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Theoretical investigations of quantum walks by cold atoms in a double optical lattice
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We investigate the feasibility of carrying out quantum walks with cold atoms in a double optical lattice.

Monte Carlo simulations of time-of-flight (TOF) detection and absorption imaging were carried out, focusing
on a specific experimental implementation. These indicate that absorption imaging would be best suited for
detection of quantum walks. With typical experimental parameters a few hundred quantum walk steps will be
needed for an unambiguous detection of the quantum walk signature. We show that in special cases, few-step
quantum walks can also be detected in our system if one measures the relative population of the atoms in their
internal states rather than their displacement in space, that is, measurements are made in the space of the coin

operator rather than in that of the displacement operator.
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I. INTRODUCTION

The concept of a quantum walk has evoked considerable
research interest in quantum information [1] in recent times,
particularly as a possible mechanism for quantum search al-
gorithms [2-5]. In a classical one dimensional random walk,
a particle starting from the origin moves either to the right or
to the left depending on the outcome of the toss of a coin.
The quantum analogy also considers the displacement of a
particle conditioned on the outcome of the toss of a coin,
with the distinction that on being tossed, the coin goes into a
superposition of states leading to a superposition of displace-
ments and thus a spread in the wave function of the quantum
particle. Coherence of the wave function permits quantum
interference of displacement amplitudes of the particle in
subsequent steps leading to probability distribution functions
quite different from the classical case. For example, N steps
of a classical random walk by a particle starting from the
origin results in a Gaussian probability distribution of posi-
tions, centered gound the origin and a standard deviation
proportional to VN. In contrast, a quantum walk starting from
the origin results in a position probability distribution peak-
ing away from the origin with the peak displacement and
standard deviation increasing as N. This is the reason why
quantum search algorithms based on quantum walks are ex-
pected to be faster than their classical counterparts.

In the case of light, quantum walks have been proposed
based on the polarization states [6—8] and on the orbital an-
gular momentum of a single photon [9]. In the case of matter,
schemes have been devised on trapped ions [10], ultracold
atoms in optical lattices [11], Bose-Einstein condensate
(BEC) [12], optical trap arrays [13], cavity quantum electro-
dynamics (QED) [14], externally driven cavities [15], Ryd-
berg atoms in a cavity [16], and Rydberg atoms in optical
lattices [17]. While numerous proposals exist, a few imple-
mentations of quantum walk have also been reported. The
first practical implementation of a quantum walk was of the
continuous kind [18] by Du et al. [19] in a two-qubit liquid
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NMR system. Ryan et al. [20] implemented a discrete time
quantum walk on a square using a three-qubit liquid state
NMR system. Discrete quantum walks on a line have also
been demonstrated with photons using linear optical ele-
ments by Do et al. [21] and Zhang er al. [22]. Recently,
Perets ef al. [23] have realized a large scale continuous quan-
tum walk using photons in waveguide lattices. Implementa-
tions of quantum walks have proved to be a challenging task
and in case of discrete quantum walks, only up to three steps
of quantum walk have been reported to our knowledge. Fac-
tors such as rapid decoherence of the system, inefficiency of
the processes involved in making a quantum step, and scal-
ing up requirements have been major issues.

In this paper we focus on discrete quantum walks by cold
atoms (nondegenerate) in a double optical lattice. Using
methods of Monte Carlo simulations we critically examine
and conclude that it would indeed be possible for a quantum
walk of a few hundred steps to be unambiguously detected
by standard absorption imaging techniques for realistic ex-
perimental parameters in our system. Furthermore, we show
that in special cases, even a few-step quantum walk can be
detected in spite of the fact that each step size of the walk is
few orders of magnitude smaller than size of cold atom
sample.

In the following sections, we begin by a short introduction
to discrete quantum walks and their salient features. Next we
give a description of the proposed experimental procedure
for performing quantum walks with cold atoms in a double
optical lattice and detection techniques that may be em-
ployed. This is followed by a description of the Monte Carlo
model used to simulate the walk. We then proceed to discuss
the results of our Monte Carlo simulations and also examine
the effect of experimental inefficiencies and decoherences on
the quantum walk. Finally we describe how we can detect a
few-step quantum walk.

