫ ∞

g=1

dg
gαm−1

)

=
8πaρoltlg

3

∞
∑

m=1

(
∣

∣

∣

∣

∣

∣

g2−αm

2 − αm

∣

∣

∣

∣

∣

∣

∞

1

)

(2.32)

Clearly, < g2 > is finite for α1 > 2 i.e., for lg > 6a2/π2lt. Then,

< g2 > =
8πaρoltlg

3

∞
∑

m=1

(

1
αm − 2

)

(2.33)

This corresponds to the Gaussian case. For high gain (low lg) i.e., for lg < 6a2/π2lt, the

second moment diverges leading to divergent gain variance (< g2 > − < g >2). This is the

Lévy case.

To summarize, for 0 < α1 < 2, while the second moment of gain and hence, the gain

variance always diverges, the mean gain may or may not exist (Lévy statistics). On the other

hand, for α1 ≥ 2, both the mean and the variance are finite (Gaussian statistics).

Clearly, pg(g) shows a power law behaviour. As discussed in chapter 1, this can describe

either the Gaussian (α1 ≥ 2) or the Lévy (α1 < 2) statistics. It is of interest to note that the

condition for threshold of lasing i.e. the divergence of mean gain obtained by Letokhov [3]

is

π2ltlg

3a2
= 1 (2.34)

setting, f = 1 and αe f f = 1/lg in Eq (22) of [3]. On the other hand, the condition for

divergence of variance of gain as obtained by us is :

π2ltlg

3a2
= 2 (2.35)
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Thus, we can readily see that the divergence of the gain variance, that is the crossover from

the Gaussian to the Lévy statistics will occur for a pumping level (1/lg) which is lower than

that required for the divergence of mean gain (lasing threshold).

Evidently, with increasing pumping or increasing dye concentration, both of which serve

to decrease lg, the exponent α1 decreases, the tail becomes fatter (rare events become more

probable), and the variance of g diverges for α1 < 2. This suggests a means of controlling

the crossover from a finite variance (Gaussian) to a divergent variance (Lévy) limit. Sim-

ilar controlled crossover can also be achieved either by increasing the number density of

scatterers or by enhancing the refractive index mismatch between the active bulk and the

passive scatterers, both of which reduce lt. Such tailoring of the exponent has been realized

experimentally, and will be discussed shortly.

A few points may, however, be noted. The above analysis describes the onset of Lévy

fluctuations as the gain (l−1
g ) or the scattering strength (l−1

t ) within the RAM is increased,

idealized in that only the photons emitted spontaneously at time t = 0 were considered.

These are amplified most anyway, and dominate the intensity, for large gains and scatterings.

We have ignored the nonlinear effects like the temporal depletion of excited state population

of the RAM by the amplification process itself. Further, for granular random media the grain

size � λ, the random scattering is best described as random reflections/refractions at the

interfaces. This can give rise to random closed loops that can trap and enhance light as in a

resonance. Also, one can expect the classical Ruelle-Pollicott resonances giving pronounced

structure to the fluctuation statistics. We have not addressed these finer issues here.

2.3 Experimental details

The emission from RAMs was studied by us in several dye-scatterer systems. In particular,

we discuss the cases of Rhodamine 6G (R6G) and Rhodamine 640 (R640) perchlorate dyes

(molar concentration : 5 × 10−3 M and 10−2 M) in ethanol with sub-micron (Titanium diox-

ide/rutile TiO2 or polystyrene) microspheres randomly dispersed in them. The schematic of

the experimental set-up is shown in Fig. 2.3. The RAM, contained in a glass cuvette of size
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1 cm × 1 cm × 5 cm was pumped either by 10 ns pulse or 35 ps pulse at 532 nm from a

frequency doubled Nd:YAG laser1. The incident pulse was split into two by a beamsplitter

