
Chapter 6

Concluding remarks

In this Thesis we have observed statistical fluctuations of light emission intensity from a

macroscopic Random Amplifying Medium (RAM) over the ensemble of different micro-

scopic realizations of the randomness. These show a crossover from the Gaussian (narrow,

light-tailed) distribution to the Lévy (broad, fat-tailed) distribution in the limit of high gain

and strong scattering. We attribute these to the “amplification of fluctuations” arising from

the presence of “larger-than-rare” events which dominate the intensity statistics in the limit

of high gain and strong scattering. Thus, the high gain and the strong scattering act as a

“fluctuation-amplifier” much the same way as tunneling through nano/meso-scaled metal-

insulator-metal junction acts for the tunneling current (which depends exponentially on the

barrier height). An important point in our optical study on the RAM is the continuous tun-

ability of the Lévy exponent through the optical-pump intensity (gain) and the scattering

parameters. These studies relate to the fluctuation aspect of the random lasers.

Yet another significant finding is the R-RAM (discrete active scatterers embedded in

continuous passive medium) as distinct from the D-RAM (discrete passive scatterers embed-

ded in continuous active medium) because of the reversal of roles of the scatterers and the

propagation medium. For an R-RAM, we have demonstrated the competition between the

effectiveness of the individual amplifying scattering events and the frequency of these mul-

tiple scattering events. The main observation of this work is the non-monotonic dependence

of the overall gain on the refractive index mismatch for a suitable range of parameter values

characterizing the R-RAM.
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There is a subtle point involved in treating a RAM as a dielectric with complex refractive

index (n = n′ − in′′ : n′′ > 0), with the sign of imaginary part of the refractive index chosen

to correspond to amplification rather than attenuation. This would, normally mean an ab-

solute instability, e.g., for a closed laser cavity with such a medium. This would invalidate

any treatment of such a medium by way of linear response theory. The important point to

be noted here is that in our simulation the absolute instability (for which the gain diverges

exponentially in time) is replaced by a convective instability where the wave propagates as

it grows (in intensity) and thus convects away the energy. It is this which validates our treat-

ment of a RAM. (Formally, the distinction between an absolute instability and a convective

instability is that for the absolute instability, it is the frequency which is made complex while

for the convective case, it is the wave vector which is made complex.)

Another interesting aspect which came out of Monte Carlo simulation of photon diffusion

in a RAM is the “Lévy microscope effect”, where the sum of intensity values is dominated by

the largest event (or a few very large events). Yet another case of RAM that we term F-RAM

(Fiber-RAM) was experimentally studied where the disorder was structured as consisting of

random aggregate of active fiber segments (with exponential length distribution) embedded in

passive bulk. This also gave an optical realization of the Arrhenius cascade model. Thus, our

scattering system (in particular, the D-RAM) provides example of both the Lévy microscope

and the Arrhenius cascade, with Lévy exponents which are tunable optically.

Finally, we would like to point out the future possibility of translating the statistical fluc-

tuations over the spatial realizations of disorder to random fluctuations in time (temporal

fluctuations). This can be realized, for instance, in an active but turbulent fluid medium (cir-

culated through the cavity/cell). Such a time translation of randomness through turbulence

will be a directly observable fluctuation due to diffusion in the presence of a random velocity

field – as in Sinai fluctuations in a random random medium.

One other idea we would like to explore in future is the experimental realization of an R-

RAM. The extreme parameters (refractive index mismatch and gain) required may involve

the use of partial metallic coating on the dyed active, scattering microspheres to enhance

multiple scattering within these scatterers (active) due to internal reflections.



Appendix A

Statistical Distributions

Random variable (r.v.)

A random variable (r.v.) X is defined as a function whose domain is the set S of all outcomes

(ω), and range a set of numbers.

ω ε S : w→ X(ω) (A.1)

where, X(ω) indicates the number assigned to the specific outcome.

Probability distribution function (PDF)

The PDF (also known as the cumulative distribution function) of the r.v. X is :

F(x) = P (X ≤ x) (A.2)

defined for −∞ < x < ∞.