II. DISCRETE QUANTUM WALKS

Let us consider a particle described by a wave function
W,=3,; (p(k,s), where i denotes the ith step of the walk, k
denotes the position, and s the internal state. The position k
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FIG. 1. (Color online). Probability versus displacement for (a)
symmetric quantum walk, (b) asymmetric quantum walk, and (c)

classical random walk. In all cases, the number of steps, N equals
50.

can take discrete values from —o to o and s can have one of
the two values X or Y. The operator H defined below, which
puts each internal basis state into a superposition state, simu-
lates the toss of the quantum coin. The operator D is the
conditional displacement causing a translation to the right or
to the left depending on the internal state (X,Y).

H[$p(k,X)] — Pp(k,X +Y)
H¢(k,Y)] — ¢p(k,X - )
DLk, X)] — ¢(k +1,X)

An application of the sequence DH constitutes a single
step of the quantum walk. Beginning with W= ¢(0,X), the
wave function after N steps is given by,

Vy=(DH)Vy_, = (DH)(DH)Vy_, = ... . =(DH)NV,,.

The H operator considered here is Hadamard operator which
puts states X and Y into equal superposition. In general one
can put the states into any arbitrary superposition and repeat
the process. In this paper, we shall be considering only the
Hadamard operator.

We now briefly mention some well-known features of
quantum walks. In Fig. 1(a) we give the probability distribu-
tion after a 50-step quantum walk in position space for a
single atom starting in state X+iY from the origin. This gives
a symmetric distribution. On the other hand, if the particle
starts off in the state X or the state Y, an asymmetric walk
results [Fig. 1(b)]. However, in both the symmetric and the
asymmetric cases, the peak of the probability distribution is
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FIG. 2. (Color online). Probability versus displacement (a and b)
for symmetric quantum walks, (¢ and d) for asymmetric quantum
walks, and (e and f) for classical random walks. In all cases, the
panel on the left is for a 3-step walk and the one on the right a
4-step walk.

displaced away from the origin. In contrast, a classical ran-
dom walker remains centered at the origin, but with an in-
creased spread [Fig. 1(c)]. In principle, right from the third
or fourth step onwards quantum walks and classical walks
can be distinguished from one another as seen in Fig. 2.

III. QUANTUM WALK IN A DOUBLE OPTICAL
LATTICE

A. Experimental description

The quantum walker we consider is a cesium atom, which
has two hyperfine ground states, namely, 6s S,,,, F=3 and
65 2Sy,, F=4, which are separated by 9.2 GHz [24]. In an
experiment, the atoms are first collected and cooled in a
magneto-optical trap and then loaded into a double optical
lattice [25,26]. The double optical lattice consists of two sets
of spatially overlapped lattice beams in a three-dimensional
generalization of the lin L lin configuration [see Fig. 3(a)]
[27,28]. This generates a lattice topography which is insen-
sitive to phase fluctuations in the lattice beams. The two sets
of laser beams operate at the F=3—F'=4 and the F=4
— F' =5 transitions within the D2 transition lines that couple
65 %S/, ground levels to 6p *Py, levels. They can be red
detunined up to about 1 GHz [see Fig. 3(b)]. Thus, each of
the two interpenetrating optical lattices preferentially traps
atoms in one of the hyperfine ground states—the former
traps atoms in the 6s 281/2, F=3 and the latter those in
65 %S,/,, F=4. In general, higher detunings of the lattice
beams increase the coherence time. However, with the cur-
rent experimental configuration [29], the detunings have to
be sufficiently small compared to the hyperfine splitting of
the ground states in order not to couple both transitions.
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FIG. 3. (Color online). (a) The three-dimensional generalization
of the lin L lin configuration that creates the double optical lattice. €
denotes the different polarization directions for the different lattice
beams and 6 is the angle between the lattice beams and the z axis.
(b) The energy diagram of the hyperfine D2 transition lines which
are considered in this paper. A and B represent the lattice beams and
R the Raman beam, w denotes the angular frequency of the beams
and A the detuning.

The wavelengths of the two lattice beams differ by less
than ~picometer and so over the region of the cold cloud,
the lattice sites of the two optical lattices can be made coin-
cident. Atoms trapped in the two optical lattices can be
moved with respect to one another by introducing a relative
spatial phase shift between the double optical lattices. This is
achieved by controlling the phases in the lattice beams by
changing the optical path length of one set of lattice beams
e.g., with an electrooptical modulator (EOM) [26]. It may be
noted here that during translation, the topography the optical
lattice does not change. A shift of the relative spatial phases
by 27 would then act as a D operator.