(R/T = 50/50). While the transmitted beam was focussed by a convex lens ( f = 10 cm) to

a spot of diameter ∼ 1.2 mm and was normally incident on the sample, the reflected part

was used to monitor the energy of the pump pulse by the energy meter (Laser Probe Inc.,

Rj-7620). The pump energy was maintained constant throughout an experimental run. The

emission (fluorescence) collected from the front face of the cuvette at an angle of 45o to the

direction of incidence was focussed by a convex lens ( f = 10 cm) onto an optical fiber and

the spectrum recorded on a PC based fiber-optic spectrometer (Ocean Optics S2000). To

prevent coagulation of the scatterers, the suspension was shaken in an ultrasonic bath for

∼ 2 min before recording an emission spectrum. In order to obtain good statistics around

five hundred single-shot spectra were recorded, for a given pump energy. The pulse-to-pulse

fluctuations in emission intensity were then studied at a particular wavelength, for a wide

range of parameters (namely, pump energy, dye concentration, scatterer density and type of

scatterers) characterizing the RAM. It may be noted that the collected intensity (Io) contains

the unamplified spontaneous emission (Ispont) too, which must be subtracted, so as to ensure

analysis of only the stimulated emission from the system. We will, in the rest of the chapter,

refer to this intensity as I = Io − Ispont. Intensity histograms were constructed for a chosen

wavelength, by plotting the number of times an intensity value was obtained, normalized to

the total number of spectra (P(I)), as function of the intensity (I).

2.4 Results

Gain narrowing

We first examined the emission intensity fluctuations for the dye-scatterer systems, optically

pumped by 10 ns pulses (10 Hz repetition rate) from the frequency doubled (λ = 532 nm)

Nd:YAG laser. It was ensured that gain narrowing occurred in the system. The TiO2 and

1The experiments using picosecond pulses were carried out at National Centre for Ultrafast Processes

(NCUFP), Chennai
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Figure 2.3: Schematic of the experimental set-up.

polystyrene microspheres used by us were of sizes (d) 0.36 µm and 0.30 µm respectively.

Figures 2.4(a,c) show the emission spectra as function of pump energy for R6G(10−2 M)-

TiO2 and R640 perchlorate(10−2 M)-TiO2 samples (ns = 2 × 1010/cc) respectively. Each of

the subfigure contains three spectra : (A), (B) and (C). Curves (A) give the emission spectra

at low pumping, in fact, below the lasing threshold (∼ a few tens of µJ). Clearly, the spectra

are quite broad with full width at half maximum (FWHM) of ∼ 40 nm. On increasing the

pump energy to just above the lasing threshold (∼ 2 mJ), the FWHM drastically decreases

to ∼ few nm (curves (B)). This corresponds to the onset of gain narrowing. The spectra

have been scaled down by dividing them with a constant factor. Curves (C) represent the

emission spectra much above the lasing threshold (∼ 8 mJ). These too have been scaled

down. Figures 2.4(b,d) give the intensity histograms for the same R6G(10−2 M)-TiO2 and

the R640 perchlorate(10−2 M)-TiO2 systems respectively, at pump energy ∼ 8 mJ, well above

the threshold for gain narrowing. Clearly, the statistics is Gaussian.

We expected that picosecond pumping would give different results. Firstly, a nanosecond

pulse has a lesser peak intensity than that of a picosecond pulse of the same energy and

focussed to the same spot-size. Further, the excited states of Rhodamine dyes have lifetime ∼

ns, and thus, during a 10 ns pulse, a significant number of molecules excited in the early part
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Figure 2.4: Emission spectra as function of pump energy (nanosecond pulses) for, (a) R6G

(10−2 M)-TiO2, (c) R640 perchlorate (10−2 M)-TiO2, (scatterer size = 0.36 µm, density = 2

× 1010/cc). The corresponding intensity histograms and their Gaussian fits (blue curves) at

pump energy ∼ 8 mJ ; (b) and (d), respectively.



