
Chapter 3

Gaussian-to-Lévy statistical crossover in

dye-scatterer random amplifying media:

Monte Carlo simulation

3.1 Motivation

In the previous chapter we showed by theoretical analysis and experiments, that for very

high gain (small lg) and strong scattering (low lt) characterizing the RAM, the fluctuations

of intensity follow Lévy statistics where a few large events dominate the intensity. In this

chapter, we present a Monte Carlo simulation of photon diffusion in a RAM where the paths

of the spontaneously emitted photons performing random walks within the gain medium

are traced up until the photons finally exit the RAM. From this we estimate the emission

intensities and their statistics for various choice of parameters characterizing the RAM. We

find in these simulations, large random fluctuations in the emission intensity that exhibit

Lévy-statistical features when the scattering is strong and the gain high, consistent with our

experimental observations and our theoretical analysis.

Here, we emphasize that these simulations supplement our work (discussed in chapter

2), in that they provide a means of studying the crossover from the Gaussian to the Lévy

statistics by systematically varying the various parameters in the problem over regions of
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the parameter space not readily accessible in physical experiments. These include small

values of the gain length (lg) corresponding to large pumping or high dye concentration. In

the latter case, in experiments, the suspensions became unstable as particles coagulated and

sedimented. Further, varying the refractive index mismatch (δn) over a wide range proved

difficult in practice, as it needed solvents that had the required refractive index and could

dissolve the dye, and in which the particles remain uniformly suspended without coagulation.

In the Monte Carlo simulation, on the other hand, altering δn posed no problem at all and

it was continuously varied. Further, a continuous range of particle sizes (d) and number

densities (ns) could be easily considered in our simulation providing a continuous range of

transport mean free paths (lt). Thus, Monte Carlo simulations, unlike experiments, permit us

vary continuously parameters like transport mean free path (lt), gain length (lg) and refractive

index mismatch (δn).

The connection between the present simulation and our earlier work (discussed in chap-

ter 2) calls for some clarification. In both cases, we are considering an ensemble of different

realizations of the randomness, but with a difference. In the case of the physical experiment,

we obtain the different microscopic realizations of the bulk RAM by considering different

configurations of the scatterers. This is readily obtained in our experiments for the case of a

dye-scatterer system, where the random scatterers (undergoing constant Brownian motion)

move diffusively and thus explore the different complexions (over a time scale which is, of

course, much longer than the transit time of light through the sample, but shorter than the

interval between successive pump pulses). Thus, each pump pulse samples essentially a

different static realization of the RAM. These correspond to randomly varying the structure

factor for the scattering system over the ensemble of possible structure factors. In the present

simulation, however, the randomness is realized effectively by the random choice of the ini-

tial position and direction of spontaneous emission of the seed photon and its subsequent

probabilistic scatterings. From the simulation results (which will be discussed in the later

sections), it is quite evident that the statistics of the emitted intensity in the two cases above

(namely our earlier experiments and the present simulations) show qualitatively the same

behaviour as function of the gain and the strength of scattering. This strongly suggests that
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these two random realizations are related through a kind of ergodicity. It is to be noted, how-

ever, that the present simulation corresponds literally to our analytical treatment of photon

diffusion in a RAM (section 2.2).

In the following section, we discuss the Monte Carlo simulations of random walk of

photon in a dye-scatterer RAM1.

3.2 Monte Carlo simulation

The Monte Carlo simulation considered elastic multiple scattering of light due to scatterers

suspended randomly in an amplifying continuum (RAM). Stated in terms of a photon (pencil

of light), physically, this leads to a diffusive motion (all interference effects giving possible

localization, weak or strong, are totally neglected) and concomitant amplification of a spon-

taneous photon. In our simulation, this diffusive motion was viewed as a random walk of

the photon where the step lengths and the step directions are uncorrelated and followed a

prescribed probability distribution. The stimulated amplification (in the active medium) was

introduced through an exponential number growth (multiplicative amplification) of the initial

seed photon.