When the two lattices are coincident, one may cause a
coherent population transfer between the ground states by
means of an additional Raman laser beam [see Fig. 3(b)]
tuned to the 65 >S,,,, F=4—6p *P3,, F'=4 transition. (To
be two-photon resonant with the Raman transition it should
have the same detuning that the lattice beam A has). This
would result in a concomitant transfer of atoms from one
lattice to the other. By denoting the two hyperfine ground
states, 6s 281/2, F=3 and 65 281/2, F=4 as the coin states X
and Y, we can utilize the Raman transition to set an arbitrary
initial state, aX+bY. A Raman 7/2 pulse would constitute
the H operator.

The initial cloud of atoms in the double optical lattice has
a size of the order of a millimeter and temperatures in range
of few microkelvin depending on the potential depth [30,31].
The lattice spacing in the vertical direction is N/\2
(~0.5 wm), which will determine the spatial step length of
the D operator.

B. Detection techniques

The two most commonly used techniques for detection of
cold atoms are time-of-flight (TOF) and direct imaging (ab-
sorption imaging). In the former case atoms are released
from the lattice and allowed to fall freely under gravity
spreading due to the velocity distribution. The falling atoms
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FIG. 4. (Color online). Simulated absorption signal after classi-
cal random walk [red (thin) curve] and asymmetric quantum walk
[blue (thick) curve] of (a) 250 steps, (b) 500 steps, (c) 1000 steps in
a cold cloud of size 1 mm.

are intercepted by a probe beam, where they fluoresce. From
the recorded fluorescence signal one may infer the velocity
and position distribution of the atoms [32,33]. Two factors,
the initial positional spread of the collection of atoms and
their temperature (the latter leading to a velocity spread in
the collection of atoms) limit the resolution achievable. In
the case of absorption imaging, a beam of light is passed
through the collection of atoms and the transmitted light is
recorded. Attenuation of the beam is indicative of interven-
ing atomic population.

C. Monte Carlo model

We carried out Monte Carlo simulations of direct imaging
and of TOF method to study the feasibility of detection of
quantum walks in such a collection of atoms in cold cloud.
Atoms in the cold cloud have a Gaussian spatial distribution
and a Maxwellian velocity distribution. We considered ten
million noninteracting atoms. Each atom is assigned a ran-
dom position in a three-dimensional space (x,y,z coordi-
nates) weighted by a Gaussian probability distribution. The
size of the cloud is taken to be twice the full width at half
maximum of the Gaussian probability distribution. For the
TOF method, each atom is also assigned a random velocity
weighted by Maxwell-Boltzmann distribution corresponding
to a given temperature.

The probability distribution for N-step quantum walk was
determined using a recursion formula for the walk. For each
atom a weighted random number was generated, with the
N-step distribution generated above used for weighting. This
random number multiplied by the lattice spacing was added
to the initial z coordinate of the atom to obtain the final
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FIG. 5. (Color online). Simulated absorption signal after classi-
cal random walk [red (thin) curve] and asymmetric quantum walk
(blue/thick curve) of (a) 250 steps, (b) 500 steps, (c) 1000 steps in
a cold cloud of size 0.1 mm.

position of the atom. Note that the one-dimensional walk is
performed in the (vertical) z direction and the x and y coor-
dinates remain unchanged. In this manner we obtained the
positional distribution of atoms in the cold cloud, having
performed an N-step quantum walk.

We simulated a direct absorption imaging signal for an
imaging beam sent along the y direction by summing over
the position coordinate y. We also summed over the position
coordinate x to get the distribution of atoms along the z di-
rection after the quantum walk. Histograms were thereafter
formed by binning the z positions with a bin size depending
on the resolution of the imaging optics and the charge
coupled device camera.

For simulating the TOF signal, the time of arrival of at-
oms, upon release from the trap, at a probe beam placed at a
distance d vertically below the cloud, was calculated for each
atom using its z position after the N-step quantum walk and
its initial velocity. A histogram was formed by binning these
times of arrivals using a bin size appropriate for the experi-
mental setup. In this case the time bin was 10 us.