Thus, for a given x, F(x) is the probability of the event (X ≤ x), consisting of all outcomes

ω such that X(ω) ≤ x.

PDF’s have the following properties :

F(−∞) = 0 (A.3)

F(+∞) = 1 (A.4)
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It is a nondecreasing function of x :

F(x1) ≤ F(x2) : f or x1 < x2 (A.5)

In particular, for x1 < x2

F(x2) − F(x1) = P (x1 < X ≤ x2) (A.6)

It is continuous from the right :

F(x+) = F(x) : f or x1 < x2 (A.7)

where,

F(x+) = lim F(x + ε) (A.8)

F(x−) = lim F(x − ε) : ε > 0, ε → 0 (A.9)

Probability density function

The derivative :

f (x) =
dF(x)

dx
(A.10)

of the PDF F(x) is called the probability density function of the r.v. X (it is also known as

frequency function).

From the monotonicity of F(x), follows that f (x) is nonnegative,

f (x) ≥ 0 (A.11)

and from Eqs (A.3) and (A.4)
∫ ∞

−∞
f (x) dx = F(∞) − F(−∞) = 1 : Normalization condition (A.12)

Integrating the Eq. (A.10) from −∞ to x,

F(x) =
∫ x

−∞
f (y) dy (A.13)
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Hence,

F(x2) − F(x1) = P(x1 ≤ X ≤ x2) =
∫ x2

x1

f (x) dx (A.14)

Moments of a random variable X

Moments (mk) are defined as :

mk = E(Xk) ≡ < Xk >=

∫ ∞

−∞
xk f (x) dx (A.15)

thus, the first few moments are

m0 =

∫ ∞

−∞
f (x) dx = 1 (A.16)

m1 = E(X) ≡ < X > =
∫ ∞

−∞
x f (x) dx (A.17)

m2 = E(X2) ≡ < X2 > =

∫ ∞

−∞
x2 f (x) dx (A.18)

where, the first moment < X > is the mean or expected value of r.v. X. If for a random

variable, X, the second moment < X2 > is finite, then X is said to have a “narrow” probability

density.

Central moments of a random variable X

Central moments (µk) are defined as :

µk = E((X− < X >)k) =
∫ ∞

−∞
(x− < x >)k f (x) dx (A.19)

Thus, the first few central moments are :

µ0 =

∫ ∞

−∞
f (x) dx (A.20)

µ1 =

∫ ∞

−∞
(x− < x >) f (x) dx = 0 (A.21)

µ2 =

∫ ∞

−∞
(x− < x >)2 f (x) dx =< X2 > − < X >2 (A.22)

(A.23)
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where, the second central moment µ2 ≡ σ2, is defined as the variance or dispersion of the r.v.

X. It represents the mean-squared fluctuations about the mean < X >. Its positive squareroot

σ is called the standard deviation.

Standardized random variable X∗

The standardized r.v. corresponding to the r.v. X

X∗ =
X − < X >
σ

(A.24)

such that,

E(X∗) = 0 and, Var(X∗) = 1 (A.25)

(where, “Var” implies ”variance”).

Characteristic function of a random variable X

The characteristic function f̃ (k) of a r.v. X is the Fourier transform of its density function

f (x) :

f̃ (k) =
∫ ∞

−∞
exp (ikx) f (x) dx ≡ E(exp(ikx)) (A.26)

This is, clearly, the expected value of the complex function (exp(ikX)) of the r.v. X.

Second characteristic function Φ(k) of the r.v. X is defined as :

Φ(k) = ln f̃ (k) (A.27)

Thus,

f̃ (0) =
∫ ∞

−∞
f (x) dx = 1 hence, Φ(0) = 0 (A.28)

and since f (x) ≥ 0,

| f̃ (k)| =
∣

∣

∣

∣

∣

∫ ∞

−∞
exp (ikx) f (x) dx

∣

∣

∣

∣

∣

≤
∫ ∞

−∞
f (x) dx = 1 (A.29)

Thus, | f̃ (k)| ≤ 1.