2.4 Results 47

of the pulse may have reverted to the ground state before the trailing edge of the pulse reaches

the sample. Thus, high population inversion cannot be maintained. On the other hand, in the

case of picosecond pumping, the upper state does not significantly decay spontaneously over

the duration of the pulse. Thus, with picosecond pumping, lower gain length (lg), may be

achieved leading to enhanced amplification.

We, next, present the results with picosecond pulse pumping. Single-shot emission spec-

tra as function of increasing pump energies from dye-scatterer systems with R6G dye and

R640 perchlorate dye in ethanol containing TiO2 or polystyrene microspheres as passive

scatterers are shown in Figs 2.5 and 2.6 respectively. Table 2.1 gives the details of various

RAMs studied for gain narrowing. Each subfigure (Figs 2.5(a)-(f)) and (Figs 2.6(a)-(d)) has

three curves: (A), (B) and (C). Curves (A) represent the emission spectra obtained at lowest

pumping (∼ few tens of µJ) below the lasing threshold. Clearly, the emission spectra are

quite broad with FWHM ∼ 30-40 nm. In fact, the spectra have to be multiplied by a factor

to bring them to the same intensity scale as that of (B) and (C). Curves (B) are the emission

spectra recorded on increasing the pump energy to above the gain-narrowing threshold (≥

40 µJ). The FWHM collapses to a ∼ a few nm. This can be attributed to higher gain within

the RAM (which reduces the effective gain length) due to an increase in the pump energy.

In most cases, (B) too have to be scaled up. Curves (C) correspond to the emission spectra

recorded at pump energies much above the lasing threshold (≥ 1 mJ). It is worth noting here

that the nature of the spectra changes drastically; instead of a smooth peak with a width of

few nanometers (as obtained with nanosecond pumping), several extremely narrow spikes

(< 1 nm) appear in the spectrum. This observation is consistent with the recent experimental

reports [4, 5, 6] of spiked emission, which is interpreted as lasing. We shall shortly show,

that in this regime the variance diverges and in some cases the mean too diverges, satisfying

Letokhov’s condition (Eq. (22) of [3]).

Intensity histograms

To recall, our aim in the present study is to examine the statistics of the pulse-to-pulse (equiv-

alently, sample-to-sample) fluctuations in the emission intensity from the RAM over its dif-
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Figure 2.5: Emission spectra as function of pump energy (picosecond pulses) for R6G (5

× 10−3M) with, (a)TiO2 (density = 1010/cc), (b) TiO2 (density = 2 × 1010/cc), (c)polystyrene

(density ∼6.3 × 1011/cc); and for R6G (10−2M) with, (d)TiO2 (density = 1010/cc), (e)TiO2

(density = 2 × 1010/cc), (f)polystyrene (density ∼6.3 × 1011/cc). Polystyrene and TiO2 micro-

sphere sizes are 0.3 µm and 0.36 µm respectively.
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Figure 2.6: Emission spectra as function of pump energy (picosecond pulses) for, (a) R640

perchlorate (5 × 10−3 M)-TiO2 (density = 1010/cc), (b) R640 perchlorate (5 × 10−3 M)-

polystyrene (density ∼6.3 × 1011/cc), (c) R640 perchlorate (10−2 M)-TiO2 (density = 1010/cc),

(d) R640 perchlorate (10−2 M)-polystyrene (density ∼6.3 × 1011/cc). Polystyrene and TiO2

microsphere sizes are 0.3 µm and 0.36 µm respectively.
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S. No. Dye Dye concentration
Scatterer

(M) type size (µm) density (/cc)

1. R6G 5 × 10−3 TiO2 0.36 1010

2. R6G 5 × 10−3 TiO2 0.36 2 × 1010

3. R6G 5 × 10−3 polystyrene 0.30 6.3 × 1011

4. R6G 10−2 TiO2 0.36 1010

5. R6G 10−2 TiO2 0.36 2 × 1010

6. R6G 10−2 polystyrene 0.30 6.3 × 1011

7. R640* 5 × 10−3 TiO2 0.36 1010

8. R640* 5 × 10−3 polystyrene 0.30 6.3 × 1011

9. R640* 10−2 TiO2 0.36 1010

10. R640* 10−2 polystyrene 0.30 6.3 × 1011

Table 2.1: Details of the samples studied for gain narrowing (∗ ≡ perchlorate) with picosec-

ond pulses.