Monte Carlo simulations were performed on a RAM consisting of bulk active (amplify-

ing) liquid medium with passive point-like scatterers suspended randomly in it. The sample

was assumed to be contained in a cubic cell (side L = 1 cm) and uniformly pumped. We

first performed Monte Carlo simulations for parameters lt, lg and δn, corresponding to our

earlier experiments on dye-scatterer RAMs (consisting of TiO2 scatterers suspended in Rho-

damine 6G and Rhodamine 640 perchlorate dye solutions), so as to validate the simulation

technique. On obtaining comparable results, the simulations were later extended to regions

of parameter space difficult to access experimentally (e.g. low lg or lt).

In the simulation, a spontaneous (seed) photon was assumed emitted at some position

(x, y, z) in the active medium with 0 < x/L, y/L, z/L < 1, picked randomly from a uniform

distribution. It travelled along some random direction over a distance l in the active medium

1see Appendix B, at the end of the Thesis.
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and then underwent scattering event, where the direction of its propagation changes proba-

bilistically. The trajectory of this photon was simulated keeping track of its position (x, y, z)

coordinates, the direction of propagation (scattering angle θ and azimuthal angle φ), the cu-

mulative length of travel within the active bulk medium, and the number of scatterings it

underwent before finally exiting the RAM. More explicitly, the distance li travelled by the

photon between two successive scattering events, i and i + 1, was picked randomly from the

exponential probability density for the scattering length

P(li) =
1
ls

exp(− li

ls
) (3.1)

with mean as the scattering mean free path ls = 1/nsσs, where, ns is the scatterer density. σs

is the scattering cross-section of the individual scatterer (calculated using BHMIE subrou-

tine, [1]). The path length distribution was simulated by

li = −ls ln (random), (3.2)

where, random is a random number chosen from a uniform distribution over the interval

(0,1).

On suffering a scattering event, the photon changed direction with the new scattering

angle θ picked randomly from the Henyey-Greenstein [2] probability distribution :

P(θ) =
1 − g2

(1 + g2 − 2gcosθ)3/2
(3.3)

that accounts for the anisotropy in scattering. Here, g is the anisotropy parameter (calculated

using BHMIE subroutine, [1]). The azimuthal angles, φ, after scattering were uniformly

distributed over the range (0 to 2π) as the scattering is cylindrically symmetric around the

incident direction. Here, it is to be noted that the angles of scattering were always chosen

with respect to the initial direction of propagation of the photon, i.e., defined on a local

coordinate frame whose origin was at the position of the photon.

In this fashion, the path of the photon was monitored till it exits the sample, that is, till

at least one of its coordinates became less than zero or greater than one. The total emitted

intensity (I(l)) associated with this photon is then I(l) = Ioexp(l/lg), where, Io is the starting
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intensity at the first scatterer, and l =
∑

i li is the total length of travel of the photon in the ac-

tive medium. As the photon may exit from any face, the calculated intensity constituted the

total emission intensity from all faces. This process of tracing the path of a spontaneously

emitted photon within the RAM till it exits was termed as a “simulation run” and was re-

peated N ∼ 500,000 times. Each run, thus, corresponded to a different probabilistic photon

path. These simulated photon paths differed in their total lengths l in the active bulk, thereby

giving the observed fluctuations of intensity. The mean intensity was then obtained by sum-

ming up the intensities obtained in the various simulation runs (photon paths) and dividing

the summed intensity by the total number of such runs.

While it may appear that in our simulation all photons incident from a given direction

in a particular scattering event are scattered into the same direction, it is essentially not so

because of the probabilistic nature of the scattering considered in our simulation. We now

show below that our probabilistic simulation does not imply the highly unphysical bosonic

correlation among the photons wherein all the photons in a chosen direction of incidence on

a scatterer are scattered into the same direction.

Consider the n-step random walk of a ‘seed’ photon injected or spontaneously emitted

at a random position ~ro with the random initial direction (Ωo ± 1
2∆Ω) of emission chosen

randomly. Let, ~r1, ~r2 .... ~rn, be the positions for the n subsequent scattering events. Also, let,

Ω1 ±∆Ω1/2, Ω2 ± ∆Ω2/2 ....Ωn ±∆Ωn/2, be the n subsequent scattering angles with angular

widths ∆Ωi. Here, Ωi stands for the polar angles (θi, φi) corresponding to the ith scattering

event. The amplifying medium is introduced here through an exponential gain factor (e
|~ri−~ri+1 |

lg )

in the photon number as it propagates.

