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Large-scale dynamo action due to turbulence in the presence of a linear shear flow is studied. Our treatment
is quasilinear and kinematic but is nonperturbative in the shear strength. We derive the integrodifferential
equation for the evolution of the mean magnetic field by systematic use of the shearing coordinate transfor-
mation and the Galilean invariance of the linear shear flow. For nonhelical turbulence the time evolution of the
cross-shear components of the mean field does not depend on any other components excepting themselves.
This is valid for any Galilean-invariant velocity field, independent of its dynamics. Hence the shear-current
assisted dynamo is essentially absent, although large-scale nonhelical dynamo action is not ruled out.
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Shear flows and turbulence are ubiquitous in astrophysical
systems. Recent work suggests that the presence of shear
may open new pathways to the operation of large-scale dy-
namos �1–5�. We present a theory of dynamo action in a
shear flow of an incompressible fluid which has random ve-
locity fluctuations due either to freely decaying turbulence or
generated through external forcing. Of particular interest is
the case of nonhelical large-scale dynamo action in shear
flows. Several direct simulations show that large-scale fields
can grow from small seed fields under the combined action
of nonhelical turbulence and background shear flow �1,2�.
However, the interpretation of how such a dynamo works is
not yet clear. One possibility that has attracted much atten-
tion is the shear-current effect �4�, in which extra compo-
nents of the mean electromotive force �EMF� arise due to
shear, which couple components of the mean magnetic field
parallel and perpendicular to the shear flow. However there is
no convergence yet on whether the sign of the relevant cou-
pling term is such as to obtain a dynamo; some analytic
calculations �6,7� and numerical experiments �1� find that the
sign of the shear-current term is unfavorable for dynamo
action. Moreover, analytic calculations treat shear as a small
perturbation. We are interested here in studying the shear
dynamo without such a restriction.

Our theory is “local” in character: In the laboratory frame
we consider a background shear flow whose velocity is uni-
directional �along the X2 axis� and varies linearly in an or-
thogonal direction �the X1 axis�. The linear shear flow has a
basic symmetry relating to measurements made by a special
subset of all observers, who may be called co-moving ob-
servers. This symmetry is the invariance of the equations
with respect to a group of transformations that is a subgroup
of the full Galilean group. It may be referred to as “shear–
restricted Galilean invariance,” or Galilean invariance �GI�.
We introduce and explore the consequences of GI velocity
fluctuations; not only are these compatible with the underly-

ing symmetry of the problem, but they are expected to arise
naturally. This has profound consequences for dynamo action
because the transport coefficients that define the mean EMF
become spatially homogeneous in spite of the shear flow.
Systematic use of the shearing transformation allows us to
develop a theory that is nonperturbative in the strength of the
background shear. However, we ignore the complications as-
sociated with nonlinear interactions, hence MHD turbulence
and the small-scale dynamo; so our theory is quasilinear in
nature, equivalent to the “first-order smoothing approxima-
tion” �FOSA�.

Let �e1 ,e2 ,e3� be the unit vectors of a Cartesian coordi-
nate system in the laboratory frame, X= �X1 ,X2 ,X3� be the
position vector, and � be the time. The fluid velocity is given
by �−2AX1e2+v�, where A is the shear parameter and v�X ,��
is a randomly fluctuating velocity field, which is incompress-
ible �� ·v=0� and has zero mean ��v�=0�. The magnetic
field has a large-scale �mean-field� component B�X ,�� and a
fluctuating field, b, with zero mean ��b�=0�. The evolution of
the mean field is governed by

� �

��
− 2AX1

�

�X2
�B + 2AB1e2 = � � E + ��2B, �1�

where E= �v�b� is the mean EMF. Our goal is to calculate E
in terms of the statistical properties of the fluctuating veloc-
ity field, which we will do using quasilinear theory. This
means solving the equation for b by dropping terms that are
quadratic in the fluctuations. We also drop the resistive term,
assuming that the correlation times are small compared to the
resistive time scale. So our theory is applicable when FOSA
is valid �8�. Then b obeys

� �

��
− 2AX1

�

�X2
�b + 2Ab1e2 = � � �v � B� . �2�

It proves convenient to exchange spatial inhomogeneity
for temporal inhomogeneity so we get rid of the �X1� /�X2�
term through a shearing transformation to new space-time
variables,
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x1 = X1, x2 = X2 + 2A�X1, x3 = X3, t = � . �3�

We also define new variables, H�x , t�=B�X ,��,
h�x , t�=b�X ,��, and u�x , t�=v�X ,��, which are component-
wise equal to the old variables.