ferent random realizations. As we showed in section 2.2, from theoretical considerations,

a controlled crossover from the finite variance (Gaussian) to the divergent variance (Lévy)

limit is to be expected by altering the gain and scattering characteristics of the RAM. While,

the gain can be varied by increasing the pumping or increasing dye concentration (decreas-

ing lg), the scattering strength can be varied by increasing the number density of scatterers

or by enhancing the refractive index mismatch between the active bulk and the passive scat-

terers (decreasing lt). Below we discuss all these cases for the different control parameters,

characterizing the RAM, realized experimentally. Tables 2.2 and 2.3 give the details of the

experimentally studied RAMs of which only a few representative cases have been discussed.

First, we present the results of our study on the statistical fluctuations of emission inten-

sity from RAMs by altering the transport mean free path (lt) via scatterer density. Figures

2.7(a,b,c) show the histograms for R6G (10−2 M) in ethanol with suspension of TiO2 mi-

crospheres of size = 0.36 µm and densities ∼ 109/cc,∼ 1010/cc and ∼ 2 × 1010/cc respec-

tively, at pump energy of ∼ 3 mJ. Clearly, for low scatterer density (∼ 109/cc) the statistics
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S. No. Dye concentration
Scatterer

Pump energy
(M) type size (µm) density (/cc)

1. 5 × 10−3 TiO2 0.36 109 3 mJ

2. 5 × 10−3 TiO2 0.36 1010 3 mJ

3. 5 × 10−3 TiO2 0.36 2 × 1010 3 mJ

4. 5 × 10−3 TiO2 0.36 109 90 µJ

5. 5 × 10−3 TiO2 0.36 1010 90 µJ

6. 5 × 10−3 polystyrene 0.30 6.3 × 1011 3 mJ

7. 5 × 10−3 polystyrene 0.30 6.3 × 1011 90 µJ

8. 5 × 10−3 NIL NIL NIL 3 mJ

9. 10−2 TiO2 0.36 109 3 mJ

10. 10−2 TiO2 0.36 1010 3 mJ

11. 10−2 TiO2 0.36 2 × 1010 3 mJ

12. 10−2 TiO2 0.36 1010 90 µJ

13. 10−2 polystyrene 0.30 6.3 × 1011 3 mJ

14. 10−2 polystyrene 0.30 6.3 × 1011 90 µJ

15. 10−2 NIL NIL NIL 3 mJ

Table 2.2: Details of R6G dye samples studied for observing the Gaussian-to-Lévy statistical

crossover.
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Figure 2.7: Histograms for R6G(10−2 M)-TiO2 system (pump energy ∼ 3 mJ) for scatterer

density (a) ∼ 109/cc, (Gaussian) (b) ∼ 1010/cc, (Lévy,α = 1.13) (c) ∼ 2 × 1010/cc, (Lévy,α =

0.94). Blue and red curves show the Gaussian and the power-law fits, respectively, to the

intensity histograms.



2.4 Results 53

S. No. Dye concentration
Scatterer

Pump energy
(M) type size (µm) density (/cc)

1. 5 × 10−3 TiO2 0.36 1010 3 mJ

2. 5 × 10−3 polystyrene 0.30 6.3 × 1011 3 mJ

3. 5 × 10−3 NIL NIL NIL 3 mJ

4. 5 × 10−3 TiO2 0.36 1010 90 µJ

5. 5 × 10−3 polystyrene 0.30 6.3 × 1011 90 µJ

6. 10−2 TiO2 0.36 1010 3 mJ

7. 10−2 polystyrene 0.30 6.3 × 1011 3 mJ

8. 10−2 NIL NIL NIL 3 mJ

9. 10−2 TiO2 0.36 1010 90 µJ

10. 10−2 polystyrene 0.30 6.3 × 1011 90 µJ

Table 2.3: Details of R640 perchlorate dye samples studied for observing the Gaussian-to-