Both the absorption and TOF signals thus generated are
compared with the signals simulated for a N step classical
walk for a collection of cold atoms in an optical lattice for
the same parameters [shown as the red (thin) curve in the
Fig. 4-7]. In the classical case the final probability distribu-
tion remains Gaussian.

IV. RESULTS OF MONTE CARLO SIMULATIONS
A. Simulated absorption imaging

The simulated absorption signals are given in Fig. 4 for an
atom cloud of 1 mm diameter undergoing 250, 500, and 1000
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FIG. 6. (Color online). Simulated TOF signals for cloud of 0.1
mm at 1 uK with probe placed [(a)-(c)] 5 cm and [(d)—(f)] 1 cm
below the cloud for various N-step walks. In each panel, the red
(thin) curve corresponds to a classical walk and the blue/thick curve
to an asymmetric quantum walk.

steps of asymmetric quantum walks, where each step size is
N/V2. It is seen that careful measurements can enable dis-
tinction between a classical and a quantum walk even for
250 steps. However no striking departure from a Gaussian
probability distribution of positions is evident even for 1000
steps, though there is a slight displacement of the center of
mass of the collection of atoms. This is understandable as the
maximum possible displacement of an atom even in 1000
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FIG. 7. (Color online). Simulated TOF signals for cloud of 0.1
mm at 200 nK with probe placed [(a)—(c)] 5 cm and [(d)—(f)] 1 cm
below the cloud for various N-step walks. In each panel, the red
(thin) curve corresponds to a classical walk and the blue/thick curve
to an asymmetric quantum walk.
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step case lies within the initial size of the cloud. Figure 5
shows the same for a cloud of size 0.1 mm. In this case, the
typical features of a quantum walk, namely, the suppression
of the positional probability distribution at the center and the
peaking at the ends, is very clearly seen even at 250 steps.
This is even more pronounced for 500 and 1000 step walks.

B. Simulated time of flight detection

Our results from the simulation of the TOF method are
now discussed. This measurement technique was considered
because of the good signal to noise ratio it offers [33]. Fig-
ures 6 and 7 are the simulated TOF signals for atom clouds
of 0.1 mm size at | wK and 200 nK respectively. In each
figure the first column shows the TOF signal for a probe
beam sent 5 cm below the cloud and the second column for
a probe beam 1 cm below the cloud. In each of the columns,
the first row shows the result of an asymmetric quantum
walk after 250 steps, the second after 500 steps, and the third
after 1000 steps. Unlike the case of absorption imaging
where the temperature of the cloud does not affect the mea-
surement, the TOF signal is very sensitive to this parameter;
in fact the TOF technique is used to measure the temperature
(velocity distribution) of a cold cloud. Thus, it is not surpris-
ing that the TOF signal for the 1 uK case is quite different
from the one for the 200 nK case.

Also, the distance of the probe beam from the cloud is an
important factor—too distant a beam would allow the mask-
ing out of the effects of a quantum walk by the ballistic
spread of atoms during their flight. We see from Fig. 6 that a
temperature of 1 wK is too high to bring out the character-
istic features of the quantum walk. However, a quantum walk
can indeed be distinguished from the case of a classical walk
when the probe is placed sufficiently close as is seen from
Figs. 6(e) and 6(f). The signal however remains essentially a
Gaussian though somewhat skewed. The case of the atom
cloud at 200 nK (Fig. 7) shows the characteristic quantum
walk features after a large number of steps (1000) in the case
of a distant (5 cm) probe beam and for about 500 steps for
the case of probe beam 1 cm below the cloud. Comparison of
Figs. 5-7 shows that absorption imaging technique is better
suited for detecting and measuring quantum walks as the
velocity spread (temperature) of the atoms is an irrelevant
parameter here.

So far we have seen that for atoms in typical cold atomic
cloud a few hundred steps are needed to be carried out in
order for the features of quantum walk to be observed. How-
ever, this coupled with imperfect Raman transfers, inefficient
physical displacements, and decoherence due to spontaneous
emissions may severely constrain practical implementation.
This aspect will be discussed next section.