As in the simulation of the random walk, the step lengths |~ri − ~ri+1| and the scattering

directions (Ωi ≡ θi, φi) are assumed uncorrelated random variables with specified probability

densities. For the chosen given initial condition, the number Nn of photons at the end of the

n-step random walk is straightforwardly given by :

Nn{(Ωi ± ∆Ωi/2), (|~ri − ~ri+1|)} =
(

dΩo

4π

)

exp

(

|~r1 − ~ro|
lg

) n
∏

i=1

(

σ(Ωi)∆Ωi

σtotal

)

e(|~ri−~ri+1 |/lg), (3.4)

where, the probability for scattering angles are introduced through the cross-section
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(σ(Ωi)/σtotal), with

σtotal =

∫

σ(Ωi) dΩi (3.5)

Inasmuch as the random variables are uncorrelated, we can now integrate over all the angles

(Ωi) giving

Nn{|~ri − ~ri+1|} =
〈 n
∏

i=0

exp

(

|~ri − ~ri+1|
lg

)〉

=

〈

exp

(∑

i |~ri − ~ri+1|
lg

)〉

, (3.6)

where,
∑

i |~ri − ~ri+1| is the total path length traversed by the seed photon in its n-step random

walk and < .... > denotes average over the random step-lengths assumed to be distributed

exponentially with a mean step-length (mean free path) ls. This is precisely the gain factor

being analyzed in our Monte Carlo simulation to determine the intensity fluctuation statistics.

Thus, probabilistically our simulation effectively takes into account all possible scattering

directions for the individual photons.

Simulations were carried out for a wide range of the RAM parameters. Monodisperse

samples with suspended scatterers of diameters 0.18 µm, 0.22 µm, 0.26 µm, 0.30 µm, 0.34

µm and 0.38 µm were considered. Scatterer size being smaller than the wavelength (λ =

0.633 µm), geometrical optics is ruled out. For a suspension of a given particle size (d),

scatterer densities (ns) of 1010/cc to 1012/cc were considered. Keeping the refractive index of

scatterers (nsphere) constant= 2.7 (refractive index of TiO2) and varying the refractive index

of the active bulk (nbulk) from 1.3 to 2.6 (in steps of 0.04), the refractive index mismatch

(δn = nsphere − nbulk) between the active bulk and the passive scatterers was varied from 0.1

to 1.4. Increase in both the diameter (d) of the scatterers and the refractive index mismatch

(δn) served to increase the scattering strength within the RAM. Further, the simulations were

performed for different gain lengths lg, ranging from 0.2 cm (high gain) to 10.0 cm (low

gain), to examine the effect of gain. Thus, by varying both the scattering strength (by δn, d

and ns) and the gain (by lg), we could examine the synergy between the scattering and the

gain in the RAM.

To illustrate the ease with which the RAM parameters could be chosen over a wide range

in Monte Carlo simulation (as discussed in section 3.1), we give a few representative values.
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For a large particle size of 0.38 µm (λ = 0.633 µm, ns = 1012/cc), the transport mean free

path (lt) ranges from 0.14 cm to 3.73 × 10−4 cm, and the anisotropy parameter (g) ranges

from 0.91 to 0.36 corresponding to variation in δn from 0.1 to 1.38. For the smaller particle

size considered, (0.18 µm), lt varied from 1.18 cm to 4.29 × 10−3 cm, and g ranged from 0.72

to 0.45 corresponding to variation in δn from 0.1 to 1.38.

Before we turn to the statistical analysis of the results of our simulations, we would like

to clarify a rather subtle point which is crucial to our analysis below. At first sight, the

appearance of the product of n (n � 1) random factors on the right-hand side of equation