Lévy statistical crossover.

is almost Gaussian (Fig. 2.7(a)). In fact, power-law fit (g−(1+α)) to the tail regime (large

intensity values) of the intensity histogram yields the exponent α = 2. As the scatterer den-

sity is increased to ∼ 1010/cc (or lt is decreased), a noticeable Lévy-like tail appears (Fig.

2.7(b)) implying a finite probability of occurrence of large intensity values. This, when fit

to the power law function (∼ g−(1+α)) gives the Lévy exponent (α) of 1.13 (< 2). Thus, we

could experimentally demonstrate crossover from the Gaussian (α = 2) to the Lévy statistics

(α = 1.13) by increasing the scatterer density. On further increasing the scatterer concentra-

tion (∼ 2 × 1010/cc), the tail becomes quite pronounced (i.e., very large intensity values are

observed), a power-law fit to which gives a Lévy exponent (α) of 0.94 (Fig. 2.7(c)). This,

thus, demonstrates the tunability of the Lévy exponent (indicated by the decrease in α from

1.13 to 0.94).

We then studied the same R6G-TiO2 system, as function of lt (controlled via scatterer

density), at a lower dye concentration of 5 × 10−3 M (which corresponds to lesser gain in the

system). Figures 2.8(a,b) clearly show that the statistics is Gaussian at scatterer densities of
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109/cc and 1010/cc respectively. When the scatterer concentration is increased to 2× 1010/cc,

a prominent Lévy tail is observed (Fig. 2.8(c)), a power-law fit to which gives the Lévy

exponent (α) of 1.46 (< 2). On comparing Figures 2.7 and 2.8, we notice that the system

characterized with a lower inherent gain (lesser dye concentration) requires larger scattering

strength to exhibit the crossover to Lévy statistics.

Next, the scattering strength (lt) was altered by varying the refractive index mismatch

between the active bulk and the passive scatterers. Figures 2.9(a,b) show the histograms

for R6G (10−2 M) in ethanol (pump energy ∼ 3 mJ) containing polystyrene microspheres

(size = 0.30 µm, density ∼ 6.3 ×1011/cc) and TiO2 microspheres (size = 0.36 µm, density

∼ 2 × 1010/cc), respectively. Clearly, while the R6G-polystyrene system exhibits Gaussian

statistics, the R6G-TiO2 system shows more pronounced Lévy features (α = 0.94 < 2),

despite it containing fewer scatterers. This is because, TiO2 (refractive index ∼ 2.7) provides

a higher refractive index mismatch with the surrounding solvent (ethanol, refractive index

∼ 1.36) as compared to polystyrene microspheres (refractive index ∼ 1.59). This results in

increased scattering (smaller lt) and hence, enhanced amplification.

Figures 2.10(a,b) show the intensity histograms for the same system studied at a lower

dye concentration of 5 × 10−3 M. Though, the suspension of polystyrene microspheres result

in Gaussian statistics, that of TiO2 scatterers lead to Lévy statistics (α = 1.46). It is worth

noting here that the RAM characterized with a relatively lower gain (or lower dye concen-

tration) exhibits Lévy statistics with a higher Lévy exponent (α) or less pronounced Lévy

features.