V. INEFFICIENCIES AND DECOHERENCE
IN QUANTUM WALKS

A. Inefficient quantum walk

The quantum walks described and performed in Monte
Carlo simulations assume perfect Hadamard and displace-
ment operators. In practical implementations there are seri-
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FIG. 8. (Color online). Positional probability distributions after
250-step asymmetric quantum walks of different efficiencies of the
displacement operator.

ous considerations. One of the inefficiencies that may arise is
that some atoms are not moved to their neighboring lattice
sites during the displacement operation but remain at their
current sites. As a result the spread of atom slows down with
respect to number of steps N of quantum walk. At the end of
a N-step quantum walk with an inefficient displacement op-
erator, the atom is in a weighted sum of all possible k-step
quantum walks, with k extending from one to N. This can be
seen in Fig. 8 which gives the positional probability distri-
bution of an atom after 250 steps of quantum walk for vari-
ous efficiencies of the displacement operator. The walk de-
picted in (a) has largest spread; it represents a Hadamard
walk with 100% efficiency of the displacement operator. In
this curve, alternate sites have zero probability for finding an
atom characteristic of discrete walks. All the other curves,
which represent Hadamard walks with various reduced dis-
placement fidelities have a finite nonzero probability at all
sites between the two extremes. Also, the most probable
(peak) displacement occurs closer to the center with decreas-
ing fidelity of the displacement operator.

However, this does not imply classical random walk na-
ture. In a classical random walk, the probability distribution
remains peaked at the origin and the standard deviation of
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FIG. 9. (Color online). The most probable (peak) displacement
versus the number of steps of asymmetric quantum walks for dif-
ferent efficiencies of displacement operator. Lines shown from top
to bottom represent 100 (orange), 95 (black), 90 (blue), 80 (red),
and 60% (brown) efficiency of the displacement operator
respectively.

the displacement probability varies as VN, N being the num-
ber of steps. The ideal quantum walk on the other hand is
known to have a standard deviation linear in N [1]. We ex-
amined the most probable displacement for various reduced
fidelities of displacement operator. The results are shown in
Fig. 9, where the position of the most probable displacement
is plotted as a function of N. It is seen that the most probable
displacement remains linear with the number of steps of the
asymmetric quantum walk though the slope reduces with de-
creasing fidelity of the displacement operator. Given in Fig.
10 are the absorption images corresponding to the probabil-
ity distributions of Fig. 8 assuming a cold cloud of 0.1 mm
size in a double optical lattice. It is seen that even for as low
as 80% efficiency and to a certain extent even for 60% effi-
ciency, a 250-step walk gives a good quantum walk behavior
in the absorption imaging.

B. Decoherence

Spontaneous emissions during Raman pulse cycles and
the inherent scattering in the optical lattices contribute to
decoherence in our system. In our simulation, decoherence
was modeled in the following manner. For a coherence of
Q%, an atom during the Hadamard operation was taken to
perform a 77/2 Rabi cycling and go into a superposition state
with a probability Q%. With a probability (100—Q) %, atoms
were assumed to undergo spontaneous emission and collapse
to one of the lattice sites with a spatial probability distribu-
tion that the atomic wave function had just prior to the Had-
amard operation and with equal probability of going to states
X or Y. Thereafter, the atom starts a fresh quantum walk. By
repeating the process for about a million times we get aver-
age position probability distribution of an atom after N steps
of a quantum walk with coherence of Q%.

Figures 11 and 12 show the position probability distribu-
tion after 50 and 250 steps quantum walk with various re-
duced coherences. It should be noted that alternate sites have
probability zero; this is inherent to a discrete walk and is not
an interference phenomenon. The alternate sites with prob-
ability zero have been omitted in the plot for better represen-
tation. It can be seen from Fig. 11(d) that a 50-step quantum
walk with 95% coherence (where there is 5% chance of at-
oms to decohere at each step) begins to resemble the classi-
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FIG. 10. (Color online). Simulated absorption signal of asym-
metric quantum walks of 250 steps for different efficiencies of dis-
placement operator.

cal random walk. For a 250-step walk this happens for 99%
[Fig. 12(c)]. For reduced coherences of 90 and 80% the clas-
sical nature is even more apparent as the probability distri-
bution becomes Gaussian; however, the width is still large
compared to the completely classical random walk. Absorp-
tion images corresponding to the probability distributions of
Fig. 12 assuming a cold cloud of 0.1 mm size in a double
optical lattice are given in Fig. 13.