Then Eq. �2� becomes

�h

�t
+ 2Ah1e2 = �H ·

�

�x
+ 2AtH1

�

�x2
�u

− �u ·
�

�x
+ 2Atu1

�

�x2
�H. �4�

Not only do sheared coordinates get rid of spatial inhomoge-
neity, but in quasilinear theory the evolution Eq. �4� does not
contain spatial derivatives of h�x , t�. The equations for h1
and h3 can be integrated directly. The h1 so obtained can be
substituted in the equation for h2: there occur double-time
integrals which can be manipulated to give expressions with
only single-time integrals, by interchaging the order of the
integrals. Then the particular solution for h�x , t� is given in
component form by

hm = 	
0

t

dt��uml� − 2A�t − t���m2u1l� ��Hl� + 2At��l2H1��

− 	
0

t

dt��ul� + 2At��l2u1���Hml� − 2A�t − t���m2H1l� � ,

�5�

where primes denote evaluation at space-time point �x , t��.
We have also used notation uml= ��um /�xl� and
Hml= ��Hm /�xl�.

The expression in Eq. �5� for h should be substituted in
E= �v�b�= �u�h�. Following standard procedure, we allow
� � to act only on the velocity variables but not the mean
field; symbolically, it is assumed that �uuH�= �uu�H. After
interchanging the dummy indices �l ,m� in the last term, we
find that the mean EMF is

Ei = 	
0

t

dt���̂il − 2A�t − t���̂il��Hl� + 2At��l2H1��

− 	
0

t

dt���̂iml + 2At��m2�̂i1l��Hlm� − 2A�t − t���l2H1m� � ,

�6�

where the transport coefficients ��̂ , �̂ , �̂� are defined in terms
of the uu velocity correlators by

�̂il�x,t,t�� = �ijm�uj�x,t�uml�x,t��� ,

�̂il�x,t,t�� = �ij2�uj�x,t�u1l�x,t��� ,

�̂iml�x,t,t�� = �ijl�uj�x,t�um�x,t��� . �7�

It is physically more transparent to consider velocity statis-
tics in terms of the vv velocity correlators because this is
referred to the laboratory frame, instead of the sheared coor-
dinates. By definition,

um�x,t� = vm�X�x,t�,t� , �8�

where X�x , t�= �x1 ,x2−2Atx1 ,x3� is the inverse of the shear-
ing transformation given in Eq. �3�. The velocity gradient uml
is

uml = � �

�Xl
− 2A��l1

�

�X2
�vm = vml − 2A��l1vm2, �9�

where vml= ��vm /�Xl�. Using Eqs. �8� and �9� in Eq. �7�,

�̂il�x,t,t�� = �ijm��v j�X,t�vml�X�t��

− 2At��l1�v j�X,t�vm2�X�,t����� ,

�̂il�x,t,t�� = �ij2��v j�X,t�v1l�X�,t���

− 2At��l1�v j�X,t�v12�X�,t���� ,

�̂iml�x,t,t�� = �ijl�v j�X,t�vm�X�,t��� , �10�

where the quantities X= �x1 ,x2−2Atx1 ,x3� and X�
= �x1 ,x2−2At�x1 ,x3�.

We can arrive at some general conclusions for delta-
correlated-in-time velocity fields. Let the two-point cor-
relator be taken between space-time points �R ,�� and
�R� ,��� be �vi�R ,��v j�R� ,����=���−���Tij�R ,R� ,��. We de-
fine Tijl�R ,��= ��Tij /�Rl��R�=R. The delta function ensures
that X and X� occurring in the velocity correlators of
Eq. �10� are equal to each other. So �vi�X , t�v j�X� , t���
=��t− t��Tij�X ,X , t� and �vi�X , t�v jl�X� , t���
=��t− t��Tijl�X , t�. The integrals over time in Eq. �6� can all
be performed, so the mean EMF is

Ei = �ijm�Tjml − 2At�l1Tjm2��Hl + 2At�l2H1� − �ijl�Tjm

+ 2At�m2Tj1�Hlm. �11�

It is useful to write the EMF in terms of the original vari-
ables and laboratory-frame coordinates. To this end we trans-
form

Hlm = � �

�Xm
− 2A��m1

�

�X2
�Bl = Blm − 2A��m1Bl2, �12�

where Blm= ��Bl /�Xm�. Then the explicit dependence of Ei on
the shear parameter A cancels out, and mean EMF assumes
the simple form

Ei = �ijmTjmlBl − �ijlTjmBlm, �13�

which is the familiar expression obtained in the absence of
shear. Thus, shear needs time to manifest and, to see the
effects of shear explicitly, it is necessary to consider nonzero
correlation times. Henceforth we consider velocity statistics
with finite correlation times.