Similar study was performed for a different dye. Figures 2.11(a,b) give the intensity

histograms for R640 perchlorate dye (10−2 M) in ethanol with suspension of (a) polystyrene

microspheres (size = 0.30 µm, density ∼ 6.3 × 1011/cc) (b) TiO2 scatterers (size = 0.36 µm,

density ∼ 1010/cc). Clearly, while for R640 perchlorate-polystyrene sample the statistics

is Gaussian, for R640 perchlorate-TiO2 sample large intensity fluctuations result in Lévy

statistics with an exponent (α) of 1.76 (< 2). Here, we notice that while the Gaussian-

to-Lévy statistical crossover could be achieved both in the R6G and the R640 perchlorate

dyes as function of refractive index mismatch, the Lévy feature is more pronounced (or α is
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Figure 2.8: Histograms for R6G (5 ×10−3 M)-TiO2 system (pump energy ∼ 3 mJ) for scatterer

density (a) ∼ 109/cc, (Gaussian) (b) ∼ 1010/cc, (Gaussian) (c) ∼ 2×1010/cc, (Lévy, α = 1.46).

Blue and red curves show the Gaussian and the power-law fits, respectively, to the intensity

histograms.
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Figure 2.9: Histograms for R6G (10−2 M) dye in ethanol (pump energy ∼ 3 mJ) containing

(a) polystyrene microspheres (size = 0.30 µm, density ∼6.3 × 1011/cc), showing Gaussian

statistics (b) TiO2 microspheres (size = 0.36 µm, density ∼ 2 × 1010/cc), showing Lévy statis-

tics (α = 0.94). Blue and red curves show the Gaussian and the power-law fits, respectively,

to the intensity histograms.

smaller) in R6G than in R640 perchlorate suggesting that the R6G dye has a higher quantum

efficiency than the R640 perchlorate dye.

Thus, the crossover from the Gaussian to the Lévy statistics has been experimentally

demonstrated by two different means (namely, scatterer density and the refractive index mis-

match), both of which alter the scattering strength (lt) within the RAM.

Next, we examined the statistical fluctuations in emission intensity as function of gain

(l−1
g ) in the RAM. First, we altered the gain length (lg) by varying the pump energy. Figure

2.12(a) gives the histogram observed from R6G (10−2M) in ethanol containing TiO2 micro-

spheres at sub-threshold pumping (∼ 90 µJ), for which the emission has a spectral width of

∼10 nm. The histogram is Gaussian. Figure 2.12(b) gives the histogram, when the pump

energy was increased to 3 mJ (for which the corresponding emission spectra showed several



2.4 Results 57

 0

 0.08

 0.16

 0  18000  36000

(a)

 0

 0.08

 0.16

 0  18000  36000

(a)

 0

 0.07

 0.14

 0  18000  36000

(b)

Intensity I (arb units)

Pr
ob

ab
ili

ty
 P

(I
)

 0

 0.07

 0.14

 0  18000  36000

(b)

Intensity I (arb units)

Pr
ob

ab
ili

ty
 P

(I
)

 0

 0.07

 0.14

 0  18000  36000

(b)

Intensity I (arb units)

Pr
ob

ab
ili

ty
 P

(I
)

Figure 2.10: Histograms for R6G (5 × 10−3 M) dye in ethanol (pump energy ∼ 3 mJ) contain-

ing (a) polystyrene microspheres (size = 0.30 µm, density ∼6.3 × 1011/cc), showing Gaussian

statistics (b) TiO2 microspheres (size = 0.36 µm, density ∼ 2 × 1010/cc), showing Lévy statis-

tics (α = 1.46). Blue and red curves show the Gaussian and the power-law fits, respectively,

to the intensity histograms.

spikes). The two histograms of Fig. 2.12 can be readily understood as corresponding respec-

tively to low and high gain cases. Clearly, at high pump energies for which the corresponding

emission intensities are high, the histogram deviates from Gaussian and shows a fat tail. A

power-law fit (g−(1+α)) to the tail gives a Lévy exponent α of 1.13 (< 2).