The density f (x) can be expressed in terms of f̃ (k) by the integral

f (x) =
1

2π

∫ ∞

−∞
exp (−ikx) f̃ (k) dk (A.30)
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known as inversion formula.

Given the function, f̃ (k) all the moments of r.v. X can be determined - therefore, it is also

called the moment generating function.

f̃ (k) =
∫ ∞

−∞
f (x) [1 + ikx +

(ikx)2

2!
+ .. +

(ikx)n

n!
+ ....] dx : (using exp(ikx) =

∞
∑

n=0

(ikx)n

n!
)

=

∫ ∞

−∞
f (x) dx + ik

∫ ∞

−∞
x f (x) dx +

(ik)2

2!

∫ ∞

−∞
x2 f (x) dx + .. +

(ik)n

n!

∫ ∞

−∞
xn f (x) dx + ..

= 1 + ik < X > +
(ik)2

2!
< X2 > +.. +

(ik)n

n!
< Xn > +..

=

∞
∑

n=0

(ik)n

n!
< Xn > (A.31)

Thus,

< Xn > = (−i)n dn f̃ (0)
dkn

: n = 1, 2, 3.... : Moment theorem (A.32)

Joint probability distribution function of random variables X and Y

The joint probability distribution function of the r.v. X and Y is defined by :

FXY(x, y) = P {X ≤ x, Y ≤ y} (A.33)

In the study of several random variables, the distribution of each r.v. is called marginal dis-

tribution. Thus, FX(x) and FY(y) are called the marginal distributions of r.v. X and Y .

Clearly,

FXY(x,∞) = FX(x) and, FXY(x,−∞) = 0 (A.34)

FXY(∞, y) = FY(y) and, FXY(−∞, y) = 0 (A.35)

FXY(∞,∞) = 1 (A.36)

Joint Density function

Joint density function of the r.v. X and Y is given as :

f (x, y) =
∂2F(x, y)
∂x ∂y

(A.37)
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such that,

f (x, y) ≥ 0 and,
∫ ∞

−∞

∫ ∞

−∞
f (x, y) dx dy = 1 (A.38)

Relationship between marginal and joint densities

fX(x) =
∫ ∞

−∞
fXY(x, y) dy (A.39)

fY(y) =
∫ ∞

−∞
fXY(x, y) dx (A.40)

(A.41)

Independent random variables

Two r.v. X and Y are called independent if the events {X ≤ x} and {Y ≤ y} are independent

for any x and y, i.e., if

FXY(x, y) = P {X ≤ x, Y ≤ y} = P{X ≤ x} P{Y ≤ y} = FX(x) FY(y) (A.42)

In terms of densities,

fXY(x, y) = fX(x) fY(y) (A.43)

i.e., the joint probability density function of the independent r.v. is the product of their

marginal densities.

Further, for independent r.v.

< XY > = < X > < Y > (A.44)

Var(X + Y) = Var(X) + Var(Y) (A.45)

Independent identically distributed random steps or variables (i.i.d.r.v.)

A random walk comprising of independent identically distributed random steps implies that

(a) Each step is independent of the previous steps

(b) The length and direction have the same probability density distributions for all steps.



Appendix B

Simulation code for a D-RAM

//_____________________________________________________________________

/* MONTE CARLO SIMULATION of photon diffusion in a direct or D-RAM.

* The program traces the path of a spontaneous photon emitted by a

* dye molecule (picked randomly from a uniform distribution) till

* it finally exits the medium. */

//_____________________________________________________________________

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

#include "ran_double.c"

//_____________________________________________________________________

/* function prototype declarations */

//_____________________________________________________________________

double ran_double (long *seed);

/* prototype declaration for random no. generation */

main ()