(3.10) would imply that the product is to be described, strictly speaking, by a lognormal

distribution. Now, a lognormal distribution is a narrow, light-tailed distribution for which

all the moments are finite (see chapter 1). The point, however, is that while the above is

true asymptotically (in the limit n → ∞), it is not relevant when n is small and the standard

deviation for the fluctuations is large [3]. In this “intermediate asymptotic limit”, the log-

normal distribution behaves essentially as a broad, fat-tailed distribution much like the Lévy

distribution. More specifically, consider the case n = 1. Here, the probability density (pg(g))

for the gain factor g = eL/lg , with L distributed exponentially as pL(L) = (1/ls)e−L/ls , gives

pg(g) = α/g1+α : α being the Lévy exponent (see chapter 4, section 4.3), which is, of course,

the Lévy statistical probability density. More generally, when n is greater than one but not

too large, and the dispersion is high, the whole product is still dominated by the occurrence

of rare but large factor in the product. This, therefore, still gives a Lévy statistics. It is with

this in mind that we will now discuss our Monte Carlo simulation results in terms of a Lévy

fit to the statistics.

3.3 Results

We now discuss the results of the simulation. Figures 3.1(a-l) give the mean emission in-

tensity (log scale) as a function of refractive index mismatch (δn) for ns = 1010/cc and λ =

0.633 µm. Each of the twelve frames in this figure correspond to a different value of lg. Six

curves are drawn in each frame. Each curve represents a different sample, which is monodis-



3.3 Results 72

perse but varies in the size of the suspended particles (scatterers). It may be noted that every

point on a curve is the average of the intensity obtained after simulating the random walk of

500,000 photons.

Fig. 3.1(a) gives the mean emission intensity (log scale) as a function of refractive index

mismatch (δn) for lg = 10 cm. From the curves it is seen that irrespective of the scatterer size

the mean emission intensity increases with the increase in the δn. Further, for a given δn, an

increase in particle size d, increases the mean emission intensity. These results, of course,

are to be expected and can be interpreted as follows : An increase both in δn and d makes the

scattering stronger which leads to enhanced path length (or dwell time) of photons within the

bulk active medium, before they finally exit the RAM. Further, as the gain acquired by the

photon increases exponentially with its path length (l) within the active bulk (exp(l/lg)),

increase in scattering, leads to enhanced light amplification. This confirms that in such

RAMs (dye-scatterer systems) made up of active bulk with randomly suspended passive

scatterers, enhanced scattering results in larger emission intensities.

Figures 3.1(b)-3.1(l) are similar except that the gain (l−1
g ) in the sample is progressively

increased by decreasing the gain length lg from lg = 5.0 cm in 3.1(b) to lg = 0.2 cm in 3.1(l).

It is seen that as the gain increases (lg decreases), the mean intensity values increase, as

is expected. Evidently, high scattering and large gain in the RAM lead to enhanced light

amplification in a RAM.

While the mean intensity is found to increase with the gain and the scattering strength,

as expected, a distinct feature is that for extremely high gain (small lg) and high scattering

(small lt) the increase is not strictly monotonic (see the jagged curves of Figs 3.1(k) and

3.1(l)). Large fluctuations in the mean emission intensity as function of δn are observed in

the simulations, even when it is averaged over 500,000 distinct photon paths. To investigate

the reason behind these observed fluctuations and to rule out the possibility of these being

artefacts of computation, simulation runs were performed for increasing number of photon

paths namely, 100, 1,000, 10,000, 100,000 and 1000,000 paths.

Figures 3.2(a-f) give the mean intensity (log scale) as a function of refractive index mis-

match (δn), for different gain lengths with scatterer size = 0.18 µm. Each figure contains
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Figure 3.1: Mean intensity (log scale) as function of δn, with ns = 1010/cc ; • (black) : 0.18

µm, 4 (red) : 0.22 µm, ◦ (gray) : 0.26 µm, ∗ (pink) : 0.30 µm, × (orange) : 0.34 µm, and +

(blue) : 0.38 µm, respectively.
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Figure 3.2: Mean intensity (log scale) as function of δn for various lg with scatterer size =

0.18 µm; “+” (black): 1,000 simulation runs and “× (blue)” : 1000,000 simulation runs.
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two curves corresponding to simulation runs of 1,000 and 1000,000. Figure 3.2(a) shows the

mean intensity as function of δn, for lg = 0.2 cm (high gain). We notice that despite increas-

ing the number of simulation runs, the large fluctuations in the emission intensity persist; in

fact, the fluctuations are more pronounced, implying that it is due to the underlying process

taking place inside the RAM, rather than due to inadequate statistics. Further, a positive

vertical shift in the mean intensity is observed with the increase in simulation runs, when δn

is increased beyond ∼ 0.6. The absolute magnitude of this vertical shift increases with the

increase in δn. Figures 3.2(b)-(f) show the simulation results for the same system with lg

increased (or the gain decreased) from lg = 0.5 cm (Fig. 3.2(b)) to lg = 10.0 cm (Fig. 3.2(f)).

