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We study the equilibrium conformations of a grafted polyelectrolyte �PE� in the presence of explicit
counterions �CIs� using Monte Carlo simulations. The interplay between attractive Lennard-Jones
interactions �parametrized by �� and electrostatics �parametrized by A=q2lB /a, where q is the CI
valency, lB is the Bjerrum length, and a is the monomer diameter� results in a variety of
conformations, characterized as extended �E�, pearls with m beads �Pm�, sausage �S�, and globular
�G�. For large �, we observe a transition from G→P2→P3→ . . . →S→G with increasing A, i.e., a
change from poor to good, to re-entrant poor solvent, whereas, at lower �, the sequence of
transitions is E→S→G. The conformation changes are directly related to the nature of binding of
CI onto the PE. The transition between S→G is continuous and associated with critical fluctuations
in the shape driven by fluctuations in the fraction of condensed CI. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3078265�

I. INTRODUCTION

The equilibrium properties of a polyelectrolyte �PE� are
governed by an interplay between long-range attractive
forces between monomers, electrostatic interactions arising
predominantly from mobile counterions �CIs�, and polymer
elasticity. Of these forces, electrostatics has been the most
difficult to handle, both analytically and computationally, es-
pecially in the regime where the strength of the electrostatic
interaction, parametrized by the ratio of the electrostatic con-
densation energy of the multivalent CIs and thermal energy,
is high. While the behavior at high temperature or low elec-
trostatic energy is well described by the mean field Poisson–
Boltzmann �PB� theory,1–3 several computer simulation stud-
ies on PE, starting from Ref. 4, reported qualitative
deviations from PB at low temperatures or high electrostatic
energy.4–12

These studies reveal that the main cause for the devia-
tion is that PB theory underestimates the extent of CI con-
densation at high electrostatic coupling and low temperatures
and neglects spatial correlations. For instance, a study of the
equilibrium conformations of a PE as a function of charge
density and solvent quality �restricting to weak electrostatics
and poor solvent conditions�, using a Debye–Huckel
framework,7 demonstrated that with increasing charge den-
sity the PE globule splits into a string of pearls, in agreement
with scaling arguments.13 Simulations with explicit CI �Ref.
10� verified the above and further showed a collapse of the
PE at higher electrostatic coupling, due to attractive, dipolar
interactions arising from the condensation of CI onto the
monomers. Apart from these studies on free PE, the confor-

mations of a constrained PE, such as a grafted PE, in the
regime of low electrostatic coupling were examined using
molecular dynamics simulations.14

In this paper, we study the equilibrium phase diagram of
a grafted PE across a range of electrostatic couplings and
solvent quality using Monte Carlo �MC� simulations and
scaling arguments. Our study highlights the competition be-
tween the monomer-monomer, monomer-CI interactions, and
polymer elasticity. As a consequence, the PE exhibits a vari-
ety of phases, which we characterize as extended �E�, pearls
with m beads �Pm�, sausage �S�, and globular �G�. With in-
creasing electrostatic interaction, the PE exhibits the follow-
ing sequence of conformations: G→P2→P3→ . . . →S→G.
Thus, as a function of increasing electrostatic interaction, we
go from poor to good to re-entrant poor solvent. These con-
formation changes are intimately tied to the nature of binding
of CI onto the PE. For weak electrostatic interactions, the
CIs condense onto the PE and partially screen the monomer
charge. However when the electrostatic interactions are
stronger, we find that new composite degrees of freedom,
such as dipoles comprising of monomer and CI charges,
emerge. In addition, we find that the transition between S to
the re-entrant G is continuous and associated with critical
fluctuations in the shape driven by fluctuations in the fraction
of condensed CI.

II. MODEL AND SIMULATION DETAILS

Our model PE is a linear chain of N spherical beads, of
charge e and diameter a, connected through harmonic
springs. One end of the PE is anchored to the wall at x=0. To
ensure charge neutrality, we introduce N oppositely charged
CIs with the same valency and diameter. We neglect hydro-
dynamic effects and treat the solvent as a dielectric con-
tinuum with permittivity �. The system is bound within a
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cubic box of volume L3, with impenetrable, nonpolarizable
walls at x=0 and x=L�aN. We apply periodic minimum
image boundary conditions along the y and z directions.11 We
ignore any contribution from image charges at the bound-
aries along the x-axis.