{

//_____________________________________________________________________

/* type declarations */

//_____________________________________________________________________

int i, j, k, nscat, kmark1 = 31, n_scat_eff;

double x1, y1, z1, x_dye, y_dye, z_dye, xi, yi, zi, x_current,

y_current, z_current, x_latest, y_latest, z_latest, X0, X1,

Y0, Y1, Z0, Z1;
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double L, L_scat, denom, L_total, L_eff_total, I_total, I_eff_total,

avg_n_scat_eff, avg_L_eff_total, avg_I_eff_total,

ln_avg_I_eff_total;

double theta, phi, theta_h, phi_h, RAN3, RAN4, P, Q, R, Q1, r, s,

l_g;

double lambda_pump, number_density, dia, pi, c[100], m[100], n[100];

long int seed1;

FILE *fp, *fp1, *fp2;

char stringA[100] = "_microns_refsphere_2.7";

char stringB[100] = "DIA_";

char stringC[100] = "_lg_0.5";

char stringD[100] = "_scatter_kmark1";

char string[100], string1[100], string2[100], string3[100],

string4[100], string5[100];

//_____________________________________________________________________

/* values of input parameters */

//_____________________________________________________________________

pi = 4 * atan (1);

printf ("Enter the value of seed No. 1\n");

scanf ("%ld", &seed1);

X0 = 0.0, Y0 = 0.0, Z0 = 0.0; /* in cm */

X1 = 1.0, Y1 = 1.0, Z1 = 1.0; /* in cm */

//_____________________________________________________________________

/* polystyrene scatterer specifications and parameter definitions.

* program used for the finding the values : "calc_anisotropy1.m" */

//_____________________________________________________________________

lambda_pump = 633e-7; /* in cm */

number_density = 1e10; /* per cubic cm */

for (dia = 0.06; dia < 0.40; dia += 0.04)

{

sprintf (string, "%4.2f", dia);

strcpy (string1, stringA);
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strcat (string, string1);

strcpy (string2, stringB);

strcat (string2, string);

fp = fopen (string2, "r");

for (j = 0; j <= 0; j++)

fgets (string3, 100, fp);

strcpy (string4, string2);

strcat (string4, stringC);

fp1 = fopen (string4, "w");

strcpy (string5, string4);

strcat (string5, stringD);

fp2 = fopen (string5, "w");

for (k = 0; k <= 32; k++)

{

fscanf (fp, "%*lf%*lf%lf%lf%lf", &c[k], &m[k], &n[k]);

denom = number_density * n[k];

L_scat = 1 / denom;

/*

c[k] : ref index mismatch (n_sphere - n_bulk), m[k] :

anisotropy parameter (g) and n[k]: scattering cross-section

*/

//____________________________________________________________

/*

A dye molecule at some position (x1,y1,z1) inside the pumped

volume is picked randomly from a uniform distribution

*/

//____________________________________________________________

L_eff_total = 0.0; /* initialization of variables */

I_eff_total = 0.0;

n_scat_eff = 0;

for (i = 1; i <= 500000; i++)

{

/*

position coordinates of a dye molecule picked randomly

from a uniform distribution

*/
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x_dye = ran_double (&seed1);

y_dye = ran_double (&seed1);

z_dye = ran_double (&seed1);

x_current = x_dye;

y_current = y_dye;

z_current = z_dye;

//_______________________________________________________

/*

direction of travel of the spontaneously emitted photon:

phi is generated from a uniform distribution ranging

(0 to 2*pi) and theta from 0 to pi

*/

//_______________________________________________________

theta = acos (-1 + 2 * ran_double (&seed1));

theta_h = theta;

phi = (ran_double (&seed1)) * 2 * pi;

phi_h = phi;

//_______________________________________________________

/*

The length travelled by the photon before being

scattered i.e. "l". It is picked from an exponential

distribution

*/

//_______________________________________________________

RAN3 = ran_double (&seed1);

L = -L_scat * log (RAN3);

//_______________________________________________________

/* The coordinates of the new position of the photon

(i.e. the position of the scatterer) is calculated. It

is checked whether or not that coordinate lies within

the cuvette i.e. photon is within the sample or not

*/

//_______________________________________________________

x1 = L * sin (theta) * cos (phi);

y1 = L * sin (theta) * sin (phi);

z1 = L * cos (theta);
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x_latest = x_current + x1;

y_latest = y_current + y1;

z_latest = z_current + z1;