The linear shear flow has a basic symmetry relating to
measurements made by a special subset of all observers. We
define a co-moving observer as one whose velocity with re-
spect to the laboratory frame is equal to the velocity of the
background shear flow, and whose Cartesian coordinate axes
are aligned with those of the laboratory frame. A co-moving
observer can be labeled by the coordinates, �= �	1 ,	2 ,	3�, of
her origin at time �=0. Different labels identify different
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co-moving observers and vice versa. As the labels run over
all possible values, they exhaust the set of all co-moving
observers. The origin of the coordinate axes of a co-moving
observer translates with uniform velocity; its position with
respect to the origin of the laboratory frame is given by

Xc��� = �	1,	2 − 2A�	1,	3� . �14�

An event with space-time coordinates �X ,�� in the laboratory

frame has space-time coordinates �X̃ , �̃� with respect to the
co-moving observer, given by

X̃ = X − Xc���, �̃ = � − �0, �15�

where the arbitrary constant �0 allows for translation in time
as well.

Let �B̃�X̃ , �̃� , b̃�X̃ , �̃� , ṽ�X̃ , �̃�� denote the mean, the
fluctuating magnetic fields, and the fluctuating velocity
field, respectively, as measured by the co-moving observer.
They are all equal to the respective quantities measured

in the laboratory frame: �B̃�X̃ , �̃� , b̃�X̃ , �̃� , ṽ�X̃ , �̃��
= �B�X ,�� ,b�X ,�� ,v�X ,���. That this must be true may be
understood as follows. Magnetic fields are invariant under
nonrelativistic boosts so the mean and fluctuating magnetic
fields must be the same in both frames. To see that the
fluctuating velocity fields must also be the same in both
frames, we note that the total fluid velocity measured
by the co-moving observer is, by definition, equal to

�−2AX̃e2+ ṽ�X̃ , �̃��. This must be equal to the difference
between the velocity in the laboratory frame,
�−2AXe2+v�X ,��� and �−2A	1e2�, which is the velocity of
the co-moving observer with respect to the laboratory frame.

Using X̃=X−	1, we see that ṽ�X̃ , �̃�=v�X ,��. Equations �1�
and �2� are invariant under the simultaneous transformations
of space-time coordinates and fields discussed above. We
note that this symmetry property is actually invariance under
a subset of the full ten-parameter Galilean group, param-
etrized by the five quantities �	1 ,	2 ,	3 ,�0 ,A�; for brevity we
refer to this restricted symmetry as Galilean invariance, or
simply GI. There is a fundamental difference between the
coordinate transformations associated with GI �Eq. �15�� and
the shearing transformation �Eq. �3��. The former relates dif-
ferent co-moving observers, whereas the latter describes a
time-dependent distortion of the coordinate axes of one ob-
server. Moreover, the relationship between old and new vari-
ables is homogeneous for the Galilean transformation,
whereas it is inhomogeneous for the shearing transformation.

Naturally occurring processes lead to G-invariant velocity
statistics. Let the observer in the laboratory frame correlate
vi at space-time location �R ,�� with v j at location �R� ,���.
Now consider a co-moving observer, the position vector of
whose origin is given by Xc��� of Eq. �14�. An identical
experiment performed by this observer must yield the same
results, the measurements now made at the space-time points
denoted by �R+Xc��� ,�� and �R�+Xc���� ,��� in the
laboratory-frame variables. Therefore, a GI two-point veloc-
ity correlator must satisfy the condition

�vi�R,��v j�R�,���� = �vi„R + Xc���,�…v j„R� + Xc����,��…�
�16�

for all �R ,R� ,� ,�� ,��. We also have

�vi�R,��v jl�R�,���� = �vi�R + Xc���,��v jl�R� + Xc����,���� .

�17�

If we now set R=R�=0 ,�= t ,��= t� and �=x, we will have
Xc���= �x1 ,x2−2Atx1 ,x3� and Xc����= �x1 ,x2−2At�x1 ,x3�.
Therefore Xc��� and Xc���� are equal to X and X�, which are
the quantities that enter as arguments in the velocity correla-
tors of Eqs. �10� defining the transport coefficients. Hence,
�reading Eqs. �16� and �17� from right to left�, we see that

�vi�X,t�v j�X�,t��� = �vi�0,t�v j�0,t��� = Rij�t,t�� ,

�vi�X,t�v jl�X�,t��� = �vi�0,t�v jl�0,t��� = Sijl�t,t�� �18�

are independent of space, and are given by the functions
Rij�t , t�� and Sijl�t , t��. Symmetry and incompressiblity imply
that Rij�t , t��=Rji�t� , t� and Sijj�t , t��=0. Using Eqs. �18� in
Eqs. �10�, we find that the GI transport coefficients