In our simulation, we model the nonelectrostatic interac-
tions by �i� a Lennard-Jones �LJ� potential,

U�r� = ��1�
i�j

a12

�ri − r j�12 − 2
a6

�ri − r j�6 �ri − rj� � a ,

�2�
i�j

a12

�ri − r j�12 − 2
a6

�ri − r j�6 �ri − rj� � a ,�
�1�

between all particles and �ii� a harmonic spring potential act-
ing between connected beads of the PE,

Us = �
i

k��ri − ri+1� − a�2, �2�

where we take the spring constant, k=800kBT /a2, for the
simulation. For monomer-monomer interaction we choose
�=�1=�2 and for the CI-CI and monomer-CI interactions
�1=1 and �2=0. The electrostatic potential between any pair
of beads is

Uc = A�
i�j

asisj

�ri − r j�
, �3�

where si gives the sign of the ion charge. The electrostatic
coupling strength A=q2lB /a measures the ratio of the cou-
lomb to thermal energy when the distance of separation be-
tween two charges is a; here q is the valency of the monomer
and lB=e2 /4��kBT is the Bjerrum length. From now on, we
will write all distances in units of a and energy in units of
kBT.

We determine the equilibrium conformations and phase
diagram of this grafted flexible PE with explicit CIs over a
wide range of values of the electrostatic coupling A and LJ
parameter �, using the standard MC metropolis scheme. We
use the well known umbrella sampling technique15,16 to ob-
tain the free energy profile of the PE-CI system as function
of its radius of gyration, Rg. This method uses a weight func-
tion to bias the MC sampling of configuration space in such
a way that the less probable states of the system are sampled
frequently. In our simulation, we introduce the weight func-
tion by adding a harmonic potential Uw= �1 /2�C�Rg−R0�2 to
the total energy of the system. By varying R0, we sample the
whole configuration space and measure the distribution of
Rg, from which we calculate the free energy F�Rg� of the PE.

III. EQUILIBRIUM PHASE DIAGRAM

The equilibrium phase diagram of the grafted PE, deter-
mined by an interplay between interactions �electrostatics
and attractive LJ� and entropy �polymer and CI�, is fairly
subtle and is shown in Fig. 1. We characterize the phases as
globular �G�, sausage �S�, pearls with m-beads �Pm�, and
extended �E� by the N-dependent scaling of conformational
measures, such as the radius of gyration 	Rg
 and the aniso-
tropy of the gyration tensor; typical conformations are shown

in Fig. 3. Let us remind ourselves of the polymer conforma-
tions when A=0. As a function of �, the polymer goes from
being a self-avoiding random coil in good solvent conditions,
characterized by the Flory behavior, 	Rg
�N3/5, to a col-
lapsed globule �G� in a poor solvent, characterized by
	Rg
�N1/3, via a first-order transition at �=1.17

As we turn on the electrostatic interaction, the PE under-
goes a sequence of shape changes, depending on the value of
�. In the range, ��1, the PE changes from a self-avoiding
random walk to an extended conformation �E�, as A varies
between 0 and 1.10,11 This is because, while the electrostatic
interaction increases, the CI entropy prevents condensation
onto the PE. The net electrostatic interaction between the
monomers is repulsive resulting in an extension of the PE
and an 	Rg
�N. When A�1, a finite fraction of CIs con-
dense on the monomers; at A=5, for instance, 80% of CI
condense onto the PE �Fig. 2�. This results in reducing the
net monopole charge on each monomer and pairing the mo-
nomeric charge with the CI to form dipoles.10 Such dipoles
are the emergent degrees of freedom when A�1. This leads
to an effective attractive interaction and the configuration
resembles a sausage �S�. As A is increased to 10, complete
condensation of the CI takes place, resulting in a collapse
into a globule �G�. The number of condensed CI at a particu-
lar value of A is expected to have a weak dependence on the
system size L, as has been shown by previous simulations.11
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FIG. 1. �Color online� Phase diagram of the PE in the A-� plane for N
=120. Different phases are: �i� G: Globular, �ii� P: Pearls, �iii� S: Sausages,
and �iv� E: Extended.
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FIG. 2. �Color online� Fraction of condensed CI as a function of �i� the LJ
attraction � �square� for A=1 and �ii� the electrostatic interaction A �circles�
with �1=1 and �2=0. A CI is defined as condensed if it is within a distance
2a from any monomer of the PE. The inset shows the net dipole moment of
the PE �square� and number of dipoles nd �circles� as a function of A for
�=2.
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For larger values of the attractive LJ potential, a new set
of phases intervene between the globular phase �G� at A=0
and the extended phase �E�. These phases occur when ��1
�stronger short range attraction� and A�1 �negligible CI
condensation�, and therefore arise from a competition be-
tween short range attractive interactions, long range electro-
static repulsion between monomers, and polymer entropy,
akin to the well-known Rayleigh instability. The resulting
conformation is a string of pearls with m-beads �Pm�, with m
increasing with A �Refs. 7, 13, 18, and 19� �see Fig. 3�. At
large scales, the conformations in the Pm phase is dominated
by the electrostatic repulsion between the pearls and the ra-
dius of gyration scales as Rg�N��N, with a prefactor propor-
tional to the bead size. The subsequent behavior as a function
of A depends on the value of the attractive �. In the range
1���3, the PE changes from Pm �where m	N is the maxi-
mal allowed by the finite size of the polymer� to an extended
�E� conformation, as A increases toward 1. This is because
the attractive interactions are not strong enough to compete
with the increasing electrostatic �monomer-monomer� repul-
sion as A increases. In this range of �, the conformation then
changes from E→S→G, as described in Fig. 3. As we in-
crease the attraction ��3, we lose the extended phase en-
tirely, and the PE goes from G→P2→P3→ . . .S, and subse-
quently to a re-entrant G phase as we tune the electrostatic
repulsion A as shown in Fig. 3.