L_total = 0.0;

nscat = 0;

while (x_latest > X0 && x_latest < X1 && y_latest > Y0

&& y_latest < Y1 && z_latest > Z0 && z_latest < Z1)

{

L_total += L;

nscat++;

x_current = x_latest;

y_current = y_latest;

z_current = z_latest;

RAN4 = ran_double (&seed1);

L = -L_scat * log (RAN4);

phi = (ran_double (&seed1)) * 2 * pi;

/*

new theta selected so that it follows Henyey

Greenstein distribution

*/

P = 1 + m[k] * m[k];

Q1 = (1 - m[k] * m[k])/(1+m[k]-2*m[k]*

ran_double (&seed1));

Q = Q1 * Q1;

R = 2 * m[k];

theta = acos ((P - Q)/R);

/*

Transformation from the local co-ordinate frame to

the global co-ordinate frame.

*/

xi = L * sin (theta) * cos (phi);

yi = L * sin (theta) * sin (phi);

zi = L * cos (theta);

x1 = xi*cos(theta_h)*cos (phi_h)-yi*sin (phi_h)+
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zi*sin (theta_h)*cos (phi_h);

y1 = xi*cos(theta_h)*sin(phi_h)+yi*cos(phi_h)+

zi*sin(theta_h)*sin (phi_h);

z1 = -xi*sin(theta_h)+zi*cos(theta_h);

x_latest = x_current + x1;

y_latest = y_current + y1;

z_latest = z_current + z1;

r = sqrt (x1 * x1 + y1 * y1 + z1 * z1);

s = sqrt (x1 * x1 + y1 * y1);

theta = atan2 (s, z1);

phi = atan2 (y1, x1);

if (phi < 0)

phi = 2 * pi + phi;

if (phi > 2 * pi)

phi = 2 * phi - 2 * pi;

if (theta > pi)

theta = 2 * pi - theta;

theta_h = theta;

phi_h = phi;

}

l_g = 0.5; // l_g : gain length (cm)

I_total = exp (L_total / l_g);

if (k == kmark1)

{

fprintf (fp2, "%d\t%g\t%d\t%g\t%g\n", i - 1, c[k],

nscat, L_total, I_total);

fflush (fp2);

}

I_eff_total += I_total;

L_eff_total += L_total;

n_scat_eff += nscat;

}

avg_n_scat_eff = 1.0 * n_scat_eff / (i - 1);

avg_L_eff_total = 1.0 * L_eff_total / (i - 1);

avg_I_eff_total = 1.0 * I_eff_total / (i - 1);

ln_avg_I_eff_total = log (avg_I_eff_total);

fprintf (fp1, "%d\t%g\t%g\t%g\t%g\t%d\t%g\t%g\t%g\t%g\n",
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i - 1, c[k], L_scat, L_eff_total, avg_L_eff_total,

n_scat_eff, avg_n_scat_eff, I_eff_total,

avg_I_eff_total, ln_avg_I_eff_total);

fflush (fp1);

}

}

fclose (fp);

fclose (fp1);

fclose (fp2);

}



Appendix C

Simulation code for an R-RAM

//_____________________________________________________________________

/* MONTE CARLO SIMULATION of photon diffusion in an R-RAM.

* The program traces the path of a spontaneous photon emitted by a

* dye molecule (picked randomly from a uniform distribution) till

* it finally exits the medium. */

//_____________________________________________________________________

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

#include "ran_double.c"

//_____________________________________________________________________

/* function prototype declarations */

//_____________________________________________________________________

double ran_double(long *seed);

/* prototype declaration for random no. generation */

main()