We note that, the increase in lg (or decrease in gain) decreases the mean intensity, as is ex-

pected. Further, the figures, clearly, show a reduction in fluctuations in the mean intensity as

function of δn, with the increase in simulation runs. In fact, the lesser the gain (high lg), the

greater is the observed reduction in the fluctuations (Fig. 3.2(f)). In addition, we notice that

on decreasing the gain, vertical shift in the mean intensity (with δn) for increase in simula-

tion runs is observed at successively higher values of δn and it decreases with the decrease

in gain.

To examine the effect of enhanced scattering (due to increased scatterer size) similar

simulation study was done on RAM with scatterer size (d) of 0.26 µm (Fig. 3.3) and 0.38

µm (Fig. 3.4). It is clearly seen from figures 3.3(a)-(c) and 3.4(a)-(d) that the fluctuations

in the mean intensity as function of δn persist even after increasing the simulation runs from

1,000 to 1000,000. However, these fluctuations gradually die out and the curves become

smoother with a decrease in gain (increase in lg). While for particle size of 0.26 µm, the

observed vertical shift in the mean intensity (as function of δn), with increased simulation

runs, is noticeable till lg = 1.0 cm (Fig. 3.3(c)), for larger scatterer size of 0.38 µm (Fig.

3.4(d)), this vertical shift is noticeable for much lower gains (lg = 1.5 cm).

These simulation results conducted for wide range of parameters characterizing the RAM

(i.e. lg, δn and d), quite conclusively rule out the possibility of the jagged features in the mean

emission intensity with δn, seen in the limit of high gain and strong scattering, as arising

due to inadequate statistics. We interpret these observations as signature of Lévy statistical
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Figure 3.3: Mean intensity (log scale) as function of δn for various lg with scatterer size =

0.26 µm; “+” (black): 1,000 simulation runs and “× (blue)” : 1000,000 simulation runs.
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Figure 3.4: Mean intensity (log scale) as function of δn for various lg with scatterer size =

0.38 µm; “+” (black): 1,000 simulation runs and “× (blue)” : 1000,000 simulation runs.
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fluctuations at high gains which become operative at these strong scatterings. On the other

hand, the smooth mean emission intensity profiles observed at low gain or lesser scattering

strength indicates the crossover to the Gaussian statistics. The increase in means is indicative

of the tendency of divergence of mean at high gains and strong scatterings.

Another interesting feature seen is the geometrical effect or structural resonances. Fig-

ures 3.5(a) and 3.5(b) show the mean intensity as function of δn and the best fits for lg = 0.5

cm and lg = 10.0 cm respectively (d = 0.38 µm, ns = 1010/cc, and λ = 0.633 µm). Figures

3.5(c) and 3.5(d) give the deviation (∆I) of the mean intensity from their respective best fits

as function of δn for lg = 0.5 cm and lg = 10.0 cm respectively. Interestingly, a near periodic

oscillation about the best fit is observed as a dominant feature at low gain and low scatter-

ing (Fig. 3.5(d)). We attribute this to geometrical effects, namely the change in wavelength

within the scatterer (δλ) associated with the change in refractive index mismatch (δn) is com-

parable with the circumference of the scatterer (the Mie resonant condition).

Here : πd ≈ δλ = λ/δn, where, d = 0.38 µm, λ = 0.633µm and δn = 0.5.

Resonance occurs periodically. At high gains, the large Lévy fluctuations mask the geomet-

rical variation (Fig. 3.5 (c)). Similar features were observed for smaller scatterer sizes of

0.26 µm and 0.18 µm.