From the discussions so far, the following emerges. On
the one hand, a large number of steps can be required for an
unambiguous detection of the typical signature of a quantum
walk, namely, suppressed positional probability at the origin
and its peaking toward the periphery. This requirement may
increase further due to inefficient displacement operations.
At the same time, the decoherence in the system can rapidly
wash out the quantum walk features and thus restrict the
number of steps that may be implemented. To provide a more
complete picture, it is vital to find alternative methods that
can work for quantum walks with just a few steps. We dis-
cuss this in the next section.
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FIG. 11. (Color online). Positional probability distribution for

asymmetric quantum walk of 50 steps for different coherences. Al-
ternate sites that have zero probability have been omitted for clarity.

VI. DETECTION OF A FEW-STEP QUANTUM WALK:
PROJECTION INTO INTERNAL STATE SPACE

We now propose a scheme where even a 3-step quantum
walk can be unambiguously verified. This method is based
on the fact that after each step of the quantum walk, along
with the superposition of displacement, the particle also ex-
ists in a superposition of its internal states which is specific
to the number of steps N of the quantum walk. At each po-
sition after an N-step quantum walk there is a probability for
the particle to be found in state X and a probability for being
in state Y. Summing over all positions, the probabilities of
finding the particle in X and summing over all atoms, i, we
get the total (unnormalized) probability  (Py)y
=33k, X)|¥y|h(k,X)); of the atoms to be found in X
after N steps of the quantum walk. Equivalently, this corre-
sponds to the population of atoms in the state X after a
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FIG. 12. (Color online). Positional probability distributions for
asymmetric quantum walk of 250 steps for different coherences.
Alternate sites that have zero probability have been omitted for
clarity.

N-step quantum walk in our system. Similarly, one may de-
termine (Py)y, the population in Y after N steps. It turns out
that (Py)y and (Py)y are indicative of N, the number of steps
of the quantum walk that have been performed, especially
for small N.

This is illustrated in Fig. 14 where —= [red (thin) lines]

and @' (blue/thick lines) are plotted as a function of N,
with n being the total number of atoms and the initial popu-
lation having all been in state X. If the Hadamard operation
alone is performed without any accompanying displacement,
the relative population of X and Y can acquire only the val-
ues 1.0 and 0.5 after application of any number of Raman
/2 pulses. In a quantum walk, alternating Hadamard and
displacement operations cause interference of amplitudes
giving rise to oscillations in the populations in the two states.

(Pxy
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FIG. 13. (Color online). Simulated absorption signal for asym-
metric walk of 250 steps for different coherences.

For a Hadamard walk starting with initial state X, the relative
X population oscillates about 0.646 and the relative Y popu-
lation about 0.354, with the amplitude of oscillation gradu-
ally decreasing. The difference in population (Py)y and
(Px) 42 is most significant for smaller values of N making
this method more suitable for few-step quantum walks. In an
experiment such as ours individual atom events are probed in
a bulk sample. Thus, the methods that seek to measure dis-
placement in position space or momentum space, which are
not bounded, require significant displacement before the dis-
tinction between classical random walk and quantum walk
can be seen or even symmetric and antisymmetric quantum
walks can be distinguished. If instead we measure in the
space operated in by the Hadamard operator, where the limits
are well defined, a measurement of population brings out the
difference right at the third step. However, it should be noted
that this method is only applicable to asymmetric quantum
walks. For a symmetric quantum walk the relative population
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FIG. 14. (Color online). Population evolution of X state [red
(thin) lines] and Y state (blue/thick lines) in a Hadamard walk start-
ing with initial state X as a function of number of steps N. In both
the cases, only the points are realizable values; they are joined by
line segments as a guide to the eye.

of X and Y will always remain 0.5 as also in the case of
classical random walk.

The strategy to adopt in order to detect the quantum walk
would then be to initialize the atoms in the state X (or Y) and
execute the walk for the required number of steps N by per-
forming the sequence of operations (DH)N. Two absorption
measurements should then be carried out, one with the probe
beam resonant with the X state and other resonant with the Y
state, in order to determine the number of atoms in states X
and Y. This gives the relative populations after N steps of the
quantum walk. As the quantum walk is being carried out
simultaneously by all atoms in the cold cloud, a single mea-
surement of relative populations suffices. Second and more
importantly, this measurement is independent of the size and
the temperature of cold cloud.