{

//_____________________________________________________________________

/* type declarations */

//_____________________________________________________________________

int i,j,k;

unsigned int nscat;

double x1,y1,z1,x_initial,y_initial,z_initial,xi,yi,zi,x_in,y_in,

z_in, X0, X1, Y0, Y1, Z0, Z1,x_current,y_current,z_current,

x_latest, y_latest,z_latest;
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double theta,phi,theta_h,phi_h,r,s,RAN3,RAN4,amp_factor,

ln_amp_factor,ln_Ii,avg_ln_Ii,avg_ln_Ii_eff;

double c[1000],m[1000],n[1000],l[1000];

double number_density,denom,L_scat,L,P,Q1,Q,R,pi,N_scat,No_of_runs;

double dia,avg_n_scat,avg_n_scat_eff,lambda_pump;

long int seed ;

FILE *fp, *fp1 ;

char stringA[100] = "_microns_lg_0.11mic_neg_img";

char stringB[100] = "DIA_";

char stringC[100] = "_inv_nd_6_10-11";

char string[100], string1[100], string2[100], string3[100],

string4[100];

//_____________________________________________________________________

/* values of input parameters */

//_____________________________________________________________________

pi = 4 * atan(1);

printf("Enter the value of seed \n");

scanf("%ld",&seed);

X0 = 0.0, Y0 = 0.0, Z0 = 0.0 ; /* in cm */

X1 = 1.0, Y1 = 1.0, Z1 = 1.0 ; /* in cm */

//_____________________________________________________________________

/* polystyrene scatterer specifications and parameter definitions.

program used for the finding the values : "calc_anisotropy1.m"

*/

//_____________________________________________________________________

lambda_pump = 800e-7; /* in cm */

number_density = 6e11; /* per cubic cm */

No_of_runs = 500000.0;

for(dia=0.14;dia<0.16;dia+=0.04)

{
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sprintf(string,"%4.2f",dia);

strcpy(string1,stringA);

strcat(string,string1);

strcpy(string2,stringB);

strcat(string2,string);

printf("%s\n",string2);

fp = fopen(string2,"r");

for(j=0;j<=0;j++)

fgets(string3,100,fp);

strcpy(string4,string2);

strcat(string4,stringC);

fp1 = fopen(string4,"w");

for(k=0;k<=78;k++)

{

fscanf(fp,"%*lf%*lf%lf%lf%lf%lf%*lf",&c[k],&m[k],&n[k],&l[k]);

l[k] = -l[k];

denom = number_density * n[k] ;

// m[k]=g,n[k]=sigma_scat,l[k]=sigma_gain

L_scat = 1/denom ;

//___________________________________________________________

/* A dye molecule at some position (x1,y1,z1) inside the

pumped volume is picked randomly from a uniform

distribution

*/

//___________________________________________________________

avg_ln_Ii_eff = 0.0;

avg_n_scat_eff=0.0;

for(i=1;i<=500000;i++)

{

x_in = ran_double(&seed);

x_initial = x_in * X1;

y_in = ran_double(&seed);

y_initial = y_in * Y1;

z_in = ran_double(&seed);

z_initial = z_in * Z1;

x_current = x_initial ;

y_current = y_initial ;



145

z_current = z_initial ;

//______________________________________________________

/* direction of travel of the spontaneously emitted

photon : phi is generated from a uniform distribution

ranging (0 to 2*pi) and theta is so generated that it

lies b/w 0 to pi

*/

//______________________________________________________

theta = acos(-1+2*ran_double(&seed)) ;

theta_h = theta;

// random no. generated is scaled from

phi = (ran_double(&seed))*2*pi ;

phi_h = phi; // (0 to 1) TO (0 to 360 degrees)

//______________________________________________________

/* The length travelled by the photon before being

scattered i.e. "l" . It is picked from an exponential

distribution

*/

//______________________________________________________

RAN3 = ran_double(&seed);

L = - L_scat*log(RAN3);

//______________________________________________________

/* The coordinates of the new position of the photon

(i.e. the position of the scatterer) is calculated. It

is checked whether or not that coordinate lies within

the cuvette i.e. photon is within the sample or not

*/

//______________________________________________________

x1 = L*sin(theta)*cos(phi);

y1 = L*sin(theta)*sin(phi);

z1 = L*cos(theta);

x_latest = x_current + x1;

y_latest = y_current + y1;

z_latest = z_current + z1;

nscat = 0;
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while (x_latest > X0 && x_latest < X1 && y_latest > Y0 &&

y_latest < Y1 && z_latest > Z0 && z_latest < Z1)