We now examine quantitatively the statistics of the fluctuations observed in the simula-

tions. In the previous chapter, we had shown from theoretical considerations (section 2.2)

that for a diffusive RAM composed of point-like scatterers randomly dispersed in an ampli-

fying continuum, the probability distribution for the gain (pg(g)) acquired by a spontaneously

emitted diffusively propagating photon, as a result of multiple scattering in the amplifying

medium, is given as

pg(g) =
∞

∑

m=1

(

8πaρoltlg

3

)

1
g1+αm

, (3.7)

where, αm = m2(π2ltlg/3a2) : the mth Lévy exponent, ρo is the initial probability density and

a is radius of the RAM. It was argued that the smallest exponent α1 dominates, and it suffices

to consider only the first term. Thus,

pg(g) '
(

8πaρoltlg

3

)

1
g1+α1

, (3.8)
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Figure 3.6: Intensity histograms, log (P(I)) versus log (I), for different lg with d = 0.26 µm,

λ = 0.633 µm, δn = 0.82 (nsphere = 2.7, nbulk = 1.88), ns = 1010/cc. Lévy exponents (α) are

: 1.27, 1.90, 2.38, 3.76, 4.30, 5.55, 7.03, 8.54 and 18.59 for (a) to (i) respectively, obtained

from straight line fits (blue).
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where, α1 = π
2(ltlg/3a2). Henceforth, in rest of the Thesis, we use α to denote the first Lévy

exponent (α1).

Next, from the 500,000 intensity values obtained for a given set of RAM parameters

namely, the intensity histograms (log-log scale) were constructed by plotting the number of

times an intensity value occurs (probability P(I)), as function of the intensity (I). As sug-

gested by Eq. 3.14, these intensity histograms (log-log scale) are expected to give straight

line fits with negative slopes (1 + α1), from which we calculate the Lévy exponent (α1).

We first constructed the intensity histograms (log-log scale) as function of gain (l−1
g ).

Figures 3.6(a)-(i) give the intensity histograms for different gain lengths (lg) with the RAM

parameters : d = 0.26 µm, ns = 1010/cc, δn = 0.82 and λ = 0.633 µm. These, indeed, give

straight line fits with the slope decreasing with decreasing lg (increasing gain). Note that

the decreasing slope implies a smaller α and hence, a more pronounced Lévy feature. In

particular, the Lévy exponents are calculated to be 18.59, 8.54, 7.03, 5.55, 4.30, 3.76, 2.38,

1.90 and 1.27 for lg = 10.0 cm, 5.0 cm, 4.0 cm, 3.0 cm, 2.5 cm, 2.0 cm, 1.5 cm, 1.0 cm

and 0.5 cm respectively. Thus, a crossover from the Gaussian (α ≥ 2) to the Lévy (α < 2)

statistics is seen as lg is decreased from 10.0 cm (Fig. 3.6(i)) to 0.5 cm (Fig. 3.6(a)).

Figure 3.7(a) shows the Lévy exponent (α) plotted as function of lg. Clearly, α varies

linearly with lg (as predicted by our theoretical analysis, Eq 2.24).

To examine the effect of increased scattering strength in RAM, intensity histograms were

plotted (Fig. 3.8) for different lg, with the scatterer size increased to 0.30 µm (keeping the

other RAM parameters the same as in Fig. 3.6). Straight line fits to these intensity histograms

yield the Lévy exponents (α) of 14.36, 7.59, 5.65, 4.23, 3.57, 2.85, 2.06, 1.37 and 0.61 for lg

= 10.0 cm, 5.0 cm, 4.0 cm, 3.0 cm, 2.5 cm, 2.0 cm, 1.5 cm, 1.0 cm and 0.5 cm respectively.

The Lévy exponents (α) are clearly seen to vary linearly with lg (Fig. 3.7(b)).

On comparing the relative values of α as function of lg, in Figures 3.7(a) and 3.7(b), we

notice that the RAM having larger scatterer size (greater scattering strength) exhibits lower

Lévy exponents or more pronounced Lévy features.