The population evolution presented in Fig. 14 is for the
ideal case of 100% fidelity. We now present the results for
cases of inefficient displacement and reduced coherence.
These are illustrated in Figs. 15 and 16 respectively. It can be
seen that even for as low as 80% efficiency and 80% coher-
ence up to 10 steps of quantum walks can be distinguished.
The effect of reduced fidelity is very drastic in the case of
relative population measurements as the number of steps in-
creases. However, this sensitive dependence of relative popu-
lation on efficiency may be used to test the coherence of a
Hadamard walk before it is put to an application. By record-
ing the steady state population of states X and Y for larger
number of steps the presence or loss of coherence can be
ascertained.

VII. DISCUSSION

We have established that a quantum walk can be per-
formed and measured with cold atoms in a double optical
lattice. We now point out some interesting features that may
be tested out. The quantum walk is unitary and hence revers-
ible. The Hadamard operation being the inverse of itself,
merely the direction of the displacement has to be reversed
to obtain an inverse quantum walk step. Applying the se-
quence (DH)'=H'D'=HD!, N times, we should obtain
the original distribution, the limitations being inefficiencies
and decoherence.

Decoherence is a very important consideration in the
implementation of quantum walks. In a dilute collection of
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FIG. 15. (Color online). Population evolution of X state [red
(thin) lines] and Y state (blue/thick lines) in a Hadamard Walk
starting with initial state X as a function of number of steps N for
different efficiencies of the displacement operator, (a) 95,(b) 90, and
(c) 80%. In all cases, only the points are realizable values; they are
joined by line segments as a guide to the eye.

cold atoms, several factors limit the coherence apart from
spontaneous emission during Raman pulse, e.g., scattering of
the lattice beams and collisions of atoms. An increase in the
number of steps increases delocalization of the wave func-
tion, thereby increasing the probability of collision between
the atoms, and with it, their role in decoherence of the wave
function. While increased delocalization will prove detri-
mental to a many step quantum walk, in the case of a few-
step quantum walk, this may be used to study collisions and
also to measure the relative roles of the various decohering
effects. For example, a 100-step asymmetric quantum walk
of 1 um displacement per step and a 10-step asymmetric
quantum walk of 10 um will result in similar displacement
to atoms and are unlikely to be distinguished in a displace-
ment measurement of the quantum walk by absorption or
time-of-flight techniques. However, as the population
evolves as the number of steps of a quantum walk, indepen-
dent of the step size, the two cases can be distinguished in a
population measurement. By conducting, say, two 5-step
quantum walks differing only in their step size, the observed
difference in the population distributions can be attributed to
decoherence due to collisions.

The relative displacement of the lattices in the envisaged
experiment is to be carried out by an EOM. The EOM cur-
rently available is capable of inducing a relative spatial phase
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FIG. 16. (Color online). Population evolution of X state [red
(thin) lines] and Y state (blue/thick lines) in a Hadamard Walk
starting with initial state X as a function of number of steps N for
different values of coherences, (a) 95, (b) 90, and (¢) 80%. In all
cases, only the points are realizable values; they are joined by line
segments as a guide to the eye.

of up to 8 (four sites). This gives the possibility of having
step lengths of one to four lattice sites. This however, need
not limit the number of steps of the Hadamard walk; when
limit of the EOM is reached, the population can be inverted
by a  pulse, which swaps atoms from one lattice to the
other. The spatial phase shift due to the EOM is then reduced
from 87 back toward 0. As the populations have been in-
verted, this is equivalent to a continuation of the relative
displacement of the original lattice in the original direction.
The step length can also be increased by switching the dis-
placement from the vertical to the horizontal direction, where
the intersite distance is twice as large [26]. It is of impor-
tance that the translation is performed adiabatically, that is,
the atoms have to be moved sufficiently slowly compared to
their vibrational frequency, which is typically of the order of
100 kHz. The displacement can be carried out in any of the
x,y,z directions opening up the possibilities of two- and
three-dimensional quantum walks.

VIII. CONCLUSION

In summary, we have examined the feasibility of perform-
ing and detecting quantum walks in a collection of cold
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atoms in a double optical lattice. We see that for present
experimental capabilities, a few hundred steps of the quan-
tum walks are required to see the two-peaked structure char-
acteristic of one-dimensional quantum walks. We have

PHYSICAL REVIEW A 80, 012302 (2009)

shown that few-step asymmetric quantum walks can be de-
tected and measured in cold atoms in optical lattices, if one
measures the population of the internal states rather than the
displacements.
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