{

nscat++;

x_current = x_latest;

y_current = y_latest;

z_current = z_latest;

RAN4 = ran_double(&seed);

L = -L_scat*log(RAN4);

phi = (ran_double(&seed))*2*pi;

/* new theta selected so that it follows Henyey

Greenstein distribution

*/

P = 1 + m[k]*m[k];

Q1 = (1-m[k]*m[k])/(1+m[k]-2*m[k]*ran_double(&seed));

Q = Q1*Q1;

R = 2*m[k];

theta = acos((P - Q)/R);

/*

Transformation from the local co-ordinate frame to

the global co-ordinate frame.

*/

xi = L*sin(theta)*cos(phi);

yi = L*sin(theta)*sin(phi);

zi = L*cos(theta);

x1 = xi*cos(theta_h)*cos(phi_h)-yi*sin(phi_h)+

zi*sin(theta_h)*cos(phi_h);

y1 = xi*cos(theta_h)*sin(phi_h)+yi*cos(phi_h)+

zi*sin(theta_h)*sin(phi_h);

z1 = -xi*sin(theta_h)+zi*cos(theta_h);

x_latest = x_current + x1;

y_latest = y_current + y1;

z_latest = z_current + z1;

r = sqrt(x1*x1 + y1*y1 + z1*z1);
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s = sqrt(x1*x1 + y1*y1);

theta = atan2(s,z1);

phi = atan2(y1,x1);

if(phi<0)

phi = 2*pi + phi;

if(phi>2*pi)

phi = 2*phi - 2*pi;

if(theta>pi)

theta = 2*pi - theta;

theta_h = theta;

phi_h = phi;

}

N_scat = (double)nscat;

amp_factor = (n[k]+l[k])/n[k];

ln_amp_factor = log(amp_factor);

ln_Ii = N_scat*ln_amp_factor;

avg_ln_Ii = ln_Ii/No_of_runs;

avg_ln_Ii_eff+=avg_ln_Ii;

avg_n_scat=N_scat/No_of_runs;

avg_n_scat_eff+=avg_n_scat;

}

fprintf(fp1,"%d\t%g\t%g\t%g\t%g\t%g\n",i-1,c[k],L_scat,

ln_amp_factor,avg_n_scat_eff,avg_ln_Ii_eff);

fflush(fp1);

}

}

fclose(fp);

fclose(fp1);

}



Appendix D

Reflection and Transmission by an
amplifying slab

Consider a wave normally incident on a plane-parallel amplifying slab (of complex refractive

index n2 = n′2 − in′′2 : n′′2 > 0 and thickness d) embedded in a passive (or nonabsorbing)

medium (of real refractive index n1) Fig. D.1. For this simple slab geometry one can readily

find the reflection coefficient (R) and the transmission coefficient (T ).

1n

1n

2

1

1

Amplifying 
slab

r22

t21

t12

r11

n’ − n’’2 2

Figure D.1: Schematic of light reflection and transmission from an amplifying slab.

The main purpose of this somewhat elementary exercise is to show that, with proper iden-

tification of R and T , our results for the slab geometry provide a qualitative understanding

of the results of our Monte Carlo simulation of the emission intensity from an R-RAM (see

chapter 5). To this end, we regard the case of a slab geometry (with normal incidence) to

be an extreme case of anisotropic scattering by a single active scatterer in three dimension.
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Here, we identify the reflection coefficient R (the backscattering) with the scattering cross-

section σs (for the isolated three dimensional scatterer) and the transmission coefficient T

with the forward scattering. Thus, for the amplifying scatterer, R+T corresponds to the gain

(σs + σna)/σs. With this identification, we can now use the analytical elementary results

derived below for R and T , for an amplifying slab to understand the results of our simulation

qualitatively.