�̂il�t,t�� = �ijm�Sjml�t,t�� − 2At��l1Sjm2�t,t��� ,

�̂il�t,t�� = �ij2�Sj1l�t,t�� − 2At��l1Sj12�t,t��� ,

�̂iml�t,t�� = �ijlRjm�t,t�� �19�

are also independent of space.
Galilean invariance is the fundamental reason that the ve-

locity correlators, hence, the transport coefficients, are inde-
pendent of space. The derivation given above is purely math-
ematical, relying on the basic freedom of choice of
parameters �R ,R� ,� ,�� ,��, but we can also understand the
results more physically. X and X� can be thought of as the
location of the origin of a co-moving observer at times t and
t�, respectively. GI implies that the velocity correlators mea-
sured by the co-moving observer at her origin at times t and
t� must be equal to the velocity correlators measured by any
co-moving observer at her origin at times t and t�. In particu-
lar, this must be true for the observer in the laboratory frame,
which explains Eqs. �18�, consequently Eqs. �19�. We can
derive an expression for the GI mean EMF by using Eqs.
�19� for the transport coefficients in Eq. �6�, and simplifying
the integrands. We define

Cjml�t,t�� = Sjml�t,t�� − 2A�t − t���m2Sj1l�t,t�� ,

Djm�t,t�� = Rjm�t,t�� + 2At��m2Rj1�t,t�� . �20�

Then the mean EMF, E�x , t�, can be written compactly as

Ei = �ijm	
0

t

dt�Cjml�t,t��Hl�

− 	
0

t

dt���ijl − 2A�t − t���l1�ij2�Djm�t,t��Hlm� . �21�

The mean field Eq. �1� for H�x , t� is
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�Hi

�t
+ 2A�i2H1 = �� � E�i + ��2Hi, �22�

where ���p
� /�Xp= �� /�xp+2At�p1� /�x2�. We use Eq. �21�
to evaluate ���E�i as follows:

�� � E�i = 	
0

t

dt��Ciml − Cmil��Hlm� + 2At�m1Hl2� �

+ 	
0

t

dt�Djm�Hijm� + 2At� j1Hi2m�

− 2A�t − t���i2�H1jm� + 2At� j1H12m� �� . �23�

Equations �22� and �23� form a closed set of integrodifferen-
tial equations governing the dynamics of the mean field,
H�x , t�, valid for arbitrary values of A. The most visible
properties of Eq. �23� for ���E� are: �i� Only the part of
Ciml�t , t�� that is antisymmetric in the indices �i ,m� contrib-
utes. Indeed both Siml and Ciml can vanish for nonhelical
velocity fluctuations, in which case dynamo action is deter-
mined only by the Djm terms. �ii� The Djm�t , t�� terms are
such that ���E�i involves only Hi for i=1 and i=3, whereas
���E�2 depends on both H2 and H1. Together with the
mean-field induction Eq. �22� this means that the equations
determining the time evolution of H1 and H3 are closed.
Thus H1�x , t� �or H3�x , t�� can be computed by using only the
initial data H1�x ,0� �or H3�x ,0��. The equation for H2 in-
volves both H2 and H1, and can then be solved.

The implications for the original field, B�X ,��, can be
read off because it is equal to H�x , t� componentwise �i.e.,
Bi�X ,��=Hi�x , t��. Thus, the Djm�t , t�� terms do not couple
either B1 or B3 with any other components, excepting them-
selves. In demonstrating this, we have not assumed that ei-
ther the shear is small, or that H�x , t� is such a slow function

of time that it can be pulled out the time integrals in Eqs.
�21� and �23�. Comparing with earlier work �where, essen-
tially, both assumptions have been made� we conclude that
there is no shear-current-assisted dynamo of the form dis-
cussed in Refs. �4,6,7�, where there is explicit coupling of B2
and B1 in the evolution equation for B1. Our calculations are
based on a nonperturbative treatment of shear, and this
makes for a basic departure from earlier work which have
treated shear perturbatively. Even when the shear is weak,
two fluid elements which were close together initially would
be separated by arbitrarily large distances at late times. Thus
the two-time correlations, which appear naturally in the dy-
namo problem, have to be handled carefully in the presence
of shear. Moreover, the perturbative treatment of shear is not
guaranteed to preserve GI, which is a natural and fundamen-
tal ingredient of our non perturbative approach.

In conclusion we find that systematic use of the shearing
coordinate transformation and the Galilean invariance of a
linear shear flow allows us to develop a quasilinear theory of
the shear dynamo which, we emphasize, is nonperturbative
in the shear parameter. Specifically, we have proved that
there is essentially no shear-current-assisted dynamo in the
quasilinear limit when FOSA is applicable. Moreover, our
results are valid for any GI velocity statistics, independent of
the forces �Coriolis, buoyancy etc� governing the dynamics
of the velocity field. However, large-scale nonhelical dyna-
mos �i.e., with no initially imposed kinetic helicity� are not
ruled out, and further progress requires developing a dynami-
cal theory of velocity correlators in shear flows.
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