Next, we constructed the intensity histograms as function of pump energy for the same

system at a lower dye concentration of 5 × 10−3 M (Fig. 2.13). For this case we find that

both the intensity histograms at (a) sub-threshold (∼ 90 µJ) and (b) above threshold (∼ 3

mJ) pumping, display Gaussian statistics. It is, thus, obvious that high gain (or low lg)

required to observe Lévy statistics, could be achieved in our RAMs by increasing both the

dye concentration and the pumping. Thus, while at above threshold pumping, the RAM

with a dye concentration of 10−2 M exhibited Lévy statistics, the RAM with a lower dye

concentration of 5 × 10−3 M did not have sufficient gain (l−1
g ) – hence, the Gaussian statistics.
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Figure 2.11: Histograms for R640 perchlorate (10−2 M) dye in ethanol (pump energy ∼ 3

mJ) containing (a) polystyrene microspheres (size = 0.30 µm, density ∼ 6.3 × 1011/cc), show-

ing Gaussian statistics (b) TiO2 microspheres (size = 0.36 µm, density ∼ 1010/cc), showing

Lévy statistics (α = 1.76). Blue and red curves show the Gaussian and the power-law fits,

respectively, to the intensity histograms.

Figures 2.14(a,b) give the intensity histograms for R640 perchlorate(10−2 M)-TiO2 sys-

tem at (a) sub-threshold pumping of ∼ 90 µJ and (b) above threshold pumping of 3 mJ. The

intensity statistics is Gaussian for (a) but exhibits Lévy statistics (α = 1.76) for (b). Further,

the more pronounced Lévy features observed with R6G dye system as compared to that in

R640 perchlorate system, clearly prove the higher quantum efficiency of R6G.

We expect to observe a similar crossover by increasing the dye concentration which ef-

fectively reduces the gain length (lg) and hence the Lévy exponent (α). Figure 2.15(a) gives

the histogram for R6G-TiO2 system (scatterer density ∼ 1010/cc, pump energy ∼ 3 mJ) with

dye concentration of 5 ×10−3 M. Evidently, the histogram exhibits Gaussian statistics. Fig-

ure 2.15(b) shows the histogram when the dye concentration is increased to 10−2 M (with

all the other RAM parameters like pump energy, scatterer type and density kept the same).
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Figure 2.12: Histograms for R6G (10−2 M) in ethanol containing TiO2 microspheres (scat-

terer size = 0.36 µm, density ∼ 1010/cc), at pump enrgy of (a) ∼ 90 µJ, showing Gaussian

statistics (b) ∼ 3 mJ, showing Lévy statistics (α = 1.13). Blue and red curves show the

Gaussian and the power-law fits, respectively, to the intensity histograms.

Clearly, the statistics is Lévy with Lévy exponent α of 1.13 (< 2).

The effect of increasing the dye concentration was also investigated for the same R6G-

TiO2 system at a higher scatterer density of 2 × 1010/cc. Fig. 2.16(a) shows the intensity

histogram for the R6G(5 × 10−3 M)-TiO2 system at the scatterer density of 2 × 1010/cc.

Clearly, it exhibits Lévy statistical features with a Lévy exponent (α) of 1.46. Further, the

same R6G-TiO2 system at a higher dye concentration of 10−2 M shows more pronounced

Lévy features (Fig. 2.16(b)), reflected by a smaller Lévy exponent (α = 0.94). Clearly,

while the increase in dye concentration (which is equivalent to increasing the gain within the

system) shows a crossover from the Gaussian to the Lévy statistics, an increased scatterer

concentration helps reduce the value of the Lévy exponent (α) further, resulting in more

pronounced Lévy features.

The crossover as a function of dye concentration was now examined for R640 perchlorate
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Figure 2.13: Histograms for R6G (5 ×10−3 M) in ethanol containing TiO2 microspheres (size

= 0.36 µm, density ∼ 1010/cc), at pump enrgy of (a) ∼ 90 µJ, showing Gaussian statistics

(b) ∼ 3 mJ, showing Gaussian statistics. Blue curves show the Gaussian fits to the intensity

histograms.

dye. Figures 2.17(a,b) show the intensity histograms for R640 perchlorate-TiO2 system at

dye concentrations of (a) 5 × 10−3 M, and (b) 10−2 M. The higher dye concentration which

corresponds to higher gain in the system (or low lg) shows Lévy statistics with exponent (α)

1.46. The statistics is Gaussian for (a). Comparison of Figures 2.15 and 2.17 shows higher

quantum efficiency of R6G dye (indicated by lower Lévy exponent α) than that of R640

perchlorate dye.