The conformations at large A, namely, the S and the
reentrant G phases, are a consequence of the emergent dipole
degrees of freedom. In the inset of Fig. 2 we plot the net
dipole moment and the fractional number of emergent di-
poles �nd /N� of the PE as a function of A for �=2. The
dipole moment shows a maximum before the globular phase
is reached–at this stage, the number of dipoles is small. As
we increase A, the number of dipoles increase, but the net
dipole moment starts to decrease, as the PE conformation
gets more compact in the G phase. The scaling of the radius
of gyration in the two G-phases �at low and high A� is the
same—Rg�N��N1/3 �poor solvent!�, as shown in Fig. 4.
Thus, the re-entrant G-phase, while structurally similar to the
initial G-phase at A=0, is different only in its electric dipole
characteristics.

At larger values of the attractive potential ��4, the PE
conformations go directly from G→S→G or even from G
→G at still higher values of ��5, where the latter G-phase
has a dipole moment. These direct transitions are consistent
with the behavior of the fraction of condensed CI, which

increases with � for a fixed A �Fig. 2�. The enhancement of
CI condensation, which is a result of electrostatic correla-
tions, results in a strong screening of the monomer-monomer
interactions.

Before we end this section, a word about finite size ef-
fects: In our simulations on finite PEs, the scale for the maxi-
mum bead number in the Pm phase is set by system size, and
in the thermodynamic limit of N→
, there should be a finite
fraction of beads. At this stage we are unsure about how the
phase boundaries discussed above would shift as we increase
N, or even whether the S phase exists in the thermodynamic
limit.

IV. CONTINUOUS TRANSITION FROM S\G:
ANOMALOUS FLUCTUATIONS OF THE SAUSAGE

The phase diagram �Fig. 1� shows a transition from �re-
entrant� G→S, upon reducing the electrostatic coupling A
from a high value. This transition is a symmetry breaking
transition; the appropriate order parameter characterizing the
spontaneous breaking of spherical symmetry is the aspheric-
ity parameter, 	Y
�2	�1

2
 / �	�2
2
+ 	�3

2
�−1, where �1 ,�2 ,�3�
are the eigenvalues of the gyration tensor of the PE, with �1

as the largest. The asphericity 	Y
=0 for a globule. Figure 5

FIG. 3. �Color online� Snapshots of the equilibrium configurations of the
grafted PE �red� with condensed CI �green�, typical of the different phases.
Top panel: For N=100, �=2, the configurations from the left are �i� G:
Globular at A=0.1, �ii� P2: Pearls with two beads at A=0.2, �iii� E: Extended
at A=1, �iv� S: Sausage at A=3.5, and �v� G: Globular at A=4. Bottom
panel: For N=120, �=3, the configurations from the left are �i� G: Globular
at A=0.1, �ii� P2: Pearls with two beads at A=0.2, �iii� P4: Pearls with four
beads at A=1, �iv�S: Sausage at A=2.5, and �v� G: Globular at A=3.
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FIG. 4. �Color online� Scaling of the mean radius of gyration 	Rg
 with N
for the globular configurations shown in Fig. 3. The circles are for �=3.0,
A=0.1 and squares are for �=3.0, A=3.0. The solid line is a guide to the
eyes with 	Rg
�N1/3.
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FIG. 5. �Color online� Asphericity 	Y
 �circles� and 	S
= 	R2
 / 	Rg
2
−2