Next, we plotted the intensity histograms (log-log scale) for different scatterer sizes

(which effectively correspond to different transport mean free path lengths lt). As was dis-
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Figure 3.7: Lévy exponent α as a function of gain length (lg) with δn = 0.82 (nsphere = 2.7,

nmed = 1.88) for scatterer size (a) 0.26 µm, (b) 0.30 µm. Straight line fits are also shown.
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Figure 3.8: Intensity histograms, log (P(I)) versus log (I), for different lg with d = 0.30 µm,

λ = 0.633 µm, δn = 0.82 (nsphere = 2.7, nbulk = 1.88), ns = 1010/cc. Lévy exponents (α) are

: 0.61, 1.37, 2.06, 2.85, 3.57, 4.23, 5.65, 7.59 and 14.36 for (a) to (i) respectively, obtained

from straight line fits (blue).



3.3 Results 84

cussed in chapter 1, for a given set of RAM parameters (e.g., ns, λ and δn), an increase in

scatterer size increases the scattering cross-section (σs) leading to a smaller transport mean

free path (lt ∼ σ−1
s ). Figures 3.9(a)-(f) give the intensity histograms (in the log-log scale)

and their straight-line fits for different transport mean free path lengths lt (corresponding to

different scatterer sizes) with lg = 4.0 cm, δn = 0.30, ns = 1012/cc and λ = 0.633 µm.

The figure 3.9, clearly, shows that the slopes of the straight line fits (or the Lévy expo-

nents α) decrease with the decrease in lt (or increase in scattering strength corresponding to

increased scatterer size). The Lévy exponents are found to be 3.67, 1.85, 1.16, 0.93, 0.72 and

0.55 for lt = 0.117 cm, 0.058 cm, 0.035 cm, 0.025 cm, 0.018 cm, and 0.013 cm respectively

(corresponding to scatterer sizes of 0.18 µm, 0.22 µm, 0.26 µm, 0.30 µm, 0.34 µm, and 0.38

µm respectively). Thus, a crossover from the Gaussian (α ≥ 2) to the Lévy (α < 2) statistics

is observed on decreasing lt (or increasing scattering by increasing the scatterer size). Figure

3.10(a) clearly shows a linear variation of α with lt (as predicted by our theoretical analysis,

Eq 2.24).

Figure 3.11(a)-(f) shows the intensity histograms (in log-log scale) and their straight line

fits for different lt (corresponding to different scatterer sizes) with the refractive index mis-

match (δn) increased to 1.02 (while keeping the other RAM parameters the same as in Fig.

3.9). Once again, a crossover from the Gaussian to the Lévy statistics was observed with the

Lévy exponents α = 3.00, 1.66, 1.09, 0.93, 0.78 and 0.72 for lt = 0.74 cm, 0.29 cm, 0.17

cm, 0.12 cm, 0.09 cm, and 0.06 cm respectively (corresponding to scatterer sizes of 0.18

µm, 0.22 µm, 0.26 µm, 0.30 µm, 0.34 µm, and 0.38 µm respectively). As is expected, the

RAM characterized by higher mismatch (which effectively corresponds to increased scatter-

ing strength) gives lower Lévy exponents as function of lt. Figure 3.10(b) shows the linear

variation of α with lt.

These results (for a wide range of d, δn, ns and lg), thus, clearly show that a crossover

from the Gaussian to the Lévy statistics can be achieved either by increasing the gain (l−1
g )

or by increasing the scattering strength (by δn, d and ns) in the RAM. In fact, the absolute

values of δn, d, ns and lg, provide a complete control over the Lévy exponents (α). Further,

the simulations verified our theoretical prediction (discussed in section 2.2) of the linear
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Figure 3.9: Intensity histograms, log (P(I)) versus log (I), for different lt, corresponding to

different scatterer sizes, with lg = 4.0 cm, δn = 0.3 (nsphere = 2.7, nbulk = 2.4), λ = 0.633 µm,
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respectively, obtained from straight line fits (blue).
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dependence of α on lt and lg.

It may be noted that, though, we have presented results of Monte Carlo simulations over

500,000 photon paths, the simulations were also performed for twice (i.e., 1 × 106) and ten

times (i.e., 5 × 106) that number of photon paths (simulation runs). The results, in particular

the Lévy exponents (α) obtained from the intensity histograms, remained the same (Fig.

3.12).