Thus, we could experimentally demonstrate crossover from the Gaussian to the Lévy

statistics by two different ways (namely, the dye concentration and the pumping), both of

which alter the gain (l−1
g ) in the RAM.

Here we remark that while the pure dye (R6G and R640 perchlorate) samples studied

by us showed gain narrowing (FWHM ∼ 5 nm), neither narrow emission spikes nor Lévy

statistical fluctuations were observed.
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Figure 2.14: Histograms for R640 perchlorate (10−2 M) in ethanol containing TiO2 micro-

spheres (size = 0.36 µm, density ∼ 1010/cc), at pump energy of (a) ∼ 90 µJ, showing Gaussian

statistics (b) ∼ 3 mJ, showing Lévy statistics (α = 1.76). Blue and red curves show the Gaus-

sian and the power-law fits, respectively, to the intensity histograms.

2.5 Physical interpretation of the experimental results

Due to random multiple scattering, the photons perform a diffusive motion within a RAM.

One may think of individual photons performing random walks, leading to a distribution

of path lengths. The occurrence of Lévy statistics in the dye-scatterer systems can be un-

derstood physically in terms of the distribution of these path lengths of photons in the gain

medium. More explicitly, in RAMs, different spontaneously emitted photons follow differ-

ent paths, and as amplification increases, different photons experience different gains. When

scattering is weak, photons have more or less similar path lengths, and thus undergo similar

low amplification. However, in the case of very dense scattering media, some of the photons

undergo very many scatterings, so that their cumulative path lengths within the bulk medium

is extremely long. The gain in the system makes the associated amplification considerable,

and these photons then dominate the emission, leading to enhanced intensity whenever such
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Figure 2.15: Histograms for R6G-TiO2 system (size = 0.36 µm, density ∼ 1010/cc, pump

energy ∼ 3 mJ) with dye concentration (a) 5 × 10−3 M, showing Gaussian statistics (b) 10−2

M, showing Lévy statistics (α = 1.13). Blue and red curves show the Gaussian and the

power-law fits, respectively, to the intensity histograms.

long paths occur. However, it is to be noted that, their occurrence is rare, and is noticeable

only in systems with strong scattering or high gain.

2.6 Conclusions

In conclusion, we have shown theoretically that the emission intensity fluctuations from

a random amplifying medium can exhibit Gaussian or Lévy statistics, depending on the

scattering (lt) and the gain (lg) parameters. A transition from one regime to the other may

be brought about, and the Lévy exponent tuned, by altering these two parameters. We have

experimentally demonstrated this in dye-scatterer RAMs by four different means, two of

which alter the gain characteristics and the other two the scattering strength.
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Figure 2.16: Histograms for R6G-TiO2 system (size = 0.36 µm, density 2× 1010/cc, pump

energy ∼ 3 mJ) with dye concentration (a) 5 × 10−3 M, showing Lévy statistics (α = 1.46)

(b) 10−2 M, showing Lévy statistics (α = 0.94). Blue and red curves show the Gaussian and

the power-law fits, respectively, to the intensity histograms.
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Figure 2.17: Histograms for R640 perchlorate-TiO2 system (size = 0.36 µm, density ∼

1010/cc, pump energy ∼ 3 mJ) with dye concentration (a) 5 × 10−3 M, showing Gaussian

statistics (b) 10−2 M, showing Lévy statistics (α = 1.46). Blue and red curves show the

Gaussian and the power-law fits, respectively, to the intensity histograms.
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