�squares� �see text�, as a function of electrostatic coupling A, �1=1.0, �2

=0.0, for N=50. For reference, Y =0 for a globule, 	S
=4 for a Gaussian
chain, and 	S
=10 for a rigid rod.
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shows how this asphericity changes as a function of A. At the
G→S transition, this symmetry breaking order parameter
changes continuously, suggesting a second-order phase tran-
sition. On the other hand the G→E transition at small A
seems abrupt, suggesting a first-order transition. We also plot
the structural quantity 	S
�	R2
 / 	Rg

2
−2, where R is the
squared end-to-end distance,20,21 as a function of A; this
quantity is 	S
=4 for a Gaussian chain and 	S
=10 for a rigid
rod.

To understand the nature of the phase transitions better,
we compute the free energy of the PE with the CI, as a
function of Rg for different values of A. The smooth variation
in the free energy profile and its minimum with increasing A
�Fig. 6�, as one moves from E→S→G, is consistent with the
continuous transition described above. Indeed at around A
�5, when we are in the S-phase, the minima in the free
energy profile are extremely shallow, suggesting that the
fluctuations of shape in this regime would be large, consis-
tent with its proximity to a critical point. We note that the
variation in R0 with A �shown in inset of Fig. 6� is very
similar to that of free polymer,10,11 indicating that the graft-
ing has little or no effect on the collapse transition.

We explicitly study the fluctuations in the configurations
of the S-phase; snapshots of the equilibrium configurations,
displayed in Fig. 7, show very strong shape fluctuations, with
significant sampling of both extended and collapsed confor-
mations. These large fluctuations of the PE shape in the
S-phase are accompanied by strong fluctuations in the frac-
tion of condensed CI �Fig. 8�. The dynamical interplay be-
tween the PE shape and condensed CI is shown in Fig. 8;
whenever there is a transient enhancement of the condensed
CI fraction, the PE chain gets more compact �owing to the
effective dipolar attraction� and, whenever the
condensed fraction is low, the chain gets stretched out

�owing to strong monomer-monomer repulsion� leading
to a large negative value of the cross correlator, C�n�
= �1 /n��i=1

n ��Nc�i��Rg�i�� / �	Rg
N�, where n is the number of
MC steps.

To quantify these fluctuations as a function of A we com-
pute the second moment of Rg, 	�Rg

2
= 	�Rg− 	Rg
�2
, using
the free energy F�Rg�. This quantity shown in Fig. 9 exhibits
a peak around A=5 �in the S regime�, with its height increas-
ing with system size, indicating a critical point. The cross
correlator, 	�Rg�Nc
, shows a negative peak at exactly where
the peak in 	�Rg

2
 appears, reiterating the interplay between
PE shape and condensation of CI. Our preliminary study to
determine the order of the phase transition needs to be rein-
forced by a more detailed study of the scaling of fluctuations
as a function of chain length N; we hope to return to this
when we have better computational facilities at our disposal.
However, if we take our study as evidence of a continuous
transition, then this would imply that upon increasing �, the
critical line would necessarily terminate in a critical end
point.

V. CONCLUSION

Using extensive MC simulations, we explored the phase
diagram of a grafted PE with explicit CIs as a function of the
electrostatic coupling A and LJ interaction parameter �. We
characterized the phases in terms of the statistics of their
conformations and electrostatic measures, such as fraction of
condensed CIs. We uncovered four distinct phases: Globular,
string of pearls with m-beads, extended, sausage, and re-
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FIG. 7. �Color online� Configuration snapshots of the sausage �S� showing
strong fluctuations at equilibrium for A=5, �=1. The configurations change
from being extended to collapsed.
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entrant globule with nonzero dipole moment. As we noted,
the effect of grafting the PE at one end is negligible when the
electrostatic interaction A is large. Thus the large A region of
the phase diagram shown in Fig. 1 should be valid for the
free PE too �in contrast, Ref. 7 explores the low A regime of
free PE�.

Our study, which treats the CI explicitly, highlights the
strong correlation between collapse of the PE and the con-
densation of the CI. The dependence of CI condensation on �
�at low values of A�, the emergent formation of dipoles from
condensation of CI onto the PE, the anomalous fluctuations
of the sausage, are all a consequence of these correlated ion
effects. The appearance of new degrees of freedom, viz.,
dipoles, when A�1, makes it difficult to construct an ana-
lytical theory valid for all values of A. One possible approach
would be to represent the CI by “two-species,” a monopole
charge density and a dipole density, whose relative fraction
depends on A. We will explore these ideas in a future
submission.
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