In order to derive analytical expressions for R and T , for a slab geometry under nor-

mal incidence, consider the multiple scattering of a unit amplitude beam. For the multiply

scattered beam, we obtain the amplitude reflection coefficient (r) as:

r = r11 + t12ei2kdr22t21 + t12ei4kdr22
3t21 + t12ei6kdr22

5t21 + ....... (D.1)

= r11 +
r22t12t21η

2

[1 − (ηr22)2]
(D.2)

where,

η = eikd = eiωd(n′2−in′′2 )/c = eiωdn′2/ceωdn′′2 /c (D.3)

r11 =
n2 − n1

n1 + n2
=

(n′2 − n1) − in′′2
(n1 + n′2) − in′′2

(D.4)

r22 =
n1 − n2

n1 + n2
=

(n1 − n′2) + in′′2
(n1 + n′2) − in′′2

= −r11 (D.5)

|r11|2 = r11r11
∗ =

(n′2 − n1)2 + (n′′2 )2

(n′2 + n1)2 + (n′′2 )2
= |r22|2 = r22r22

∗ (D.6)

t12 =
2n1

n1 + n2
=

2n1

(n1 + n′2) − in′′2
(D.7)

t21 =
2n2

n1 + n2
=

2n2

(n1 + n′2) − in′′2
(D.8)

Thus, the reflection coefficient is :

R = rr∗

= |r11|2 +
r11
∗r22t12t21η

2

[1 − (ηr22)2]
+

r11r22
∗t12

∗t21
∗(η2)∗

[1 − (ηr22)2]∗
+
|r22|2|t12|2|t21|2e4ωdn′′2 /c

[1 − (ηr22)2][1 − (ηr22)2]∗
(D.9)

Similarly, the amplitude transmission coefficient (t) is given as:

t = t12eikd(1 + ei2kdr22
2 + ei4kdr22

4 + ......)t21 (D.10)

=
ηt12t21

[1 − (ηr22)2]
(D.11)
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Thus, the transmission coefficient is :

T = tt∗ =
|t12|2|t21|2e2ωdn′′2 /c

[1 − (ηr22)2][1 − (ηr22)2]∗
(D.12)

It is now easily verified that :

(1) R + T = 1, for a passive slab (n′′2 = 0) and finite d;

(2) R + T > 1, for an active slab (finite n′′2 ) and finite d.

In figures D.2(a),(b), and (c), we have plotted R + T and R versus refractive index mis-

match (∆n = n′2 − n1) for low, intermediate and high gains, respectively.
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Figure D.2: R + T (black) and R (blue) as function of refractive index mismatch (in the real
parts), for slab thickness = 0.04 µm, λ = 0.8 µm and n′2 = 3.0, with (a) lg = 0.05 µm, (b) lg =

0.03 µm, (c) lg = 0.01 µm.

In all the plots, in the limit of small mismatch and low gain, both R + T (gain) and the

reflection coefficient R (scattering) increase with increase in mismatch. This clearly indicates

that the effectiveness of an individual amplifying scattering event increases with increase in

mismatch. Recalling that the reflection coefficient (R) is analogous to the scattering cross-

section (σs) for the R-RAM in our simulation, an increase in R with mismatch will imply

an enhancement of multiple scattering off the active scatterers constituting the R-RAM. We

should, therefore, expect, a fortiori, further enhancement of the gain with the increase in

the refractive mismatch. This is indeed as is observed (see Figs 5.4(a) and 5.5(a)), for low

gain. Next, in the limit of very high gain, our analytical results for the slab give R + T

and R decreasing with the increasing mismatch. Again recalling, that decreasing R would
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correspond to decrease in multiple scattering for our many scatterer system (R-RAM), we

should expect, a fortiori, a much more pronounced decrease in gain with increasing mismatch

in the limit of very high gain as, indeed, observed in our simulations (see Figs 5.4(c) and

5.5(c)).

Thus, properly interpreted, our analytical expressions for the simple case of this ampli-

fying slab does rationalize the results of our simulations on R-RAM.