So far we have focussed on the statistics of intensity fluctuations over different real-

izations of randomness (in the present case, different simulation runs) bringing out their

Lévy-statistical feature (α < 2), where the second moment diverges2. We now turn to yet

another rather interesting statistical aspect of our simulations that has to do with the so called

Lévy microscope effect [5] (where an extremely large but extremely improbable/rare event

dominates the given series of events), that should obtain in the limit of very high gain corre-

sponding to the Lévy exponent (α < 1) when the mean intensity itself diverges . To recall, for

1 < α < 2, while the variance diverges, the mean is finite. On the other hand, for α < 1, both

the mean and the variance diverge. Here, the sum over intensities is seen to be dominated by

the largest typical intensity value or a few values. In order to capture this effect, we consid-

ered a sequence of N successive simulation runs (realization of photon paths) for very large

N (e.g., 500,000). It is convenient to introduce here nested subsequences in which the ith sub-

sequence comprises the first Ni simulation runs with N1 < N2 < N3....Ni < Ni+1.... <= N. In

particular, Ni+1 = Ni + ∆N, with Ni varied from 10 to 500,000 in steps of 10. We defined the

corresponding (ith) subsequences’s average intensity as the total emission intensity obtained

for the first Ni simulation runs, divided by Ni. We then plotted (Ii) versus (Ni) (on the log-log

scale) for certain choice of the RAM parameters for very high gain and strong scattering, i.e.

when the exponent α < 1. This is shown in Fig. 3.13 with the following choice of parameters

: N = 500, 000, lg = 0.2 cm, d = 0.38 µm and δn = 1.14. The large jumps seen in the plot

(curve a) are a signature of a Lévy microscope, namely, the dominance of sum of intensities

by the typical largest (single or a few) intensity value(s). We have also shown, for compari-

son, the Gaussian case of low gain and weak scattering (curve b), with the RAM parameters

2Interestingly, the threshold condition for diffusive lasing, first obtained by Letokhov [4], corresponds to

this limit (discussed in chapter 2, section 2.2).
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Figure 3.12: Intensity histograms, log (P(I)) versus log (I), for different lg. Each subfig-

ure contains two intensity histograms corresponding to 5 × 105 (black) and 5 × 106 (red)

simulation runs. Straight line fits (blue) are also shown for the former.
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Figure 3.13: Log-log scale plot of mean intensity (Ii) versus size of subsequence (Ni). RAM

parameters are : (a) lg = 0.2 cm (blue); (b) lg = 10 cm (black), with d = 0.38 µm and δn =

1.14. Note that curve (b) has been multiplied by a factor of 70 to bring it to the same scale

as (a).

: N = 500, 000, lg = 10 cm, d = 0.38 µm and δn = 1.14. The featureless, essentially flat

curve, devoid of large intensity jumps, is in sharp contrast to the Lévy case and confirms that

the Lévy microscope effect can be observed only at very high gain (l−1
g ) and strong scattering

(l−1
t ).

3.4 Conclusions

In conclusion, the results of our Monte Carlo simulations of photon diffusion through a RAM

(dye-scatterer system) show that the mean emission intensity increases with the increase
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in scattering strength and gain. Further, we found that the non-monotonic increase in the

mean intensity as function of refractive index mismatch in the limit of high gain and strong

scattering can be associated with the Lévy statistical features. On the other hand, the smooth

intensity profile at low gain and less scattering is a signature of the Gaussian statistics. Our

simulations demonstrated a crossover from the Gaussian to the Lévy statistics as function

of scattering strength (l−1
t ; via scatterer size d, refractive index mismatch δn, and scatterer

density ns) and gain (l−1
g ). These results are in agreement with our earlier model calculation

and physical experiments (discussed in chapter 2). In addition, our simulations also reveal

the so called Lévy microscope effect in the limit of very high gain and strong scattering

where the mean intensity is dominated by a single largest event. Finally, we note that our

simulations allow us to explore the parameter regime (of very high gain and strong scattering)

which is not readily accessible in physical experiments.

We would like to point out that the simulation at present does indeed assume uniform

pumping, though it is straightforward to incorporate non-uniform pumping by considering

the value of lg dependent on coordinates. However, the emphasis of the work is on studying

the crossover from the Gaussian to the Lévy statistics of fluctuations in the emission intensity

from the RAM for the simplest model. Hence the idealization. Further, our simulation is

idealized in that it does not take into account the nonlinear effects, e.g., gain saturation.
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